高考物理应用动能定理
- 格式:ppt
- 大小:671.50 KB
- 文档页数:23
2025高考物理动能定理知识点解析在高考物理的众多知识点中,动能定理无疑是一个重点和难点。
它不仅在力学部分起着关键作用,还与其他章节的知识有着广泛的联系。
接下来,让我们一起深入剖析这个重要的知识点。
一、动能定理的基本概念动能,简单来说,就是物体由于运动而具有的能量。
其表达式为$E_k =\frac{1}{2}mv^2$,其中$m$表示物体的质量,$v$表示物体的速度。
而动能定理描述的是合外力对物体做功与物体动能变化之间的关系。
即:合外力对物体所做的功,等于物体动能的变化量。
用公式表达为:$W_{合} =\Delta E_k = E_{k2} E_{k1}$其中,$W_{合}$表示合外力做的功,$E_{k2}$表示末动能,$E_{k1}$表示初动能。
二、动能定理的推导我们从牛顿第二定律$F = ma$开始推导。
假设一个物体在恒力$F$的作用下,沿着直线运动,发生的位移为$s$,加速度为$a$,初速度为$v_1$,末速度为$v_2$。
根据运动学公式$v_2^2 v_1^2 = 2as$,可得:$s =\frac{v_2^2 v_1^2}{2a}$又因为力做功的公式$W = Fs$,所以合外力做功$W = F \cdot \frac{v_2^2 v_1^2}{2a}$再将$F = ma$代入上式,得到:\\begin{align}W&= ma \cdot \frac{v_2^2 v_1^2}{2a}\\&=\frac{1}{2}mv_2^2 \frac{1}{2}mv_1^2\end{align}\这就导出了动能定理。
三、动能定理的理解1、动能定理中,“合外力做功”是指作用在物体上的所有外力做功的代数和。
这些外力既可以同时作用,也可以不同时作用。
2、动能定理揭示了做功与动能变化的因果关系。
做功是导致动能变化的原因,动能变化是做功的结果。
3、动能定理既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功。
高考物理科普动能与动能定理动能与动能定理动能是物理学中的一个重要概念,用来描述物体的运动状态。
在高考物理中,学生需要对动能与动能定理有一定的了解。
本文将介绍什么是动能以及动能定理的含义和应用。
一、动能的定义动能(kinetic energy)是一个物体由于运动而具有的能量。
简单来说,物体的动能与物体的质量和速度有关。
动能的单位是焦耳(J)。
动能的计算公式如下:动能 = 1/2 ×质量 ×速度²其中,质量的单位是千克(kg),速度的单位是米/秒(m/s)。
例如,质量为2千克的物体以10米/秒的速度运动,其动能为:动能 = 1/2 × 2 kg × (10 m/s)² = 100 J这表示该物体由于运动而具有100焦耳的能量。
二、动能定理动能定理(kinetic energy theorem)是描述物体动能变化的定理。
它的表述如下:物体的动能的变化量等于作用在物体上的净外力所做的功。
净外力指的是物体受到的所有外力的矢量和,而功即为力对物体的作用在物体上产生的能量转移。
根据动能定理,如果一个物体受到净外力作用,其动能就会发生改变。
当净外力与物体运动方向一致时,物体的动能增加;当净外力与物体运动方向相反时,物体的动能减少。
三、动能定理的应用动能定理在物理学中具有很多应用。
以下是一些常见的应用场景:1. 能量转换:动能定理可以用来描述机械能的转换。
例如,当一个物体在上升过程中受到重力作用时,其动能会逐渐减小,而重力势能会逐渐增加;当物体下落时,动能增加,而重力势能减小。
2. 简谐振动:对于简谐振动,动能和势能之间会发生周期性的转换。
例如,弹簧振子的动能在振动过程中会由最大值转变为最小值,而势能则相反。
3. 碰撞过程:在碰撞过程中,动能定理可以用来分析物体的速度和动量变化。
例如,当两个物体碰撞时,动能定理可以帮助计算碰撞后物体的速度。
四、总结动能与动能定理是高考物理中的重要知识点。
高考物理动能定理的综合应用题20套(带答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。
【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)求滑块与斜面间的动摩擦因数μ;(2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值;(3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR -μmgcos37°2sin 37R︒=0-0 解得:μ=0.375⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ①在C 点时,根据牛顿第二定律有:mg +N =2Cv m R② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37°2sin 37R ︒=212C mv -2012mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④在竖直方向的位移为:y =212gt ⑤ 根据图中几何关系有:tan37°=2R yx-⑥ 由④⑤⑥式联立解得:t =0.2s考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.3.