湖北省孝感市云梦县2017-2018学年八年级数学下学期期中试题 新人教版 精
- 格式:doc
- 大小:2.97 MB
- 文档页数:8
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤5 3.下列方程是一元二次方程的是()A.x2﹣y=1B.x2+2x﹣3=0C.x2+=3D.x﹣5y=6 4.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=25.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=16.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>57.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6B.8C.10D.128.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是( ) A .5,5B .5,6C .6,6D .6,59.不解方程,判别方程2x 2﹣3x =3的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个实数根D .无实数根10.在平行四边形ABCD 中,AC 与BD 相交于0,AE ⊥BD 于E ,CF ⊥BD 于F ,则图中的全等三角形共( )A .5对B .6对C .7对D .8对二.填空题(共6小题,满分24分,每小题4分)11.当x =﹣2时,二次根式的值是 .12.一个多边形的每一个外角为30°,那么这个多边形的边数为 .13.化简:= .14.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为S 甲2=7.5,S乙2=1.5,S丙2=3.1,那么该月份白菜价格最稳定的是 市场.15.已知关于x 的二次方程a (x +h )2+k =0的解为,则方程的解为 .16.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 cm 2.三.解答题(共7小题,满分66分)17.在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第步开始出错的;(2)请你给出正确的解题过程.18.解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.19.王老师为了从平时在班级里数学比较优秀的甲、乙两位同学中选拔一人参加“全国初中数学希望杯竞赛”,对两位同学进行了辅导,并在辅导期间进行了5次测验,两位同学测验成绩得分情况如图所示:利用表中提供的数据,解答下列问题:(1)根据右图分别写出甲、乙五次的成绩:甲:;乙:.(2)填写完成下表:(3)请你根据上面的信息,运用所学的统计知识,帮助王老师做出选择,并简要说明理由.20.某商场销售某种商品,进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查,单价每降低2元,则平均每天的销售量可增加20千克.若该商场销售这种商品平均每天获利2240元,并且为尽可能让利于顾客,赢得市场,那么这种商品每千克应降价多少元?21.如图所示,在▱ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD于F.(1)求证:CE=CF;(2)延长AD、EF交于点H,延长BA到G,使AG=CF,若AD=7,DF=3,EH=2AE,求GF的长.22.已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.(1)求证:此方程总有两个实数根;(2)求此方程的两个根(若所求方程的根不是常数,就用含k的式子表示);(3)如果此方程的根刚好是某个等边三角形的边长,求k的值.23.如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图2中,计算裁剪的角度∠BAD;(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:B.【点评】掌握好中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤5【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,5x﹣1≥0,解得,x≥,故选:B.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.下列方程是一元二次方程的是()A.x2﹣y=1B.x2+2x﹣3=0C.x2+=3D.x﹣5y=6【分析】利用一元二次方程的定义判断即可.【解答】解:A、x2﹣y=1是二元二次方程,不合题意;B、x2+2x﹣3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x﹣5y=6是二元一次方程,不合题意,故选:B.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.4.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1【分析】移项后配方,再根据完全平方公式求出即可.【解答】解:x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.【点评】本题考查了解一元二次方程的应用,关键是能正确配方.6.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).7.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6B.8C.10D.12【分析】先过点D作DE⊥AC于点E,由在▱ABCD中,AC=8,BD=6,可求得OD的长,又由对角线AC、BD相交成的锐角α为30°,求得DE的长,△ACD的面积,则可求得答案.【解答】解:过点D作DE⊥AC于点E,∵在▱ABCD中,AC=8,BD=6,∴OD=BD=3,∵∠α=30°,∴DE=OD•sin∠α=3×=1.5,∴S=AC•DE=×8×1.5=6,△ACD=12.∴S▱ABCD=2S△ACD故选:D.【点评】此题考查了平行四边形的性质以及三角函数的知识.注意准确作出辅助线是解此题的关键.8.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是( ) A .5,5B .5,6C .6,6D.6,5【分析】根据众数、中位数的定义分别进行解答即可. 【解答】解:由表知数据5出现次数最多,所以众数为5; 因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B .【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 9.不解方程,判别方程2x 2﹣3x =3的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个实数根D .无实数根【分析】先把方程化为一般式得到2x 2﹣3x ﹣3=0,再计算△=(﹣3)2﹣4×2×(﹣3)=18+24>0,然后根据△的意义判断方程根的情况. 【解答】解:方程整理得2x 2﹣3x ﹣3=0,∵△=(﹣3)2﹣4×2×(﹣3)=18+24>0,∴方程有两个不相等的实数根.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.在平行四边形ABCD中,AC与BD相交于0,AE⊥BD于E,CF⊥BD于F,则图中的全等三角形共()A.5对B.6对C.7对D.8对【分析】由四边形ABCD是平行四边形,可得OA=OC,OB=OD,AB=CD,AD=BC,即可证得△ABD≌△CDB(SSS),△ABC≌△CDA,△AOD≌△COB(SAS),△AOB≌△COD,又由AC⊥BD,AE⊥BD,可得△AOE≌△COF,△ABE≌△CDF(AAS),△ADE≌△CBF.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB=CD,AD=BC,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),同理:△ABC≌△CDA;在△AOD和△COB中,,∴△AOD≌△COB(SAS),同理:△AOB≌△COD,∴∠ABO=∠CDO,∵AC⊥BD,AE⊥BD,∴∠AEO=∠CFO=90°,∠AEB=∠CFD=90°,在△AOE和△COF中,,∴△AOE ≌△COF (AAS ), 在△ABE 和△CDF 中,,∴△ABE ≌△CDF (AAS ). 同理:△ADE ≌△CBF . 故选:C .【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.二.填空题(共6小题,满分24分,每小题4分)11.当x =﹣2时,二次根式的值是 4 .【分析】把x =﹣2代入已知二次根式,通过开平方求得答案.【解答】解:把x =﹣2代入得,==4,故答案为:4.【点评】本题考查了二次根式的定义及性质,注意二次根式的结果是非负数是解答此题的关键. 12.一个多边形的每一个外角为30°,那么这个多边形的边数为 12 .【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:多边形的边数:360°÷30°=12, 则这个多边形的边数为12. 故答案为:12.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.13.化简:=.【分析】根据二次根式的性质计算即可.【解答】解:原式==,故答案为:.【点评】本题考查的是二次根式的化简求值,掌握二次根式的性质是解题的关键.14.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为S 甲2=7.5,S乙2=1.5,S丙2=3.1,那么该月份白菜价格最稳定的是 乙 市场.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案. 【解答】解:∵S 甲2=7.5,S 乙2=1.5,S 丙2=3.1, ∴S 甲2>S 丙2>S 乙2,∴该月份白菜价格最稳定的是乙市场; 故答案为:乙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.已知关于x 的二次方程a (x +h )2+k =0的解为,则方程的解为 x 1=﹣,x 2=0 .【分析】由于方程的解比二次方程a (x +h )2+k =0的解要大,则方程的解为x 1=﹣3+=﹣,x 2=﹣+=0.【解答】解:∵关于x 的二次方程a (x +h )2+k =0的解为,∴方程的解为x 1=﹣3+=﹣,x 2=﹣+=0.故答案为x 1=﹣,x 2=0.【点评】本题考查了一元二次方程的解:满足一元二次方程的未知数的值叫一元二次方程的解. 16.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 41 cm 2.【分析】连接E 、F 两点,由三角形的面积公式我们可以推出S △EFC =S △BCQ ,S △EFD =S △ADF ,所以S △EFG =S △BCQ ,S △EFP =S △ADP ,因此可以推出阴影部分的面积就是S △APD +S △BQC . 【解答】解:连接E 、F 两点, ∵四边形ABCD 是平行四边形, ∴AB ∥CD ,∴△EFC 的FC 边上的高与△BCF 的FC 边上的高相等, ∴S △EFC =S △BCF , ∴S △EFQ =S △BCQ , 同理:S △EFD =S △ADF , ∴S △EFP =S △ADP ,∵S △APD =16cm 2,S △BQC =25cm 2, ∴S 四边形EPFQ =41cm 2, 故答案为:41.【点评】本题主要考查了平行四边形的性质,题目综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形. 三.解答题(共7小题,满分66分)17.在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第 ③ 步开始出错的; (2)请你给出正确的解题过程.【分析】根据二次根式的运算法则即可求出答案. 【解答】解:(1)③(2)原式=2﹣=6﹣2=4【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.18.解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.【分析】(1)利用配方法得到(x﹣7)2=57,然后利用直接开平方法解方程;(2)先计算判别式的值,然后利用求根公式解方程;(3)先移项得到(2x+3)2﹣4(2x+3)=0,然后利用因式分解法解方程;(4)先变形得到2(x﹣3)2﹣(x+3)(x﹣3)=0,然后利用因式分解法解方程.【解答】解:(1)x2﹣14x+49=57,(x﹣7)2=57,x﹣7=±,所以x1=7+,x2=7﹣;(2)△=(﹣7)2﹣4×1×(﹣18)=121,x=,所以x1=9,x2=﹣2;(3)(2x+3)2﹣4(2x+3)=0,(2x+3)(2x+3﹣4)=0,2x+3=0或2x+3﹣4=0,所以x1=﹣,x2=;(4)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法解一元二次方程.19.王老师为了从平时在班级里数学比较优秀的甲、乙两位同学中选拔一人参加“全国初中数学希望杯竞赛”,对两位同学进行了辅导,并在辅导期间进行了5次测验,两位同学测验成绩得分情况如图所示:利用表中提供的数据,解答下列问题:(1)根据右图分别写出甲、乙五次的成绩:甲:10,13,12,14,16;乙:13,14,12,12,14.(2)填写完成下表:(3)请你根据上面的信息,运用所学的统计知识,帮助王老师做出选择,并简要说明理由.【分析】根据图表就可以得到甲,乙的成绩,注意观察次数所对应的点的纵坐标,就是成绩;根据这两组数就可以求出每组的平均数,中位数、众数、方差;根据平均数的大小确定成绩的好坏,根据方差确定成绩哪个稳定.