北师大版八年级下册数学[等腰三角形(基础)重点题型巩固练习]
- 格式:doc
- 大小:119.00 KB
- 文档页数:6
北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习《三角形的证明》全章复习与巩固(基础)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半. 要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a的等边三角形它的高是32a,面积是234a;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL).要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,HL一共有5种判定方法.要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于12AB的长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形. 【典型例题】类型一、三角形的证明1. 已知:点D 是△ABC 的边BC 的中点,DE ⊥AC ,DF ⊥AB ,垂足分别为E ,F ,且BF=CE .求证:△ABC 是等腰三角形.【思路点拨】欲证△ABC 是等腰三角形,又已知DE ⊥AC ,DF ⊥AB ,BF=CE ,可利用三角形中两内角相等来证明.【答案与解析】证明:∵D是BC 的中点,∴BD=CD ,∵DE ⊥AC ,DF ⊥AB ,∴△BDF 与△CDE 为直角三角形,在Rt △BDF 和Rt △CDE 中,,BF CE BDCD∴Rt △BFD ≌Rt △CED (HL ),∴∠B=∠C ,∴AB=AC ,∴△ABC 是等腰三角形.【总结升华】考查等腰三角形的判定方法及全等三角形的判定及性质;充分利用条件证明三角形全等是正确解答本题的关键.举一反三:【变式1】(2015秋?江阴市校级期中)已知:如图,△AMN 的周长为18,∠B ,∠C的平分线相交于点O ,过O 点的直线MN ∥BC 交AB 、AC 于点M 、N .求AB+AC 的值.【答案】解:∵MN ∥BC ,∴∠BOM=∠OBC ,∠CON=∠OCB ,∵∠B,∠C的平分线相交于点O,∴∠MBO=∠OBC,∠NCO=∠OCB,∴∠MBO=∠BOM,∠NCO=∠CON,∴BM=OM,CN=ON,∵△AMN的周长为18,AN=AB+AC=18.∴AM+MN+AN=AM+OM+ON+AN=AM+BM+CN+【变式2】如图,在△ABC中,AB=AC,D、E在BC上,且AD=AE,求证:BD=CE.【答案】证明:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠EAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∴ BD=CE.类型二、直角三角形2. 如图,已知,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.【思路点拨】(1)根据折叠的性质:△BCE≌△BDE,BC=BD,当点D恰为AB的重点时,AB=2BD=2BC,又∠C=90°,故∠A=30°;当添加条件∠A=30°时,由折叠性质知:∠EBD=∠EBC=30°,又∠A=30°且ED⊥AB,可证D为AB的中点;(2)在Rt△ADE中,根据∠A及ED的值,可将AE、AD的值求出,又D为AB的中点,可得AB的长度,在Rt△ABC中,根据AB、∠A的值,可将AC和BC的值求出,代入S△ABC=AC×BC 进行求解即可.【答案与解析】解:(1)添加条件是∠A=30°.证明:∵∠A=30°,∠C=90°,所以∠CBA=60°,∵C点折叠后与AB边上的一点D重合,∴BE平分∠CBD,∠BDE=90°,∴∠EBD=30°,∴∠EBD=∠EAB,所以EB=EA;∵ED为△EAB的高线,所以ED也是等腰△EBA的中线,∴D为AB中点.(2)∵DE=1,ED⊥AB,∠A=30°,∴AE=2.在Rt△ADE中,根据勾股定理,得AD=22213,∴AB=23,∵∠A=30°,∠C=90°,∴BC=12AB=3.在Rt△ABC中,AC=22AB BC=3,∴S△ABC=12×AC×BC=332.【总结升华】考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,根据轴对称的性质,折叠前后图形的形状和大小不变.3. 小林在上探索出只用三角尺作角平分线的一种方法:如图,在已知∠AOB的两边上分别取点M,N,使OM=ON,再过点M作OB的垂线,过点N作OA的垂线,垂足分别为C、D,两垂线交于点P,那么射线OP就是∠AOB的平分线.老师当场肯定他的作法,并且表扬他的创新.但是小林不知道这是为什么.①你能说明这样做的理由吗?