如图所示,光滑曲面与光滑水平导轨MN 相切,导轨右端N 处于水平传送带理想连接,传送带长度L =4m ,皮带轮沿顺时针方向转动,带动皮带以恒定速率v =4.0m/s 运动.滑块B 、C 之间用细绳相连,其间有一压缩的轻弹簧,B 、C 与细绳、弹簧一起静止在导轨MN 上.一可视为质点的滑块A 从h =0.2m 高处由静止滑下,已知滑块A 、B 、C 质量均为m =2.0kg ,滑块A 与B 碰撞后粘合在一起,碰撞时间极短.因碰撞使连接B 、C 的细绳受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离.滑块C 脱离弹簧后以速度v C =2.0m/s 滑上传送带,并从右端滑出落至地面上的P 点.已知滑块C 与传送带之间的动摩擦因数μ=0.2,重力加速度g 取10m/s 2.(1)求滑块C 从传送带右端滑出时的速度大小; (2)求滑块B 、C 与细绳相连时弹簧的弹性势能E P ;(3)若每次实验开始时弹簧的压缩情况相同,要使滑块C 总能落至P 点,则滑块A 与滑块B 碰撞前速度的最大值v m 是多少? 【答案】(1) 4.0m/s (2) 2.0J (3) 8.1m/s 【解析】 【分析】 【详解】(1)滑块C 滑上传送带到速度达到传送带的速度v =4m/s 所用的时间为t ,加速度大小为a ,在时间t 内滑块C 的位移为x ,有mg ma μ=C v v at =+212C x v t at =+代入数据可得3m x = 3m x L =<滑块C 在传送带上先加速,达到传送带的速度v 后随传送带匀速运动,并从右端滑出,则滑块C 从传送带右端滑出时的速度为v=4.0m/s(2)设A 、B 碰撞前A 的速度为v 0,A 、B 碰撞后的速度为v 1,A 、B 与C 分离时的速度为v 2,有2012A A m gh m v =01()A A B m v m m v =+ 12()()A B A B C C m m v m m v m v +=++A 、B 碰撞后,弹簧伸开的过程系统能量守恒222A 1A 2111()()222P B B C C E m m v m m v m v ++=++代入数据可解得2.0J P E =(3)在题设条件下,若滑块A 在碰撞前速度有最大值,则碰撞后滑块C 的速度有最大值,它减速运动到传送带右端时,速度应当恰好等于传送带的速度v .设A 与B 碰撞后的速度为1v ',分离后A 与B 的速度为2v ',滑块C 的速度为'C v ,C 在传送带上做匀减速运动的末速度为v =4m/s ,加速度大小为2m/s 2,有22()Cv v a L '-=- 解得42m/s Cv '= 以向右为正方向,A 、B 碰撞过程1()A m A B m v m m v '=+弹簧伸开过程12()()A B C C A B m m v m v m m v '''+=++22212111+()()+222p A B A B C C E m m v m m v m v '''+=+代入数据解得74228.14m v =+≈m/s .4.一个平板小车置于光滑水平面上,其右端恰好和一个光滑圆弧轨道AB 的底端等高对接,如图所示.已知小车质量M=3.0kg ,长L=2.06m ,圆弧轨道半径R=0.8m .现将一质量m=1.0kg 的小滑块,由轨道顶端A 点无初速释放,滑块滑到B 端后冲上小车.滑块与小车上表面间的动摩擦因数.(取g=10m/s 2)试求:(1)滑块到达B 端时,轨道对它支持力的大小; (2)小车运动1.5s 时,车右端距轨道B 端的距离;(3)滑块与车面间由于摩擦而产生的内能.【答案】(1)30 N (2)1 m (3)6 J 【解析】(1)滑块从A 端下滑到B 端,由动能定理得(1分)在B 点由牛顿第二定律得(2分) 解得轨道对滑块的支持力N (1分)(2)滑块滑上小车后,由牛顿第二定律对滑块:,得m/s2 (1分)对小车:,得m/s2 (1分)设经时间t后两者达到共同速度,则有(1分)解得s (1分)由于s<1.5s,故1s后小车和滑块一起匀速运动,速度v="1" m/s (1分)因此,1.5s时小车右端距轨道B端的距离为m (1分)(3)滑块相对小车滑动的距离为m (2分)所以产生的内能J (1分)5.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6m,始终以v0=6m/s的速度顺时针运动.将一个质量m=1kg 的物块由距斜面底端高度h1=5.4m的A点静止滑下,物块通过B点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H=5m,g取10m/s2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h3=1.8m②当离传送带高度为h4时物块进入传送带后一直匀减速运动,h4=9.0m所以当离传送带高度在1.8m~9.0m的范围内均能满足要求即1.8m≤h≤9.0m6.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.【答案】(1)0.32μ=(2)F=130N【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F△t=mv′﹣mv,代入数据解得:F=130N.7.如图所示,BC 225竖直放置的光滑细圆管,O为细圆管的圆心,在圆管的末端C连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球从进入圆管开始受到始终竖直向上的力F=5N的作用,当小球运动到圆管的末端C时作用力F立即消失,小球能平滑地冲上粗糙斜面.