【解答】解:(1)甲:10,13,12,14,16;乙:13,14,12,12,14;(2)(3)选择乙去竞赛.因为甲乙的平均分相同,乙的成绩较稳定所以选乙去.【点评】本题主要考查了平均数、中位数、众数的概念,方差是描述一组数据波动大小的量.20.某商场销售某种商品,进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查,单价每降低2元,则平均每天的销售量可增加20千克.若该商场销售这种商品平均每天获利2240元,并且为尽可能让利于顾客,赢得市场,那么这种商品每千克应降价多少元?【分析】设这种商品每千克应降价x元,利用销售量×每千克利润=2240元列出方程求解即可.【解答】解:设这种商品每千克应降价x元,根据题意得(60﹣x﹣40)(100+×20)=2240整理得x2﹣10x+24=0解得:x1=4(不合题意,舍去),x2=6.答:这种商品每千克应降价6元.【点评】本题考查了一元二次方程的应用,解题的关键是掌握销售问题中的基本数量关系.21.如图所示,在▱ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD于F.(1)求证:CE=CF;(2)延长AD、EF交于点H,延长BA到G,使AG=CF,若AD=7,DF=3,EH=2AE,求GF的长.【分析】(1)由题意可得:∠DAE=∠BAE=∠AEB=∠BAD=∠C,则∠C+∠FEC=90°,根据三角形内角和可得∠C+∠EFC=90°,则∠CEF=∠CFE,即可得结论;(2)连接AC,作AP⊥BC于P,由题意可求AB=BE=CD=5,CE=CF=2,即可求DH=3,根据勾股定理可求AE的长,根据勾股定理可列出方程,可求出BP,AP,PE,PC的长度,再根据勾股定理可求AC的长,由题意可证AC=GF,即可得GF的长.【解答】证明:(1)∵四边形ABCD是平行四边形∴∠BAD=∠C,AD∥BC∴∠DAE=∠AEB∵AE平分∠DAB∴∠BAE=∠DAE=∠BAD∴∠BAE=∠AEB=∠BAD∴AB=BE∵AE⊥EF∴∠AEF=90°∴∠AEB+∠FEC=90°,即∠BAD+∠FEC=90°∴∠C+∠FEC=90°∵∠C+∠FEC+∠EFC=180°∴∠C+∠EFC=90°∴∠EFC=∠FEC∴CE=CF(2)如图连接AC,作AP⊥BC于P∵四边形ABCD是平行四边形∴AB=CD,AD=BC=7,AB∥CD∵CE=CF∴BC﹣BE=CD﹣DF,且AB=BE=CD∴7﹣AB=AB﹣3∴AB=5=BE=CD∴CE=CF=2∵AD∥BC∴∠H=∠FEC,且∠FEC=∠EFC,∠DFH=∠EFC ∴∠H=∠DFH∴DH=DF=3∴AH=10在Rt△AEH中,AH2=AE2+EH2,且EH=2AE∴5AE2=100∴AE=2在Rt△ABP和Rt△APE中AP2=AB2﹣BP2,AP2=AE2﹣PE2.∴AB2﹣BP2=AE2﹣PE2.∴25﹣BP2=20﹣(5﹣BP)2.∴BP=3∴AP=4,PE=2,PC=4在Rt△APC中,AC==4∵AB∥CD,AG=CF∴四边形AGFC是平行四边形∴GF=AC=4【点评】本题考查了平行四边形的性质,全等三角形的性质和判定,勾股定理,添加恰当的辅助线构造直角三角形是本题的关键.22.已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.(1)求证:此方程总有两个实数根;(2)求此方程的两个根(若所求方程的根不是常数,就用含k的式子表示);(3)如果此方程的根刚好是某个等边三角形的边长,求k的值.【分析】(1)由△=[﹣(k+1)]2﹣4×1×(2k﹣2)=(k﹣3)2≥0可得答案;(2)利用因式分解法可得(x﹣2)[x﹣(k﹣1)]=0,再进一步求解可得;(3)根据等边三角形的三边相等得出关于k的方程,解之可得.【解答】解:(1)依题意,得△=[﹣(k+1)]2﹣4×1×(2k﹣2)=k2+2k+1﹣8k+8=k2﹣6k+9=(k﹣3)2≥0,∴此方程总有两个实数根.(2)将方程左边因式分解得(x﹣2)[x﹣(k﹣1)]=0,则x﹣2=0或x﹣(k﹣1)=0,解得x1=2,x2=k﹣1;(3)∵此方程的根刚好是某个等边三角形的边长,∴k﹣1=2.∴k=3.【点评】此题考查了配方法解一元二次方程与一元二次方程判别式的知识.解题的关键是熟练掌握一元二次方程的根的个数与判别式的关系及因式分解法解一元二次方程及等边三角形的性质.23.如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图2中,计算裁剪的角度∠BAD;(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.【分析】(1)根据题意先求得AB=30cm,由纸带的宽为15cm,根据三角函数求得∠BAD=30°;(2)由三棱柱的侧面展开图求出BC和MB的长,即是所需的矩形纸带的长度.【解答】解:(1)由图2的包贴方法知:∵AB的长等于三棱柱的底边周长,∴AB=30cm,∵纸带的宽为15cm,∴sin∠BAD=sin∠ABM===,∴∠BAD=30°;(2)在图3中将三棱柱沿过点A的侧棱剪开,得知如图甲的侧面展开图.将图甲的△ABF向左平移30cm,△CDE向右平移30cm,拼成如图乙中的平行四边形AMCN,此平行四边形即为图2中的平行四边形ABCD.由题意得:图2中的BC=图乙中的AM=2AE=2AB÷cos∠EAB=60÷cos30°=40(cm),故所需的矩形纸带的长度为MB+BC=30×cos30°+40=55cm.【点评】本题是一道立体图形的侧面展开,结合三角函数进行计算是一道综合题,难度较大.。
20仃一2018学年度 八年级下学期期中数学试题题号-一--二二三分x k b 1 . c o212223242526得分一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中 只有一个是符合题意的,把正确答案前字母序号填在下面表格相应的题号下。
题号123456789101112答案1 •下列式子中,属于最简二次根式的是()F 列各组数是三角形的三边,不能组成直角三角形的一组数是(4.下列计算错误的是 ( )A . 3,2- 2=3B .,60S 5=2 .35.如图,是台阶的示意图.已知每个台阶的宽度都是20cm ,每个台阶的高度都是 10cm ,连接AB , 则 AB 等于() A .120cm B . 130cm C . 140cm D . 150cm6. 女口图,矩形ABCD 的对角线 AC 、BD 相交于点 O ,CE // BD ,DE // AC ,若AC=4,贝U 四边形 CODE 的周长()A . 4B .6 C .8 D .10A. . 9B. 7C. (202. 3. A . 3,4,5B . 6, 8, 10C . 1.5,2,2.5F 列条件中,能确定一个四边形是平行四边形的是(A . 一组对边相等B . 一组对角相等 两条对角线相等 D .两条对角线互相平分D.7題圉7. 如图,在平行四边形ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,贝U AB 的长A . 1B . 2C. 1D . 4&菱形具有而矩形不一定具有的性质是()A.内角和等于360度B.对角相等C.对边平行且相等D.对角线互相垂直 9•若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是A •矩形 B.等腰梯形 C .对角线相等的四边形 D .对角线互相垂直的四边形10 .化简(二-2) 2016?(二+2) 2017 的结果为A . - 1B . 二-2C .7+2D .-二-211. 如图,在矩形 ABCD 中,AB = 8, BC = 4,将矩形沿 AC 折叠, 点D 落在点D'处,则重叠部分 △ AFC 的面积为. A . 10 B . 12C . 16D . 2012、 如图,正方形 ABCD 中,AE = AB ,直线DE 交BC 于点F ,则/ BEF =( A . 30 ° B . 45 ° C . 55 ° D .60 °二、填空题(本题有8小题,每小题4分,共32分)13、 若代 数式一、有意义,则实数x 的取值范围是 _____________ .x —115 .如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交 AD 和BC 于点E 、F ,AB=2,BC=3,则图中阴影部分的面积为 _______________> 1)个等式写出来 ____________ . ____________14 .计算吋,--的结果是13題圈 2题圉 16.如图,要使平行四边形 ABCD 是矩形,则应添加的条件是 I?題圉_ (添加一个条件即可) 17.如图,由四个直角边分别为 5和4的全等直角三角形拼成为 __________ .赵爽弦图”,其中阴影部分面积18.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多 1 m ,当它把绳子的下端拉开 5m后,发现下端刚好接触地面,则旗杆的高为19.观察下列各式:请你找出其中规律,并将第n (nCA E D E F CND锁團20. 如图,在等腰Rt△ OAA i中,/ OAA i= 90° OA = 1,以OA i为直角边作等腰Rt△ OA1A2,以OA?为直角边作等腰Rt△ OA2A3,…则OA5的长度为三、解答下列各题(满分52分)21. (每小题4分,本题满分8分)计算:(1)( _+ 7)(7)-(_+3 2;22. (本题满分7分)如图,在厶ABC中,AD丄BC于D,点D , E, F分别是BC, AB, AC的中点.求证:四边形AEDF是菱形.23. (本题满分7分)如图,在等边三角形ABC中,BC=6cm.射线AG//BC,点E从点A出发沿射线AG以1cm/s 的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D 时,求证:△ ADE CDF ;(2)填空:当t为___________ s时,四边形ACFE是菱形;24. (本题满分8分)小红同学要测量A、C两地的距离,但A、C 之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,/ ABC=120 °请你帮助小红同学求出A、C两点之间的距离.(参考数据>'20疋4.,心6 4.625. (本题满分10分)如图,在A ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC 的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC ; /(2)若AB =AC,试判断四边形ADCF的形状,并证明你的结论.25.(本题满分12分) 如图,△ ABC中,点0是边AC上一个动点,过0作直线MN // BC.设MN 交/ ACB 的平分线于点E,交/ ACB的外角平分线于点 F .(1)求证:OE = OF;(2)若CE=8, CF=6,求0C 的长;(3)当点0在边AC上运动到什么位置时,四边形并说明理由. AECF 是矩八年级数学试题参考答案及评分标准(这里只提供了一种解法或证法,其他证法,只要合理,一样得分) 、1——12: BDDAB CBDCC AB 、13.xK0且XH1 ; 14. 2;15. 3; 16. AB 丄 BC (或 AC=BD ) ; 17.1; 18.咕詁 20 . 4疋.三、21.(1)原式=7 - 5 -( 3+6 二+18) -------------- 2 分 =2 - 21 - 6 :_________________ 3 分------------------ 4 分D 是AC 边的中点 • AD 二CD又ADE — CDFADE^A CDF --------------------------24. 解:过C 作CD 丄AB 交AB 延长线于点 D ,• / ABC=120° ,• / CBD=60° , --------------------------------------------- 2 分在 Rt A BCD 中,/ BCD=90° -/ CBD=30° ,12m(2)原式=2 .2+3-2-1+2----------- 2 分=4+ “ 2 ; ------------------------------ 4 分 22.答案:证明:•••点 D , E , F 分别是BC , AB , AC 的中点, ••• DE // AC , DF // AB, ------- •••四边形AEDF 是平行四边形,又••• AD 丄 BC , BD=CD , • -------------------------------------- A B=AC, --------------------------------- • --------------------------------------A E=AF, ---------------------------------2 分 ---------3 分 ------- 5 分 ------------ 6 -------------23.(1)证明:T AG // BCEAD —ACB(2) 6----------------------------------------- 7 分------------------------- 3 分• BD=BC=^=10(米),••• CD= ~~=10 -(米), -------------------- 4 分••• AD=AB + BD=80+10=90 米, -------------------- 5 分在RgACD 中,AC=「「= -92(米),答:A、C两点之间的距离约为92米. --------------------------- 8分25. (1)证明:T AF // BC,•••/ AFE= / DBE ,••• E是AD的中点,•AE=DE ,在△AFE 和△DBE 中ZAFE^ZDBE” ZFEA^ZBED牠二DE•△ AFE ◎△ DBE ( AAS ),•AF=BD ,•/ AD是BC边上的中线,•BD=CD ,•AF=DC .(2)四边形ADCF是矩形, ---------------------------------- 6分证明:AF // DC , AF=DC ,•四边形ADCF是平行四边形,•/ AC=AB , AD 是中线,• AD 丄DC , 即/ ADC=90 度--------------- ----------------- 8分•平行四边形ADCF是矩形. --------------------------------- 10 分26. (1)证明:T MN交/ ACB的平分线于点E,交/ ACB的外角平分线于点F,• / 2= / 5,/ 4= / 6, ------------------------------------------------------------------------------ •/ MN // BC,•••/ 1= / 5,Z 3= / 6, -------------------------------------------------------------------------------- 2 分:丄 1= / 2,/ 3= / 4, ----------------------------------------------------------------------------- 3 分•EO=CO, FO=CO,•OE=OF; --------------------------------------------------------- 4 分(2)解:•••/ 2= / 5, / 4= / 6,•/ 2+ / 4= / 5+ / 6=90 ° ----------------------------------------------------------------- 5 分•/ CE=8, CF=6,•EF= 丁=10, ------------------------------------------------------------------------ 6 分•OC= EF=5; ----------------------------------------------------- 8 分2(3)------------------------------------------------------------------------------------------------------------ 答:当点O在边AC上运动到AC中点时,四边形AECF是矩形. ---------------------- 9分证明:当O为AC的中点时,AO=CO ,•/ EO=FO ,•四边形AECF是平行四边形,----------------------------- 10 分V/ ECF =90°,•平行四边形AECF是矩形. 12。
湖北省孝感市2017-2018学年八年级数学10月月考试题一、选择题(本大题共10小题,每小题3分,满分30分) 1.已知三条线段长度的比值,则能构成三角形的是( ) A .1:3:4 B .1:2:3 C .2:7:4 D .3:5:42.△ABC 的三边长分别为,,a b c ,且0))((=-++c a c b a ,那么△ABC 为( ) A.不等边三角形B.等边三角形C.等腰三角形D.锐角三角形3.如图AD ⊥BC 于点D ,那么图中以AD 为高的三角形有 个( ) A .3 B .4 C .5 D .6 4.如图所示,∠a 的度数是( )A.10°B.20°C.30°D.40°5.如图,△ABC 中,∠A=50°,点D ,E 分别在AB ,AC 上,则∠1+∠2的大小为( )A.130°B.230°C.180°D.310°6.把一张多边形的纸片剪去其中某个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是是( )A .六边形B .五边形C .四边形D .三角形7.如图所示,△ABC 是不等边三角形,DE=BC,以D 、E 为两个顶点作位置不同的三角形,使所作三角形与△ABC 全等,这样的三角形最多可以画出( ) A .8个 B .6个 C .4个 D .2个8.如图,BD=CF ,FD ⊥BC 于点D ,DE ⊥AB 于点E ,BE=CD ,若∠A FD=145°,则∠EDF 的度数为( )A.45°B.55°C.35°D.65° 9.如图,△BDC ’是将长方形纸片ABCD 沿BD 折叠得到的,图中(包含实线和虚线)共有全等三角形( )A .2对B .3对C .4对D .5对(第3题)(第4题)(第5题)(第7题)(第8题)(第9题)10.如图所示,AD 是△ABC 的中线,E 、F 分别是AD 和AD 延长线上的点,且DE=DF ,连接BF 、CE ,下列说法:①CE=BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≅△CDE ,其中正确的有( )A .1个B .2个C .3个D .4个 二、填空题(每题3分,共18分)11.△ABC 的三边长分别为,,a b c ,则=-----c a b c b a _________.12.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为_________度.13.如果一个多边形每个内角都等于108°,那么这个多边形是 边形。
湖北省孝感市孝南区2017-2018学年八年级数学下学期期中试题八年级数学答案一、选择题1—10 ABBCD BCDCD二、填空题11、512、若两个三角形的三边对应相等,则这两个三角形全等。
13、6 14、4415、5 16、10三、解答题17、(1)3(2)32-22+22 = 3218、解:∵x=5+2 y=5-2 ⎩⎨⎧==+152xy y x ∴x 2-3xy+y 2=(x+y) 2-5xy =(25)2-5×1=1519、证明:∵四边形ABCD 为平行四边形∴BO=DO又∵DF ⊥AC BE ⊥AC∴∠DFO=∠B EO=90°在△DFO 与△BEO 中⎪⎩⎪⎨⎧=∠=∠∠=∠BO DO BOE DOF BEO DFO∴△DOF ≌△OBE∴OE=OF20、证明:∵MN ⊥AB 于N∴AN 2=AM 2-MN 2BN 2=BM 2-MN 2∴AN 2-BN 2=AM 2-BM 2又∵∠C=90° AM 为△ABC 的中线∴BM=CM∴AN 2-BN 2=AM 2-CM2 又∵AM 2-CM 2=AC 2∴AN 2-BN 2=AC 221、(1)见右图 .................... .... 5分(2)过B 、C 分别作BD ⊥AE CE ⊥AE∴BD ∥CE 32 =(1+2)×4×21-2×1×21-2×2×21 =6-1-2 =3 .............. 3分22、解:∵a=121∴a=2+1 ................. 1分∴a-1=2∴(a-1)2=(2)2 ∴a 2-2a+1=2 ............................... 3分 ∴a 2-2a=1∴4a 2-8a-3=4(a 2-2a) -3=4×1-3=1 ............... 6分23、证明(1)∵AF ∥CD∴∠AFE=∠DCE又∠AEF=∠DECAE=DE ∴△AEF ≌△DEC ......... 4分(2)当△ABC 为等腰三角形时,四边形AFBD 为矩形,理由如下: ∵AF ∥BDAF=BD∴四边形AFBD 为平行四边形由(1)知:AF=DC当AB=AC 时有:AD ⊥BC∴四边形AFBD 为矩形 ....................... 6分24、(1)B (6,3)OP=6-t OQ=t+32 ..................... 3分 (2)当t=1时OP=6-t=5 OQ=t+32=35又∵QC=OC-OQ =3-35=34又∵△OPQ 沿PQ 折叠到△OPQ∴QD=QO=35又∵矩形OABC∴∠BCO=∠AOC=90°Rt △QCD 中 CD=22QC QD - =22)34()35(-=1∴D (1,3) .....................4分 (3)由(2)知t=1时CD=AP=1 OA=BC=6 ∴BC-CD=OA-AP∴BD=OP=5又∵矩形OABC∴OM=BM OA ∥BC又∵G 为OM 中点,H 为BM 中点∴OG=BH 又∵OA ∥BC∴∠CBO=∠AOB在△POG 与△DBH 中⎪⎩⎪⎨⎧=∠=∠=BH OG OBHPOG OBPO∴△POG ≌△PBH∴∠OGP=∠BHDPG=DH∴∠MGP=∠DHM∴PG ∥DH又PG=DH∴四边形DGPH 为平行四形DGPH ............. 5分。
2017-2018学年湖北省孝感市孝南区八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.如果二次根式有意义,那么x的取值范围是()A. B. C. D.2.下列式子中,属于最简二次根式的是()A. B. C. D.3.下列计算正确的是()A. B. C. D.4.下列各组线段中,能组成直角三角形的是()A. 2,3,4B. 1,4,9C. 5,12,13D. 5,11,125.点(3,-1)到原点的距离为()A. B. 3 C. 1 D.6.如图,在△ABC中,D,E,F分别是AB,BC,CA的中点,以这些点为顶点,在图中能画平行四边形的个数是()A. 2B. 3C. 4D. 57.在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A. ,B. ,C. ,D. ,8.已知:如图,在矩形ABCD中,DE⊥AC,∠ADE=∠CDE,那么∠BDC等于()A.B.C.D.9.如图,图中所有的三角形都是直角三角形,所有的四边形都是正方形,已知正方形A、B、C、D的面积分别为12、16、9、12,那么图中正方形E的面积为()A. 144B. 147C. 49D. 14810.观察下列式子:;;;…根据此规律,若,则a2+b2的值为()A. 110B. 164C. 179D. 181二、填空题(本大题共6小题,共18.0分)11.已知是整数,则满足条件的最小正整数n为______.12.“全等三角形的对应边相等”的逆命题是:______.13.若最简二次根式和是同类二次根式,则a的值是______.14.边长为4的等边三角形的面积是______.15.平行四边形ABCD的周长是18,三角形ABC的周长是14,则对角线AC的长是______.16.如图,在等腰直角三角形ABC中,∠ABC=90°,E是AB上一点,BE=2,AE=3BE,P是AC上一动点.则PB+PE的最小值是______.三、计算题(本大题共2小题,共18.0分)17.计算:(1)×(-π)0-|-3|(2)-4+÷18.已知:x=,y=-2,求代数式x2-3xy+y2的值四、解答题(本大题共6小题,共54.0分)19.如图,▱ABCD中,O为对角线AC和BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F.求证:OE=OF.20.如图,AM是△ABC的中线,∠C=90°,MN⊥AB于N,求证:AN2-BN2=AC221.如图,正方形网格中,每个小方格的边长为1,请完成:(1)从A点出发画线段AB、AC,以及线段BC使AB=,AC=2,BC=,且使B、C两点也在格点上;(2)请求出图中你所画的△ABC的面积.22.小明在解决问题:已知a=,求2a2-8a+1的值,他是这样分析与解答的:∵a===2-,∴a-2=-,∴(a-2)2=3,a2-4a+4=3∴a2-4a=-1.∴2a2-8a+1=2(a2-4a)+1=2(-1)+1=-1.请你根据小明的分析过程,解决如下问题:若a=,求4a2-8a-3的值.23.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:△AEF≌△DEC;(2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理由.24.将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3).动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相等的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).(1)求点B的坐标,并用含t的代数式表示OP,OQ;(2)当t=1时,如图1,将△OPQ沿PQ翻折,点O恰好落在CB边上的点D处,求点D的坐标;(3)在(2)的条件下,矩形对角线AC、BD交于M,取OM中点G,BM中点H,求证:当t=1时,四边形DGPH为平行四边形.答案和解析1.【答案】A【解析】解:二次根式有意义,则x的取值范围是:x≥3.故选:A.直接利用二次根式的定义分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.【答案】B【解析】解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.【答案】B【解析】解:A、原式=2+=3,所以A选项错误;B、原式==2,所以B选项正确;C、原式=3,所以C选项错误;D、原式=2,所以D选项错误.故选:B.根据二次根式的加减法对A、D进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的乘法法则对C进行判断.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.【答案】C【解析】解:A、∵22+32=42,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故选项错误;B、∵1+4<9,∴不能组成三角形,故选项错误;C、∵52+122=132,∴该三角形符合勾股定理的逆定理,故是直角三角形,故选项正确;D、∵52+102≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故选项错误.故选:C.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.【答案】D【解析】【分析】本题考查了两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.直接利用两点间的距离公式计算即可.【解答】解:点(3,-1)到原点的距离==.故选D.6.