(g=10m/s2)求:(1)小球从O点的正上方某处A点水平抛出的初速度v0为多少?(2)小球在圆管中运动时对圆管的压力是多少?(3)小球在CD斜面上运动的最大位移是多少?【答案】(1)2m/s ;(2)7.1N ;(3)0.35m. 【解析】 【详解】(1)小球从A 运动到B 为平抛运动, 水平方向:r sin45°=v 0t ,在B 点:tan45°=y v gt v v =, 解得:v 0=2m/s ;(2)小球到达在B 点的速度:22m/s cos 45v v ︒==,由题意可知:mg =0.5×10=5N=F ,重力与F 的合力为零,小球所受合力为圆管的外壁对它的弹力,该力不做功, 小球在管中做匀速圆周运动,管壁的弹力提供向心力,22(22)0.5N 7.1N225v F m r ==⨯= 由牛顿第三定律可知,小球对圆管的压力大小:7.1N F '=; (3)小球在CD 上滑行到最高点过程,由动能定理得:21sin 45?cos 45?02mg s mg s mv μ︒︒--=-解得:s ≈0.35m ;8.如图,与水平面夹角θ=37°的斜面和半径R =1.0m 的光滑圆轨道相切于B 点,且固定于竖直平面内。
高考物理中的动能和动能定理知识点高考物理中的动能和动能定理知识点一、动能如果一个物体能对外做功,我们说这个物体有能量。
物体因运动而产生的能量。
Ek=mv2,它的大小与参照系的选择有关。
动能是描述物体运动状态的物理量。
这是一个相对量。
二、动能定理做功可以改变物体的能量。
所有外力对物体所做的总功等于物体动能的增量。
w1w 2 w3=MVT 2-MV021.它反映了物体动能的变化与引起变化的力所做的功之间的因果关系。
可以理解为,外力对物体所做的功等于物体动能的增加,物体克服外力所做的功等于物体动能的减少。
所以,正功是加号,负功是减号。
2.增量是最终动能减去初始动能。
EK0表示动能增加,EK0表示动能减少。
3.动能定理适用于单个物体,不能盲目应用于物体系统,尤其是相对运动的物体系统。
这时,内力的做功也能引起物体动能向其他形式能量(如内能)的转化。
在动能定理中,总功是指外力对物体做功的代数和。
这里所说的外力包括重力、弹性、摩擦力和电场力。
4.当每个力的位移相同时,就可以计算出外力所做的功。
当每个力的位移不同时,可以单独计算这个力做功,然后计算代数和。
5.力的独立作用原理给出了牛顿第二定律、动量定理和动量守恒定律的分量表达式。
但是动能定理是标量的。
功和动能都是标量,不能用矢量定律分解。
因此,动能定理没有分量表达式。
在处理一些问题时,动能定理可以在某个方向上应用。
6.得到了物体在恒力作用下沿直线运动时动能定理的表达式。
然而,它也适用于对象在曲线中移动的情况。
也就是说,动能定理适用于恒力和变力。
直线运动和曲线运动也适用。
7.动能定理中的位移和速度必须相对于同一参考物体。
1。
考点3 用动能定理巧解图像问题(能力考点·深度研析)1.与动能定理结合紧密的几种图像(1)v -t 图:由公式x =vt 可知,v -t 图线与横坐标轴围成的面积表示物体的位移。
(2)F -x 图:由公式W =Fx 可知,F -x 图线与横坐标轴围成的面积表示力所做的功。
(3)P -t 图:由公式W =Pt 可知,P -t 图线与横坐标轴围成的面积表示力所做的功。
(4)a -t 图:由公式Δv =at 可知,a -t 图线与横坐标轴围成的面积表示物体速度的变化量。
(5)E k -x 图像:由公式F 合x =E k -E k0可知,E k -x 图线的斜率表示合外力。
2.解决物理图像问题的基本步骤(1)观察题目给出的图像,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义。
(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式。
(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点,弄清图线与坐标轴围成的面积所对应的物理意义,分析解答问题,或者利用函数图线上的特定值代入函数关系式求物理量。
►考向1 E k -x 图像(多选)(2022·福建卷)一物块以初速度v 0自固定斜面底端沿斜面向上运动,一段时间后回到斜面底端。
该物体的动能E k 随位移x 的变化关系如图所示,图中x 0、E k1、E k2均已知。
根据图中信息可以求出的物理量有( BD )A .重力加速度大小B .物体所受滑动摩擦力的大小C .斜面的倾角D .沿斜面上滑的时间[解析] 由动能定义式得E k1=12mv 20,则可求解质量m ;上滑时,由动能定理E k -E k1=-(mg sin θ+f )x ,下滑时,由动能定理E k =(mg sin θ-f )(x 0-x ),x 0为上滑的最远距离;由图像的斜率可知mg sin θ+f =E k1x 0,mg sin θ-f =E k2x 0,两式相加可得g sin θ=12m ⎝ ⎛⎭⎪⎫E k1x 0+E k2x 0,相减可知f =E k1-E k22x 0,即可求解g sin θ和所受滑动摩擦力f 的大小,但重力加速度大小、斜面的倾角不能求出,故A 、C 错误,B 正确;根据牛顿第二定律和运动学关系得mg sin θ+f =ma ,t =v 0a,故可求解沿斜面上滑的时间,D 正确。