【答案】B【解析】解:∵D、E、F分别是边AB,BC,CA的中点,∴DE、DF、EF都是△ABC的中位线,∴DE∥AC,DF∥BC,EF∥AB,∴四边形EDFC是平行四边形,四边形EBDF是平行四边形,四边形ADEF是平行四边形.故选:B.由于D、E、F分别是边AB,BC,CA的中点,易知DE、DF、EF都是△ABC的中位线,那么DE∥AC,DF∥BC,EF∥AB,根据平行四边形的定义,两两结合易证四边形EDFC是平行四边形;四边形EBDF是平行四边形;四边形ADEF是平行四边形.本题考查了平行四边形的判定、三角形中位线定理,解题的关键是熟练掌握三角形中位线定理的内容.7.【答案】C【解析】解:如图所示,根据平行四边形的判定,A、B、D条件均不能判定为平行四边形,C选项中,由于AB∥CD,∠A=∠C,所以∠B=∠D,所以只有C选项能判定.故选:C.根据平行四边形的判定进行判断即可得出结论.本题主要考查了平行四边形的判定,平行四边形的判定方法共有五种:1、四边形的两组对边分别平行;2、一组对边平行且相等;3、两组对边分别相等;4、对角线互相平分;5、两组对角分别相等.则四边形是平行四边形.8.【答案】D【解析】解:∵四边形ABCD是矩形,∴∠ADC=90°,OA=OD,∴∠ADB=∠DAC,∵DE⊥AC,∠ADE=∠CDE,∴∠ADE=∠ACD=22.5°°,∠CDE=67.5°,∴∠ADB=∠DAC=67.5°,∴∠BDC=90°-67.5°=22.5°,故选:D.根据矩形的性质得出∠ADC=90°,OA=OD,得出∠ADB=∠DAC,由已知条件得出∠ADE=∠ACD=22.5°°,∠CDE=67.5°,求出∠ADB=∠DAC=67.5°,即可得出结果.本题考查了矩形的性质、等腰三角形的性质;熟练掌握矩形的性质,弄清各角之间的数量关系是解决问题的关键.9.【答案】C【解析】【分析】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a、b,斜边长为c,那么a2+b2=c2.根据勾股定理的几何意义解答即可.【解答】解:根据勾股定理的几何意义,可知:S E=S F+S G=S A+S B+S C+S D=12+16+9+12=49.故选C.10.【答案】D【解析】解:由题意得,,解得:,∴a2+b2=92+102=181.故选:D.由1×2=2,2×3=6,3×4=12,…可得ab=90,还发现每个式子的两个因数是连续的整数,可得:a+1=b,解方程组可得a和b的值,代入所求式子可得结论.此题考查了数字类的变化规律题,还考查了二元二次方程组的解的问题,认真观察已知条件,总结规律是解题的关键.11.【答案】5【解析】解:∵==2,且是整数;∴2是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案是:5.因为是整数,且==2,则5n是完全平方数,满足条件的最小正整数n为5.此题主要考查了二次根式的定义,正确化简二次根式得出是解题关键.12.【答案】三对边相等的三角形是全等三角形【解析】解:∵命题“全等三角形的对应边相等”的题设是:如果两个三角形是全等三角形,结论是:这两个三角形的对应边相等.∴此命题的逆命题是:三对边相等的三角形是全等三角形.故答案为:三对边相等的三角形是全等三角形.根据互逆命题的定义进行解答即可.本题考查的是互逆命题的定义,根据命题的定义得出原命题的题设和结论是解答此类问题的关键.13.【答案】6【解析】解:由题意可知:3a-4=a+8,解得:a=6故答案为:6根据同类二次根式的概念即可求出答案.本题考查同类二次根式与最简二次根式,解题的关键是正确理解同类二次根式与最简二次根式的概念,本题属于基础题型.14.【答案】4【解析】解:如图,∵等边三角形三线合一,∴D为BC的中点,BD=DC=2,在Rt△ABD中,AB=4,BD=2,∴AD==2,∴等边△ABC的面积为BC•AD=×4×2=4.故答案为:4.根据等边三角形三线合一的性质可以求得高线AD的长度,根据BC和AD即可求得三角形的面积.本题考查了勾股定理在直角三角形中的运用,考查了三角形面积的计算,考查了等边三角形各边长相等的性质,本题中根据勾股定理即可AD的长度是解题的关键.15.【答案】5【解析】解:∵平行四边形ABCD的周长是18,∴AB+BC=18÷2=9,∵三角形ABC的周长是14,∴AC=14-(AB+AC)=5,故答案为5.由平行四边形ABCD的周长是18,可得AB+BC=9,又因为三角形ABC的周长是14,所以AC=14-9=5.此题主要考查平行四边的性质:平行四边形的两组对边分别相等.16.【答案】10【解析】解:如图:作等腰直角三角形ABC关于AC的对称直角三角形ADC,连接DE,与AC交于点P,根据两点之间,线段最短得到ED就是PB+PE的最小值,∵等腰直角三角形ABC中,∠BAC=45°,∴∠DAC=45°,∴∠DAE=90°,∵B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AD=AB=8,∴DE===10.∴PB+PE的最小值为10.故答案为:10.由B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.本题考查了直角三角形的性质,勾股定理,轴对称-最短路线问题等知识点的理解和掌握,能求出PE+PB=DE的长是解此题的关键.17.【答案】解:(1)原式=3×1+-3=;(2)原式=3-2+=3-2+2=3.【解析】(1)利用零指数幂的意义、二次根式的性质和绝对值的意义计算;(2)先利用二次根式的除法法则运算,然后化简后合并即可.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【答案】解:∵x=,y=-2,∴x-y=-(-2)=-+2=2,xy=(-2)=5-2,则原式=(x-y)2-xy=22-(5-2)=4-5+2=-1+2.【解析】先根据x、y的值计算出x-y、xy的值,再代入原式=(x-y)2-xy计算可得.本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式.19.【答案】证明:OE=OF.理由如下:∵四边形ABCD是平行四边形,∴OB=OD.又∵BE⊥AC,DF⊥AC,∴∠OFD=∠OEB.又∠DOF=∠BOE,∴△BOE≌△DOF.∴OE=OF.【解析】根据平行四边形的性质得OB=OD,根据BE⊥AC,DF⊥AC得∠OFD=∠OEB,结合对顶角相等得△OFD≌△OEB,从而证明OE=OF.本题考查平行四边形的性质和全等三角形的判定,灵活运用平行四边形的性质是解题的关键.20.【答案】证明:∵MN⊥AB,∴在Rt△AMN和Rt△BMN中,AN2=AM2-MN2,NB2=BM2-MN2,∴AN2-BN2=AM2-BM2,在Rt△ACM中,AM2-CM2=AC2,∵AM是△ABC的中线,∴CM=BM,∴AN2-BN2=AM2-BM2=AM2-CM2=AC2.【解析】直接利用勾股定理得出AN2-BN2=AM2-BM2,进而得出答案.此题主要考查了勾股定理以及三角形中线的性质,正确应用勾股定理是解题关键.21.【答案】解:(1)如图所示,点B、点C即为所求;(2)如图所示,S△ABC=(1+2)×4×-2×1×-2×2×=6-1-2=3.【解析】(1)找出满足题意得B与C的位置,连接AB,AC,BC,如图所示;(2)三角形ABC的面积=上底为1、下底为2、高为4的梯形的面积-两个三角形的面积,求出即可.此题考查了作图-应用与设计、勾股定理,熟练掌握勾股定理是解本题的关键,学会利用数形结合的思想思考问题.22.【答案】解:a===+1,(a-1)2=2,a2-2a+1=2,a2-2a=1.4a2-8a-3=4(a2-2a)-3=4×1-3=1,4a2-8a-3的值是1.【解析】根据平方差公式,可分母有理化,根据整体代入,可得答案.本题考查了分母有理化的应用,能求出a的值和正确变形是解此题的关键.23.【答案】证明:(1)∵AF∥BC,∴∠AFE=∠DCE,∵点E为AD的中点,∴AE=DE,在△AEF和△DEC中,∴△AEF≌△DEC(AAS);(2)当△ABC满足:AB=AC时,四边形AFBD是矩形;∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四边形AFBD是矩形.【解析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.24.【答案】(1)解:∵O(0,0),A(6,0),C(0,3),∴OA=6,OC=3,∵四边形OABC是矩形,∴AB=OC=3,BC=OA=6,∴B(6,3),∵动点Q从O点以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相等的速度沿AO向终点O运动.∴当点P的运动时间为t(秒)时,AP=t,OQ=+t,则OP=OA-AP=6-t;(2)当t=1时,OQ=,则CQ=CQ=OC-OQ=,由折叠可知:△OPQ≌△DPQ,∴OQ=DQ=,由勾股定理,得:CD=1,∴D(1,3);(3)如图所示,由(1),(2)知:当t=1时,CD=AP=1,OA=BC=6∴BC-CD=OA-AP,即BD=OP=5,∵四边形OABC是矩形,∴OM=MB,OA∥BC,∵G为OM中点,H为BM中点,∴OG=BH,∵OA∥BC,∴∠CBO=∠AOB,在△POG和△DBH中,∵ ,∴△POG≌△DBH(SAS),∴∠OGP=∠BHD,PG=DH,∴∠MGP=∠DHM,∴PG∥DH,∵PG=DH,∴四边形DGPH是平行四边形.故当t=1时四边形DGPH是平行四边形.【解析】(1)由O(0,0),A(6,0),C(0,3),可得:OA=6,OC=3,根据矩形的对边平行且相等,可得:AB=OC=3,BC=OA=6,进而可得点B的坐标为:(6,3),然后根据P点与Q点的运动速度与运动时间即可用含t的代数式表示OP,OQ;(2)由翻折的性质可知:△OPQ≌△DPQ,进而可得:DQ=OQ,然后由t=1时,DQ=OQ=,CQ=OC-OQ=,然后利用勾股定理可求CD的值,进而可求点D的坐标;(3)由(1),(2)知:当t=1时,CD=AP=1,OA=BC=6,进而可得:BD=OP=5,然后由矩形的性质可得:OG=BH,∠CBO=∠AOB,然后根据SAS证明△POG≌△DBH,进而可得PG∥DH,PG=DH,然后根据一组对边平行且相等的四边形是平行四边形,即可求证:当t=1时四边形DGPH是平行四边形.此题是四边形的综合题,主要考查了动点的问题、矩形的性质、平行四边的判定、全等三角形的判定与性质等知识,解(1)的关键是:明确矩形的对边相等;解(2)的关键是:由翻折的性质可知:△OPQ≌△DPQ;解(3)的关键是:根据SAS证明△POG≌△DBH.。
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.如果y=+2,那么(﹣x)y的值为()A.1B.﹣1C.±1D.02.下列各式属于最简二次根式的是()A.B.C.D.3.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=24.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个5.如图,AB=AC,则数轴上点C所表示的数为()A.+1B.﹣1C.﹣+1D.﹣﹣16.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,237.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形8.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.249.如图,将长16cm,宽8cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为()cm.A .6B .4C .10D .210.如图,A ,B 两地被池塘隔开,小明通过下列方法测出了A 、B 间的距离:先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 的长为6m ,由此他就知道了A 、B 间的距离.有关他这次探究活动的描述错误的是( )A .AB =12m B .MN ∥ABC .△CMN ∽△CABD .CM :MA =1:2二.填空题(共6小题,满分24分,每小题4分)11.计算:×=12.已知▱ABCD 的周长为28,自顶点A 作AE ⊥DC 于点E ,AF ⊥BC 于点F .若AE =3,AF =4,则CE ﹣CF = .13.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 cm 2.14.若最简二次根式与能合并成一项,则a = .15.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是 .16.若x=﹣1,则x3+x2﹣3x+2019的值为.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)218.如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.19.如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点,连接BE、DF.求证:BE∥DF.20.如图,在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=,求(1)AD的长;(2)△ABC是直角三角形吗?为什么?21.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?22.如图,矩形ABCD,延长BC到G,连接GD.作∠BGD的平分线交AB于E.若EG=DG,AD =AE.(1)求证:GE=2BE;(2)若EG=4,求梯形ABGD的面积.23.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.24.如图,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤25).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.如果y=+2,那么(﹣x)y的值为()A.1B.﹣1C.±1D.0【分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答】解:∵y=+2,∴1﹣x≥0,x﹣1≥0,解得:x=1,故y=2,则(﹣1)2=1.故选:A.【点评】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.2.下列各式属于最简二次根式的是()A.B.C.D.【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.【点评】此题考查了最简二次根式的知识,解答本题的关键是熟练掌握最简二次根式满足的两个条件,属于基础题,难度一般.3.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如图,AB=AC,则数轴上点C所表示的数为()A.+1B.﹣1C.﹣+1D.﹣﹣1【分析】根据勾股定理列式求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【解答】解:由勾股定理得,AB==,∴AC=,∵点A表示的数是﹣1,∴点C表示的数是﹣1.故选:B.【点评】本题考查了勾股定理,实数与数轴,是基础题,熟记定理并求出AB的长是解题的关键.6.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.【点评】此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.7.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项错误;B、根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD是菱形,故本选项错误;C、根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD是矩形,故本选项错误;D、根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项正确;综上所述,符合题意是D选项;故选:D.【点评】本题考查正方形的判定、菱形的判定、矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.24【分析】根据菱形的性质即可求出答案.【解答】解:由于菱形的两条对角线的长为6和8,∴菱形的边长为:=5,∴菱形的周长为:4×5=20,故选:C.【点评】本题考查菱形的性质,解题的关键是熟练运用菱形的性质,本题属于基础题型.9.如图,将长16cm,宽8cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为()cm.A.6B.4C.10D.2【分析】连接AC,则EF垂直平分AC,推出△AOE∽△ABC,根据勾股定理,可以求出AC的长度,根据相似三角形对应边的比等于相似比求出OE,即可得出EF的长.【解答】解:连接AC,与EF交于O点,∵E点在AB上,F在CD上,A、C点重合,EF是折痕,∴AO=CO,EF⊥AC,∵AB=16,BC=8,∴AC=,∴AO=,∵∠EAO=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴OE:BC=AO:BA,即∴OE=,∴EF=2OE=.故选:B.【点评】本题主要考查了矩形的性质、勾股定理、相似三角形的判定和性质、折叠的性质;熟练掌握矩形的性质和折叠的性质,证明三角形相似是解决问题的关键.10.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()A.AB=12m B.MN∥AB C.△CMN∽△CAB D.CM:MA=1:2【分析】由已知条件得出MN是△ABC的中位线,CM=MA,由三角形中位线定理得出MN∥AB,MN=AB,AB=2MN=12m,得出△CMN∽△CAB;即可得出结论.【解答】解:∵M、N分别是AC、BC的中点,∴MN是△ABC的中位线,CM=AM,∴MN∥AB,MN=AB,AB=2MN=12m,CM:MA=1:1,∴△CMN∽△CAB;故A,B,C正确,故选:D.【点评】本题考查了三角形中位线定理;熟练掌握三角形中位线定理,并能进行推理计算是解决问题的关键.二.填空题(共6小题,满分24分,每小题4分)11.计算:×=12【分析】直接利用二次根式乘法运算法则计算得出答案.【解答】解:×=×2=12.故答案为:12.【点评】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.12.已知▱ABCD的周长为28,自顶点A作AE⊥DC于点E,AF⊥BC于点F.若AE=3,AF=4,则CE﹣CF=14﹣7或2﹣(答对前者得2分,答对后者得1分).【分析】首先可证得△ADE∽△ABF,又由四边形ABCD是平行四边形,即可求得AB与AD的长,然后根据勾股定理即可求得DE与BF的长,继而求得答案.【解答】解:如图1:∵AE⊥DC,AF⊥BC,∴∠AED=∠AFB=90°,∵四边形ABCD是平行四边形,∴∠ADC=∠CBA,AB=CD,AD=BC,∴△ADE∽△ABF,∴,∵AD+CD+BC+AB=28,即AD+AB=14,∴AD=6,AB=8,∴DE=3,BF=4,∴EC=CD﹣DE=8﹣3,CF=BF﹣BC=4﹣6,∴CE﹣CF=(8﹣3)﹣(4﹣6)=14﹣7;如图2:∵AE⊥DC,AF⊥BC,∴∠AED=∠AFB=90°,∵四边形ABCD是平行四边形,∴∠ADC=∠CBA,AB=CD,AD=BC,∴∠ADE =∠ABF ,∴△ADE ∽△ABF ,∴,∵AD +CD +BC +AB =28,即AD +AB =14,∴AD =6,AB =8,∴DE =3,BF =4,∴EC =CD +DE =8+3,CF =BC +BF =6+4,∴CE ﹣CF =(8+3)﹣(6+4)=2﹣.∴CE ﹣CF =14﹣7或2﹣.【点评】本题主要考查的是平行四边形的性质.解题时,还借用了勾股定理这一知识点. 13.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 41 cm 2.【分析】连接E 、F 两点,由三角形的面积公式我们可以推出S △EFC =S △BCQ ,S △EFD =S △ADF ,所以S △EFG =S △BCQ ,S △EFP =S △ADP ,因此可以推出阴影部分的面积就是S △APD +S △BQC .【解答】解:连接E 、F 两点,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴△EFC 的FC 边上的高与△BCF 的FC 边上的高相等,∴S △EFC =S △BCF ,∴S △EFQ =S △BCQ ,同理:S △EFD =S △ADF ,∴S △EFP =S △ADP ,∵S △APD =16cm 2,S △BQC =25cm 2,∴S 四边形EPFQ =41cm 2,故答案为:41.【点评】本题主要考查了平行四边形的性质,题目综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形.14.若最简二次根式与能合并成一项,则a = 1 .【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a 的方程,根据解方程,可得答案.【解答】解:=2,由最简二次根式与能合并成一项,得a +1=2.解得a =1.故答案为:1.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.15.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是 (﹣5,4) .【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD===4,∴点C的坐标是:(﹣5,4).故答案为:(﹣5,4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.16.若x=﹣1,则x3+x2﹣3x+2019的值为2018.【分析】先根据x的值计算出x2的值,再代入原式=x•x2+x2﹣3x+2019,根据二次根式的混合运算顺序和运算法则计算可得.【解答】解:∵x=﹣1,∴x2=(﹣1)2=2﹣2+1=3﹣2,则原式=x•x2+x2﹣3x+2019=(﹣1)×(3﹣2)+3﹣2﹣3(﹣1)+2019=3﹣4﹣3+2+3﹣2﹣3+3+2019=2018,故答案为:2018.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.【分析】设BD=x,根据勾股定理列出方程,解方程即可.【解答】解:设BD=x,则AD=2x,由勾股定理得,CD2=AC2﹣AD2,CD2=BC2﹣BD2,∴AC2﹣AD2=BC2﹣BD2,即32﹣(2x)2=22﹣x2,解得,x=,即BD的长为.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.19.如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点,连接BE、DF.求证:BE∥DF.【分析】根据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE∥DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形∴OA=OC,OB=OD∵E、F分别是OA、OC的中点∴OE=OA,OF=OC∴OE=OF∴四边形BFDE是平行四边形∴BE∥DF【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.20.如图,在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=,求(1)AD的长;(2)△ABC是直角三角形吗?为什么?【分析】(1)由CD垂直于AB,得到三角形BCD与三角形ACD都为直角三角形,由BC与DB,利用勾股定理求出CD的长,再利用勾股定理求出AD的长即可;(2)三角形ABC为直角三角形,理由为:由BD+AD求出AB的长,利用勾股定理的逆定理得到三角形ABC为直角三角形.【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BC=3,DB=,根据勾股定理得:CD==,在Rt△ACD中,AC=4,CD=,根据勾股定理得:AD==;(2)△ABC为直角三角形,理由为:∵AB=BD+AD=+=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.【点评】此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理及勾股定理的逆定理是解本题的关键.21.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?【分析】根据小球滚动的速度与机器人行走的速度相等,运动时间相等得出BC=CA.设AC为x,则OC=9﹣x,根据勾股定理即可得出结论.【解答】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.22.如图,矩形ABCD,延长BC到G,连接GD.作∠BGD的平分线交AB于E.若EG=DG,AD =AE.(1)求证:GE=2BE;(2)若EG=4,求梯形ABGD的面积.【分析】(1)连接DE,根据矩形的性质可得△ADE是等腰直角三角形,所以,∠AED=45°,设∠BGE=x,根据角平分线的定义可得∠DGE=x,根据直角三角形两锐角互余求出∠BEG,根据等腰三角形两底角相等求出∠DEG,然后根据平角等于180°列式求解即可得到x=30°,再根据30°所对的直角边等于斜边的一半证明;(2)先求出∠CGD=60°,然后解直角三角形求出CD的长度,根据矩形的对边相等求出AB的长度,在Rt△BGE中,求出BE、BG的长度,然后求出AE,即可得到AD,然后利用梯形的面积公式列式计算即可得解.【解答】(1)证明:如图,连接DE,∵AD=AE,∴△ADE是等腰直角三角形,∴∠AED=45°,设∠BGE=x,∵GE是∠BGD的平分线,∴∠BGE=∠DGE=x,在Rt△BGE中,∠BEG=90°﹣x,∵EG=DG,∴∠DEG=(180°﹣x),又∵∠AED+∠DEG+∠BEG=180°,∴45°+(180°﹣x)+90°﹣x=180°,解得x=30°,即∠BGE=30°,∴GE=2BE;(2)解:∵GE是∠BGD的平分线,∴∠CGD=∠BGE+∠DGE=30°+30°=60°,∴CD=DG sin60°=4×=2,在Rt△BGE中,BE=EG=×4=2,BG=EG cos30°=4×=2,∴AD=AE=AB﹣BE=2﹣2,梯形ABGD的面积=(AD+BG)CD=(2﹣2+2)×2=(4﹣2)=12﹣2.【点评】本题考查了矩形的性质,解直角三角形,直角三角形30°角所对的直角边等于斜边的一半的性质,题目设计巧妙,难度较大,利用∠BGE的度数恰好30°求解是解题的关键.23.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.如图,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤25).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.【分析】(1)可以证明四边形AEFD为平行四边形,如果四边形AEFD能够成为菱形,则必有邻边相等,则AE=AD,列方程求出即可;(2)当△DEF为直角三角形时,有三种情况:①当∠EDF=90°时,如图3,②当∠DEF=90°时,如图4,③当∠DFE=90°不成立;分别找一等量关系列方程可以求出t的值.【解答】(1)解:四边形AEFD能够成为菱形,理由是:由题意得:AE=2t,CD=4t,∵DF⊥BC,∴∠CFD=90°,∴∠C=30°,∴DF=CD=×4t=2t,∴AE=DF;∵DF⊥BC,∴∠CFD=∠B=90°,∴DF∥AE,∴四边形AEFD是平行四边形.当AE=AD,四边形AEFD是菱形,∵AC=100,CD=4t,∴AD=100﹣4t,∴2t=100﹣4t,t=,∴当t=时,四边形AEFD能够成为菱形;(3)分三种情况:①当∠EDF=90°时,如图3,则四边形DFBE为矩形,∴DF=BE=2t,∵AB=AC=50,AE=2t,∴2t=50﹣2t,t=,②当∠DEF=90°时,如图4,∵四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,在Rt△ADE中,∠A=60°,AE=2t,∴AD=t,则100=t+4t,t=20,③当∠DFE=90°不成立;综上所述:当t为s或20s时,△DEF为直角三角形.【点评】本题是四边形的综合题,考查了平行四边形、菱形、矩形的性质和判定,也是运动型问题,难度不大,是常出题型;首先要表示出两个动点在时间t时的路程,弄清动点的运动路径,再根据其运动所形成的特殊图形列式计算;同时,所构成的直角三角形因为直角顶点不确定,所以要分情况进行讨论.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.在式子,,,,(x≤0)中,一定是二次根式的有()A.1个B.2个C.3个D.4个2.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线BD的长等于()A.6米B.6米C.3米D.3米3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=84.下列判断错误的是()A.有两个直角的四边形是矩形B.有一个直角的平行四边形是矩形C.对角线相等的平行四边形是矩形D.对角线互相垂直平分的四边形是菱形5.下列二次根式中,是最简二次根式的是()A.B.C.D.6.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°7.下列说法中的错误的是()A.一组邻边相等的矩形是正方形B.一组邻边相等的平行四边形是菱形C.一组对边相等且有一个角是直角的四边形是矩形D.一组对边平行且相等的四边形是平行四边形8.下列四组数中不是勾股数的是()A.3,4,5B.2,3,4C.5,12,13D.8,15.179.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3B.4C.15D.7.210.下列命题中的假命题是()A.过直线外一点有且只有一条直线与这条直线平行B.平行于同一直线的两条直线平行C.直线y=2x﹣1与直线y=2x+3一定互相平行D.如果两个角的两边分别平行,那么这两个角相等二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是.12.如图,P是▱ABCD的边AD上一点,E、F分别是PB、PC的中点,若▱ABCD的面积为16cm2,则△PEF的面积(阴影部分)是cm2.13.已知在△ABC中,∠C=90°,AC=3,BC=4,分别以AC、BC、AB为直径作半圆,如图所示,则阴影部分的面积是.14.计算(+2)(﹣2)的结果是.15.如图,BD与CD分别平分∠ABC、∠ACB的外角∠EBC、∠FCB,若∠A=80°,则∠BDC =.16.如图所示,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D,若OE=4,∠AOB=60°,则DE=.三.解答题(共9小题,满分86分)17.化简:.18.若a,b,c为△ABC的三边长,且a,b,c满足等式|a﹣3|+(4﹣b)2+=0,△ABC是直角三角形吗?请说明理由.19.在△ABC中,以AB、AC为边向三角形外分别作等边△ABF、等边△ACD,以BC为边在同侧作等边△BCE,求证:四边形ADEF是平行四边形.20.如图,四边形ABCD中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,试求BC和CD的长.21.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.22.先化简,再求值:()÷,其中x=﹣1.23.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.24.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F 是AE的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.25.如图①,四边形ABCD与四边形CEFG都是矩形,点E,G分别在边CD,CB上,点F在AC 上,AB=3,BC=4(1)求的值;(2)把矩形CEFG绕点C顺时针旋转到图②的位置,P为AF,BG的交点,连接CP(Ⅰ)求的值;(Ⅱ)判断CP与AF的位置关系,并说明理由.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.在式子,,,,(x≤0)中,一定是二次根式的有()A.1个B.2个C.3个D.4个【分析】依据二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式求解可得.【解答】解:在所列式子中一定是二次根式的是,(x≤0)这2个,故选:B.【点评】本题考查了二次根式的定义.理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.2.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线BD的长等于()A.6米B.6米C.3米D.3米【分析】由四边形ABCD是菱形,∠BAD=60°,易得△ABD是等边三角形,继而求得答案.【解答】解:∵四边形ABCD是菱形,且周长为24米,∴AB=AD=6米,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=6米.故选:B.【点评】此题考查了菱形的性质以及等边三角形的判定与性质.注意证得△ABD是等边三角形是解此题的关键.3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=8【分析】根据二次根式的运算法则逐一计算即可得出答案.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、×==,此选项正确;C、÷===3,此选项正确;D、(2)2=8,此选项正确;故选:A.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.下列判断错误的是()A.有两个直角的四边形是矩形B.有一个直角的平行四边形是矩形C.对角线相等的平行四边形是矩形D.对角线互相垂直平分的四边形是菱形【分析】直接利用矩形与菱形的判定定理判定,即可求得答案.注意掌握排除法在选择题中的应用.【解答】解:A、有三个直角的四边形是矩形;故本选项错误;B、有一个直角的平行四边形是矩形;故本选项正确;C、对角线相等的平行四边形是矩形;故本选项正确;D、对角线互相垂直平分的四边形是菱形;故本选项正确.故选:A.【点评】此题考查了矩形的判定与菱形的判定.注意熟记矩形与菱形的判定定理是解此题的关键.5.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、是最简二次根式,正确;B、不是最简二次根式,错误;C、不是最简二次根式,错误;D、不是最简二次根式,错误;故选:A.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.6.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°【分析】连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=38°,可得∠E度数.【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=38°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=19°.故选:A.【点评】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.7.下列说法中的错误的是()A.一组邻边相等的矩形是正方形B.一组邻边相等的平行四边形是菱形C.一组对边相等且有一个角是直角的四边形是矩形D.一组对边平行且相等的四边形是平行四边形【分析】根据正方形的判定、菱形的判定、矩形的判定以及平行四边形的判定方法逐项分析即可.【解答】解:A、一组邻边相等的矩形是正方形,此说法正确,不符合题目的要求;B、一组邻边相等的平行四边形是菱形,此说法正确,不符合题目的要求;C、一组对边相等且有一个角是直角的四边形不一定是矩形,此说法错误,符合题目的要求;D、一组对边平行且相等的四边形是平行四边形,此说法正确,不符合题目的要求;故选:C.【点评】此题是一道几何结论开放题,全面地考查了矩形的判定定理,可以大大激发学生的思考兴趣,拓展学生的思维空间,培养学生求异、求变的创新精神.8.下列四组数中不是勾股数的是()A.3,4,5B.2,3,4C.5,12,13D.8,15.17【分析】求是否为勾股数,这里给出三个数,利用勾股定理,只要验证两小数的平方和等于最大数的平方即可.【解答】解:A、32+42=52,是勾股数的一组;B、22+32≠42,不是勾股数的一组;C、52+122=132,是勾股数的一组;D、82+152=172,是勾股数的一组.故选:B.【点评】考查了勾股数,理解勾股数的定义,并能够熟练运用.9.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3B.4C.15D.7.2【分析】首先根据勾股定理求出斜边AB的长,再根据三角形的面积为定值即可求出则点C到AB 的距离.【解答】解:在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵BC=12,AC=9,∴AB==15,∵S=AC•BC=AB•h,△ABC∴h==7.2,故选:D.【点评】本题考查了勾股定理在直角三角形中的应用,解本题的关键是正确的运用勾股定理,确定AB为斜边.10.下列命题中的假命题是()A.过直线外一点有且只有一条直线与这条直线平行B.平行于同一直线的两条直线平行C.直线y=2x﹣1与直线y=2x+3一定互相平行D.如果两个角的两边分别平行,那么这两个角相等【分析】根据平行公理即可判断A、根据两直线平行的判定可以判定B、C;根据平行线的性质即可判定D;【解答】解:A、过直线外一点有且只有一条直线与这条直线平行,正确.B、平行于同一直线的两条直线平行,正确;C、直线y=2x﹣1与直线y=2x+3一定互相平行,正确;D、如果两个角的两边分别平行,那么这两个角相等,错误;应该是如果两个角的两边分别平行,那么这两个角相等或互补;故选:D.【点评】本题考查命题与定理,解题的关键是熟练掌握基本概念,属于中考常考题型.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是1≤x≤2.【分析】直接根据二次根式的意义建立不等式组即可得出结论.【解答】解:根据二次根式的意义,得,∴1≤x≤2,故答案为1≤x≤2.【点评】此题主要考查了二次根式的意义,解不等式组,建立不等式组是解本题的关键.12.如图,P是▱ABCD的边AD上一点,E、F分别是PB、PC的中点,若▱ABCD的面积为16cm2,则△PEF的面积(阴影部分)是2cm2.【分析】先根据S▱ABCD=16cm2知S=S▱ABCD=8,再证△PEF∽△PBC得=()△PBC2,即=,据此可得答案.【解答】解:∵▱ABCD 的面积为16cm 2,∴S △PBC =S ▱ABCD =8,∵E 、F 分别是PB 、PC 的中点,∴EF ∥BC ,且EF =BC ,∴△PEF ∽△PBC , ∴=()2,即=,∴S △PEF =2,故答案为:2.【点评】本题主要考查平行四边形的性质,解题的关键是掌握平行四边形的性质与相似三角形的判定与性质.13.已知在△ABC 中,∠C =90°,AC =3,BC =4,分别以AC 、BC 、AB 为直径作半圆,如图所示,则阴影部分的面积是 6 .【分析】先利用勾股定理列式求出AB ,再根据阴影部分面积等于以AC 、BC 为直径的两个半圆的面积加上直角三角形ABC 的面积减去以AB 为直径的半圆的面积,列式计算即可得解.【解答】解:∵在Rt △ABC 中,∠ACB =90°,∴AC 2+BC 2=AB 2,∵BC =4,AC =3,∴AB =.S 阴影=直径为AC 的半圆的面积+直径为BC 的半圆的面积+S △ABC ﹣直径为AB 的半圆的面积 =π()2+π()2+AC ×BC ﹣π()2 =π(AC )2+π(BC )2﹣π(AB )2+AC ×BC=π(AC 2+BC 2﹣AB 2)+AC ×BC=AC×BC=×3×4=6.故答案为:6【点评】本题考查了勾股定理,半圆的面积,熟记定理并观察图形表示出阴影部分的面积是解题的关键.14.计算(+2)(﹣2)的结果是﹣1.【分析】利用平方差公式计算,再根据二次根式的性质计算可得.【解答】解:原式=()2﹣22=3﹣4=﹣1,故答案为:﹣1.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.15.如图,BD与CD分别平分∠ABC、∠ACB的外角∠EBC、∠FCB,若∠A=80°,则∠BDC=50°.【分析】先根据BD、CD分别是∠CBE、∠BCF的平分线可知∠DBC=∠EBC,∠BCD=∠BCF,再由∠CBE、∠BCF是△ABC的两个外角得出∠CBE+∠BCF=180°+∠A=260°,故∠DBC+∠BCD=(∠EBC+∠BCF)=130°,根据三角形内角和定理求出即可.【解答】证明:BD、CD分别是∠CBE、∠BCF的平分线∴∠DBC=∠EBC,∠BCD=∠BCF,∵∠CBE、∠BCF是△ABC的两个外角∴∠CBE+∠BCF=360°﹣(180°﹣∠A)=180°+∠A=260°,∴∠DBC+∠BCD=(∠EBC+∠BCF)=130°在△DBC中,∠BDC=180°﹣(∠DBC+∠BCD)=180°﹣130°=50°,故答案为:50°.【点评】本题考查的是三角形内角和定理及三角形外角的性质,熟知三角形的内角和等于180°是解答此题的关键.16.如图所示,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D,若OE=4,∠AOB=60°,则DE=2.【分析】利用角平分线的性质计算.【解答】解:∵OE平分∠AOB∴∠DOE=30°∴DE=OE=×4=2.【点评】本题主要考查平分线的性质和直角三角形的性质.三.解答题(共9小题,满分86分)17.化简:.【分析】利用二次根式的乘法法则运算.【解答】解:原式=﹣﹣=6﹣6﹣=6﹣7.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.若a,b,c为△ABC的三边长,且a,b,c满足等式|a﹣3|+(4﹣b)2+=0,△ABC是直角三角形吗?请说明理由.【分析】由非负数的性质可求得a、b、c的值,再利用勾股定理的逆定理进行判断即可.【解答】解:△ABC是直角三角形.理由是:∵|a﹣3|+(4﹣b)2+=0,∴a﹣3=0,4﹣b=0,c﹣5=0,∴a=3,b=4,c=5,∴a2+b2=32+42=25,c2=52=25,∴a2+b2=c2,由勾股定理的逆定理可知,△ABC是直角三角形.【点评】本题主要考查勾股定理的逆定理,利用非负数的性质求得a、b、c的值是解题的关键.19.在△ABC中,以AB、AC为边向三角形外分别作等边△ABF、等边△ACD,以BC为边在同侧作等边△BCE,求证:四边形ADEF是平行四边形.【分析】根据等边三角形的性质及平行四边形的判定(两组对边分别相等的四边形是平行边形)来证明四边形ADEF是平行四边形.【解答】证明:四边形ADEF是平行四边形,∵等边三角形BCE和等边三角形ABF,∴BE=BC,BF=BA.又∵∠FBE=60°﹣∠ABE,∠ABC=60°﹣∠ABE,∴∠FBE=∠ABC,在△BFE和△BCA中,∴△BFE≌△BCA(SAS),∴DE=AC∵在等边三角形ACD中,AC=AD,∴FE=AD,同理FA=ED.∴四边形ADEF是平行四边形.【点评】本题主要考查平行四边形的判定和性质,全等三角形的判定和性质,等边三角形的性质,掌握平行四边形的判定和性质是解题的关键20.如图,四边形ABCD中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,试求BC和CD的长.【分析】延长DC至E,构建直角△ADE,解直角△ADE求得DE,BE,根据BE解直角△CBE 可得BC,CE,可得CD=DE﹣CE,从而求解.【解答】解:如图,延长AB、DC相交于E,在Rt△ADE中,可求得AE2﹣DE2=AD2,且AE=2AD,计算得AE=16,DE=8,于是BE=AE﹣AB=9,在Rt△BEC中,可求得BC2+BE2=CE2,且CE=2BC,∴BC=3,CE=6,∴CD=DE﹣CE=2.【点评】本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ADE求BE,是解题的关键.21.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.【分析】(1)根据全等三角形的判定即可求出答案.(2)根据勾股定理可求出BC的长度,然后利用(1)的结论可知BE=DE,设BE=x,利用勾股定理列出方程即可求出x值.【解答】解:(1)∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°∵由翻折的性质可知∠F=∠A,BF=AB,∴BF=DC,∠F=∠C.在△DCE与△BEF中,∴△DCE≌△BFE.(2)在Rt△BDC中,由勾股定理得:BC==3.∵△DCE≌△BFE,∴BE=DE.设BE=DE=x,则EC=3﹣x.在Rt△CDE中,CE2+CD2=DE2,即(3﹣x)2+()2=x2.解得:x=2.∴BE=2.【点评】本题考查全等三角形的性质与判定,涉及全等三角形的性质与判定,矩形的性质,勾股定理,一元一次解法等知识,考查学生综合能力.22.先化简,再求值:()÷,其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=x+2,当x=﹣1时,原式=﹣1+2=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.【分析】(1)直接利用三角形中位线定理得出DE BC,进而得出DE=FC;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE BC,∵延长BC至点F,使CF=BC,∴DE=FC;(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.【点评】此题主要考查了等边三角形的性质以及平行四边形的判定与性质和三角形中位线定理等知识,得出DE BC是解题关键.24.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F 是AE的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.【分析】(1)结论:FD=FC,DF⊥CF.理由直角三角形斜边中线定理即可证明;(2)如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.想办法证明△ABN≌△MBE,推出AN=EM,再利用三角形中位线定理即可解决问题;(3)分别求出BF的最大值、最小值即可解决问题;【解答】解:(1)结论:FD=FC,DF⊥CF.理由:如图1中,∵∠ADE=∠ACE=90°,AF=FE,∴DF=AF=EF=CF,∴∠FAD=∠FDA,∠FAC=∠FCA,∴∠DFE=∠FDA+∠FAD=2∠FAD,∠EFC=∠FAC+∠FCA=2∠FAC,∵CA=CB,∠ACB=90°,∴∠BAC=45°,∴∠DFC=∠EFD+∠EFC=2(∠FAD+∠FAC)=90°,∴DF=FC,DF⊥FC.(2)结论不变.理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.∵BC⊥AM,AC=CM,∴BA=BM,同法BE=BN,∵∠ABM=∠EBN=90°,∴∠NBA=∠EBM,∴△ABN≌△MBE,∴AN=EM,∴∠BAN=∠BME,∵AF=FE,AC=CM,∴CF=EM,FC∥EM,同法FD=AN,FD∥AN,∴FD=FC,∵∠BME+∠BOM=90°,∠BOM=∠AOH,∴∠BAN+∠AOH=90°,∴∠AHO=90°,∴AN⊥MH,FD⊥FC.(3)如图3中,当点E落在AB上时,BF的长最大,最大值=3如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=.综上所述,≤BF.【点评】本题考查等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、直角三角形斜边中线的性质、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.25.如图①,四边形ABCD与四边形CEFG都是矩形,点E,G分别在边CD,CB上,点F在AC 上,AB=3,BC=4(1)求的值;(2)把矩形CEFG绕点C顺时针旋转到图②的位置,P为AF,BG的交点,连接CP(Ⅰ)求的值;(Ⅱ)判断CP与AF的位置关系,并说明理由.【分析】(1)根据矩形的性质得到∠B=90°,根据勾股定理得到AC=5,根据相似三角形的性质即可得到结论;(2)(Ⅰ)连接CF,根据旋转的性质得到∠BCG=∠ACF,根据相似三角形的判定和性质定理得到结论;(Ⅱ)根据相似三角形的性质得到∠BGC=∠AFC,推出点C,F,G,P四点共圆,根据圆周角定理得到∠CPF=∠CGF=90°,于是得到结论.【解答】解:(1)∵四边形ABCD是矩形,∴∠B=90°,∵AB=3,BC=4,∴AC=5,∴=,∵四边形CEFG是矩形,∴∠FGC=90°,∴GF∥AB,∴△CGF∽△CBA,∴==,∵FG∥AB,∴==;(2)(Ⅰ)连接CF,∵把矩形CEFG绕点C顺时针旋转到图②的位置,∴∠BCG=∠ACF,∵==,∴△BCG∽△ACF,∴==;(Ⅱ)CP⊥AF,理由:∵△BCG∽△ACF,∴∠BGC=∠AFC,∴点C,F,G,P四点共圆,∴∠CPF=∠CGF=90°,∴CP⊥AF.【点评】本题考查了相似三角形的判定和性质,矩形的性质,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定定理是解题的关键.。
新人教版 2017-2018 学年八年级下期中考试数学试题含答案2018.4(考试时间:120 分钟总分150分)一、选择题(每小题 4 分,共 48 分)1.如图,下列哪组条件能判别四边形ABCD是平行四边形?()A.AB ∥ CD,AD= BCB.AB = CD, AD= BCC. ∠ A=∠ B,∠ C=∠ DD.AB= AD, CB= CD2. 三角形的三边为 a、b、 c,由下列条件不能判断它是直角三角形的是()A . a:b:c =13∶ 5∶12B. a 2-b 2=c22D. a:b:c=8 ∶16∶ 17C . a =(b+c )(b-c)3.在△ ABC中,∠ C=90°,周长为 60,斜边与一直角边比是13: 5,?则这个三角形三边分别是()A . 5, 4,3B . 13, 12, 5C . 10, 8, 6D . 26, 24,104.已知:如图,在矩形 ABCD中, E、 F、G、 H 分别为边 AB、BC、 CD、DA的中点.若 AB= 2,AD = 4,则图中阴影部分的面积为( )A.5B.4.5C.4D.3.5A DB C第 1题第4题第5题5.如图 ABCD是平行四边形,下列条件不一定使四边形ABCD是矩形的是()。
A.AC ⊥ BDB.∠ABC=90°C.OA=OB=OC=ODD.AC=BD6.如图,在由单位正方形组成的网格图中标有AB,CD,EF,GH 四条线段,其中能构成一个直角三角形三边的线段是()A . CD,EF,GH B.AB,EF,GH C.AB,CD,GH D.AB,CD,EF7.若a 2 b24b 4c2c10 ,则 b2a c =()4A . 4B. 2C. -2D. 111则ab(a b)8.若a1, bb) 的值为(2 2 1aA. 2B.-2C.2D.229.如图, D 是△ ABC内一点, BD⊥ CD,AD=6, BD=4,CD=3, E,F,G,H 分别是 AB,AC,CD,BD的中点,则四边形EFGH的周长是 ( )A . 7 B.9 C.10 D.1110.如图,边长为 6 的大正方形中有两个小正方形,若两个小正方形的面积分别为S1, S2,则 S +S 值为()12A . 16 B.17 C.18 D.19[来源 : 学科网 ZXXK]第 11 题第 12 题11.如图,在 Rt△ ABC中,∠ BAC=90°, D、E 分别是 AB、BC的中点, F 在 CA延长线上,∠ FDA=∠ B,AC=6, AB=8,则四边形 AEDF的周长为()A. 14 B.15 C.16 D.1812. 已知如图,矩形ABCD中, BD=5cm, BC=4cm, E 是边 AD上一点,且BE = ED, P是对角线上任意一点, PF⊥ BE, PG⊥ AD,垂足分别为F、 G。
2018新人教版八年级下册数学期中测试卷(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018新人教版八年级下册数学期中测试卷(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018新人教版八年级下册数学期中测试卷(word版可编辑修改)的全部内容。
2018年八年级下册数学期中测试卷姓名: (90分钟,总分120) 得分:一、选择答案:(每题3分,共30分)1、化简后,与2的被开方数相同的二次根式的是( )A . 12B 。
18C . 41D . 32 2、有意义的条件是二次根式3 x ( )A .x>3 B. x>-3 C. x ≥-3 D.x ≥33、正方形面积为36,则对角线的长为( ) A .6 B. C .9 D.4、矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为( ) A 。
12 B. 10 C. 7.5 D 。
55、下列命题中,正确的个数是( )①若三条线段的比为1:1:2,则它们组成一个等腰直角三角形;②两条对角线相. A 、2个 B 、3个 C 、4个 D 、5个6、下列条件中 能判断四边形是平行四边形的是( ) (A ) 对角线互相垂直(B )对角线相等(C )对角线互相垂直且相等(D)对角线互相平分7、在□ABCD 中,已知AD =5cm ,AB =3cm,AE 平分∠BAD 交BC 边于点E ,则EC 等于( )(A)1cm (B)2cm (C)3cm (D )4cm8、如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是( )A .12B .16C .20D .249、如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D’处,则重叠部分△AFC 的面积为( )。
2017—2018学年度第二学期期中教学质量评估测试八年级数学试卷题号一 二 三 总分 得分注意事项:全卷共120分,考试时间120分钟.一、选择题:(每小题3分,共30分)1.下列二次根式中,最简二次根式的是( )A .B .C .D . 2.下列计算正确的是( ).A.2(3)9=B .822÷=C .236⨯=D .2(2)2-=-3. 下列各组数中,能构成直角三角形的是( )A. 4,5,6B. 1,1,C. 6,8,11D. 5,12,23 4. 在Rt△ABC 中,△C =90°,△B =45°,c =10,则a 的长为( )A. B. C.5 D.5.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是( ) A. AB=BC,CD=DA B. AB//CD,AD=BC C. AB//CD,C A ∠=∠ D.D C B A ∠=∠∠=∠, 6.正方形面积为36,则对角线的长为( ) A.B .6C .9D. 7.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A. 10mB. 15mC. 18mD. 20m8.如图,在平行四边形ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分△BAD 交BC 边于点E ,则EC 等于( )A .1cmB .2cmC .3cmD .4cm9.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF=3,则菱形ABCD 的周长是( )A .12B .16C .20D .2410.如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点D′处,则重叠部分△AFC 的面积为( )A .6B .8C .10D .12二、填空题:(每小题3分,共30分)11. 木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 .(填“合格”或“不合格” ) 12.若式子 在实数范围内有意义,则 的取值范围是 .13.在数轴上表示实数a 的点如图所示,化简()2-a 5-a 2+的结果为______.14.计算()2252-的结果是________.15.一个直角三角形的两边长分别为4与5,则第三边长为________.16.平行四边形ABCD 中一条对角线分△A 为35°和45°,则△B= 度. 17. 如右图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则EF= cm . 18. 在△ABC 中,△C=90°,AC=12,BC=16,则AB 边上的中线CD 为 .19.在平面直角坐标系中,点A (﹣1,0)与点B (0,2)的距离是 . 20.对于任意不相等的两个数a ,b ,定义一种运算△如下:a△b = ,座号得 分 评卷人 题号1 2 3 4 5 6 7 8 9 10 答案得 分 评卷人学校 年级 姓名 学号密封线内不要答题八年级 数学 第1页 (共6页) 八年级 数学 第2页 (共6页)212510252612-+x x x 8.04529a b a b+-如3△2= =5.那么12△4= .三.解答题:(本大题共60分)21. (6分)(共2小题,每小题3分)(1) (2)22.(8分)若最简二次根式31025311x x y x y -+--+和是同类二次根式. (1)求x y 、的值; (5分) (2)求22y x +的值.(3分)23.(7分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. ( 4分)(2)求这块地的面积.(3分)24. (8分)如图,四边形ABCD 中,AC ,BD 相交于点O ,O 是AC 的中点,AD △BC ,AC =8,BD =6.(1)求证:四边形ABCD 是平行四边形; (4分) (2)若AC △BD ,求平行四边形ABCD 的面积. (4分)25 . (8分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 的中点,连接OE .过点C 作CF △BD 交线段OE 的延长线于点F ,连接DF . 求证:(1)△ODE △△FCE (4分)(2)四边形ODFC 是菱形 (4分)得 分 评卷人DACB八年级 数学 第3页 (共6页) 八年级 数学 第4页 (共6页)3232+-)227(328--+5232232⨯÷26.(8分)已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形). (1)四边形EFGH 的形状是 ,证明你的结论;(4分)(2)当四边形ABCD 的对角线满足 条件时,四边形EFGH 是矩形(不证明)(2分) (3)你学过的哪种特殊四边形的中点四边形是矩形? (不证明)(2分)27.(6分)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口 小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?28.(9分)观察下列等式: △ △ + = △……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2分) (2)利用你观察到的规律,化简:(3分)(3)计算: + + +……+(4分)八年级 数学 第5页 (共6页) 八年级 数学 第6页 (共6页)23321+211+231+34)34)(34(34341-=-+-=+231+1031+)23)(23(23-+-23-2017—2018学年度第二学期期中教学质量评估测试八年级数学参考答案一、选择题1.D 2.B 3. B 4.A 5.C 6. A 7.C 8.B 9.D 10. C 二、填空题11.合格 12.x ≥﹣2且x ≠1 13. 3 14. 15.3或41 16.100 17 . 2.5 18. 10 19. . 20.1.2三、解答题:(共60分)21(1)解: + 2 ﹣(﹣ ) =2 +2 ﹣3 + ------(2分) =3 ﹣ ------(3分) (2)解: ÷ ×== ------(2分)= -------(3分) 22.(1)x=4,y=3;(5分) (2)5 (3分) 解:(1)由题意得:3x-10=2 , ---------(2分)2x+y-5=x-3y+11 ----------(4分)解得x=4 y=3 --------(5分)(2)当x=4 , y=3时22y x += =5 -----(3分) 23.解(1)以点A 、点B 、点C 为顶点的三角形是直角三角形(4分)(2)这块地的面积24m 2. (3分) 解:(1)连接AC . -------(1分) 由勾股定理可知:AC=---(2分)又∵AC 2+BC 2=52+122=132=AB 2--------(3分) ∴△ABC 是直角三角形 --------(4分) (2)这块地的面积=△ABC 的面积-△ACD 的面积 ----(1分)=×5×12- ×3×4 --- (2分) =24(m 2). ----(3分)24. (1)证明:∵O 是AC 的中点,∴OA =OC. ------(1分) ∵AD ∥BC ,∴∠DAO =∠BCO. -------(2分) 又∵∠AOD =∠COB ,∴△AOD ≌△COB ,(ASA ) -----------------(3分) ∴OD =OB ,∴四边形ABCD 是平行四边形 --------------(4分) (2)∵四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形 ---------------(2分)∴ ABCD 的面积= AC •BD = ×8×6=24 ---------------(4分)25 .证明:(1)∵CF ∥BD ∴∠ODE=∠FCE----------------(1分)∵E 是CD 中点 ∴CE=DE , -------------------(2分) 在△ODE 和△FCE 中2222435AD CD +=+=12121222410.-1.232322528528332⨯⨯10110102234+32722332235∴△ODE ≌△FCE (ASA ) --------------(4分) (2)∵△ODE ≌△FCE ∴OD=FC , -------------(1分) 又∵CF ∥BD , ∴四边形ODFC 是平行四边形-----(2分)∵矩形ABCD ∴AC=BD OC= AC,OD= BD ∴ OC=OD ----------------(3分)∴四边形ODFC 是菱形. -----------------------(4分) 26(1)平行四边形;(4分)(2)互相垂直(2分)(3)菱形.(2分)(1)证明:连结BD . -------------------- (1分)∵E 、H 分别是AB 、AD 中点,∴EH ∥BD ,EH= BD , ----------------------(2分)同理FG ∥BD ,FG= BD , ---------------------(3分)∴EH ∥FG ,EH=FG ,∴四边形EFGH 是平行四边形 --------------------------(4分) 27. 解:根据题意,得PQ=16×1.5=24(海里) - -----------(1分)PR=12×1.5=18(海里) -----------(2分) QR=30(海里)∵242+182=302, 即PQ 2+PR 2=QR 2∴∠QPR=90°. ----------------(4分) 由“远洋号”沿东北方向航行可知∠QPS=45°,则∠SPR=45°(5分) 即“海天”号沿西北方向航行. -------(6分)28. (1)(2)2311- (3)解:(1)第n 个等式 (2分)(2)原式=1121123111211=-=-+. (3分)原式=2-1+3-2+4-3+……+10-9=10-1 ( 4分)12121212=-+++=++)1)(1(11n n n n n n 101nn -+1=-+++=++)1)(1(11n n n n n n nn -+1n n -+1n n -+1。
湖北省孝感市云梦县2017-2018学年八年级数学下学期期中试题
2017—2018学年度下学期期中八年级数学试题
参考答案与评分标准
评分说明:1.若有与参考答案不同的解法而解答过程正确者,请参照评分标准分步给分;
2.学生在答题过程中省略某些非关键性步骤,可不扣分;学生在答题过程中省
略了关键性步骤,后面解答正确者,可只扣省略关键性步骤分,不影响后面得分.
二、填空题
11.1x ≥ 12.3-
14.15 15.5 16. ①③④
三、解答题
17.(1)解:原式=209- ……2分
=29- ……4分
(2)解:原式=
= ……6分
=
=……8分
18.解:(1)∵点B 关于点A 的对称点为C ∴AC =AB
x =……2分
∴x = ……4分
(2)原式=2(131+--
=(13(85)1+---- ……6分 =16916031---
=5 ……8分
19.解:∵a 2+b 2+c 2+50-6a -8b -10c =0.
∴ 222(3)(4)(5)0a b c -+-+-= ……3分
∴ 30
4050
a b c -=⎧⎪-=⎨⎪-=⎩ ……5分
∴3
45
a b c =⎧⎪=⎨⎪=⎩ ……6分
∵222345+=
∴△ABC 是直角三角形 ……8分
20. 解:(1)如图,过点B 作BE ∥l ,交AC 的延长线于点E . ……1分 ∵AC ⊥l
∴△AEB 是直角三角形 在Rt △AEB 中,222AE BE AB += ……2分 ∴222(24)8AB =++ ……3分
∴10AB = 即AB 两村庄之间的距离为10cm. ……4分 (2)∵M 为CD 的中点
∴4CM DM cm ==
∴AM ==……5分
BM =……6分
∵AM BM = ……7分 ∴M 到A 村庄的距离比M 到B 村庄的距离短. ……8分
21.(1)证明:∵D 、E 分别是AB 、BC 的中点 ∴DE 是△ABC 的中位线
∴DE ∥AC 且1
2DE AC = ……2分
又F 是CA 的中点
∴1
2AF AC = ∴DE ∥AF 且DE AF = ∴四边形ADEF 是平行四边形 ……4分
(2)∵在Rt △ABG 中,DG 是斜边AB 上的中线
∴DG =AD
∴∠DGA =∠DAG ……5分
同理,在Rt △ACG 中,∠AGF =∠FAG ……6分
(20第题答案图)
(21第题答案图)
G F
E D C
A
∴∠DGA +∠AGF =∠DAG +∠FAG
即∠DGF =∠DAF
又四边形ADEF 是平行四边形 ∴∠DEF =∠DAF ……7分
∴∠DGF =∠DEF ……8分
22.解:(1)∵四边形ABCD 是菱形
OA =OC ,∠EAO =∠FCO ………2分
在△AOE 与△COF 中
EAO FCO OA OC AOE COF ∠=∠⎧⎪=⎨⎪∠=⎩
∴△AOE ≌△COF (ASA) ………4分
(2)∵菱形的边长为4,∠BAD =60° ∴DO =2
在△EOD 中: ∠EOD =30°,∠ADO =60°
∴∠DEO =90°
∴DE =1,OE
∴OA
=EF =2OE
=………6分 ∴AE
=
由(1)知,△AOE ≌△COF
∴CF AE ==3 ………8分 ∵∠DEO =90°
∴∠EFC =90°
在Rt △CEF
中,CE ===………10分
23.解:(1)由题意,AQ =t ,DQ =16-t ,BP =2t ,CP =21-2t
∴△DPQ 的面积11(16)1269622
S DQ AB t t =⋅⋅=⋅-⋅=-+ ……3分 (2)∵AD ∥BC
∴当DQ =CP 时,四边形PCDQ 是平行四边形
此时,16-t =21-2t
∴t =5
故当t =5时,四边形PCDQ 是平行四边形 ……6分
(3)如图,过Q 作QG ⊥BP ,垂足为G
则PG =BP -PG =2t -t =t 在Rt △PQG 中
:PQ ==G Q P D B A (23第题答案图)
(22第题答案图)F E O D C B A
当DQ =PQ
时,有16t -=………8分 ∴2225632144t t t -+=+
∴32112t =
∴7
2t =
即当7
2t =时,DQ =PQ . ………10分
24.解:(1)①BC ⊥CF ……2分
②BC =CD +CF ……4分
(2)如图2,当点D 在线段CB 的延长线上时,结论①成立,结论② 不成立. ∵∠DAB +∠BAF =∠BAF +∠FAC =90° ∴∠DAB =∠FAC 在△DAB 与△FAC 中
AD
AF DAB FAC AB AC =⎧⎪∠=∠⎨⎪=⎩ ∴△DAB ≌△FAC (SAS) ……6分 ∴BD =CF , ∠DBA =∠FCA
∵∠DBA=180°-∠ABC =180°-45°=135°
∴∠FCA =135° ∴∠FCB =∠FCA-∠ACB=135°-45°=90° ∴BC ⊥CF
∵BD =CF , ∴BC =CD -BD=CD-CF ……8分 (3)如图3,当点D 在线段BC 的延长线上时,结论①成立,结论② 不成立. ∵∠BAD =∠BAC +∠CAD =90°+∠CAD
∠CAF =∠DAF +∠CAD =90°+∠CAD ∴∠BAD =∠CAF
在△BAD 与△CAF 中 BA CA BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩
∴△BAD ≌△CAF (SAS) ……10分 ∴BD =CF , ∠ABD =∠ACF
∴∠BCF =∠ACB +∠ACF =90°
∴BC ⊥CF
BC =BD -CD=CF-CD ……12分
第24题 图1
F E D C B
A 第24题 图2
F E D C B A 第24题 图3
F E
D
C B A。