也就是说,你能证明OP就是∠AOB的平分线吗?②请你只用三角板设法作出图∠AOB的平分线,并说明你的作图方法或设计思路.【思路点拨】①在Rt△OCM与Rt△ODN中,依据ASA得出OC=OD;在Rt△OCP与Rt△ODP中,因为OP=OP,OC=OD得出Rt△OC P≌Rt△ODP(HL),所以∠C OP=∠DOP,即OP平分∠AOB.②可作出两个直角三角形,利用HL定理证明两角所在的三角形全等.【答案与解析】①证明:在Rt△OCM和Rt△ODN中,COM DONOCM ODNOM ON∴△OCM≌△ODN(AAS),∴OC=OD,在△OCP与△ODP中,∵,OC OD OPOP∴Rt △OCP ≌Rt △ODP (HL ),∴∠COP=∠DOP ,即OP 平分∠AOB ;②解:①利用刻度尺在∠AOB 的两边上分别取OC=OD ;②过C ,D 分别作OA ,OB 的垂线,两垂线交于点E ;③作射线OE ,OE 就是所求的角平分线.∵CE ⊥OA ,ED ⊥OB ,∴∠OCE=∠ODE=90°,在Rt △OCE 与Rt △OD E 中,∵OC OD OEOE,∴Rt △OCE ≌Rt △ODE (HL ),∴∠EOC=∠EOD ,∴OE 为∠AOB 的角平分线.【总结升华】主要考查了直角三角形的判定,利用全等三角形的性质得出∠EOC=∠EOD 是解题关键.类型三、线段垂直平分线4.(2015秋?麻城市校级期中)如图所示:在△ABC 中,AB >BC ,AB=AC ,DE 是AB 的垂直平分线,垂足为D ,交AC 于E .(1)若∠ABE=50°,求∠EBC 的度数;(2)若△ABC 的周长为41cm ,边长为15cm ,△BCE 的周长.【思路点拨】(1)由DE 是AB 的垂直平分线,根据线段垂直平分线的性质,可得AE=BE ,继而求得∠A的度数,又由AB=AC ,即可求得∠ABC 的度数,则可求得答案;(2)由△BCE 的周长=AC+BC ,然后分别从腰等于15cm 与底边等于15cm 去分析求解即可求得答案.【答案与解析】解:(1)∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=50°,∵AB=AC,∴∠ABC=∠C=65°,∴∠EBC=∠ABC﹣∠ABE=15°;(2)∵AE=BE,;∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC∵△ABC的周长为41cm,∴AB+AC+BC=41cm,若AB=AC=15cm,则BC=11cm,则△BCE的周长为:15+11=26cm;若BC=15cm,则AC=AB=13cm,∵AB>BC,∴不符合题意,舍去.∴△BCE的周长为26cm.【总结升华】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.举一反三:【变式】如图所示,AD是△ABC中∠BAC的平分线,AD的垂直平分线EF交BC的延长线于F,试说明∠BAF=∠ACF的理由.【答案】解:∵EF垂直平分AD,∴AF=DF,∴∠FAD=∠FDA.又∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠BAF=∠BAD+∠FAD,∠ACF=∠DAC+∠FDA,∴∠BAF=∠ACF.类型四、角平分线5.(2016秋?兴化市期中)已知:如图,△ABC的角平分线BE、CF相交于点P.求证:点P在∠A的平分线上.【思路点拨】过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,根据角平分线上的点到角的两边距离相等可得PD=PM,同理可得PM=PN,从而得到PD=PN,再根据到角的两边距离相等的点在角的平分线上证明即可.【答案与解析】证明:如图,过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,∵BE平分∠ABC,点P在BE上,∴PD=PM,同理,PM=PN,∴PD=PN,∴点P在∠A的平分线上.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,到角的两边距离相等的点在角的平分线上,熟记性质并作出辅助线是解题的关键.举一反三:【变式】如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处 C.3处 D.4处【答案】D.解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.。
北师大版2020-2021学年度八年级数学下册1.1等腰三角形自主学习同步练习题3(含答案)1.等腰△ABC中,它的底角∠B=70°,则顶角∠A的度数为()A.70°B.30°C.40°D.60°2.等腰三角形的一个内角是70°,则它顶角的度数是()A.70°B.70°或40°C.70°或50°D.40°3.如图所示,△ABC中,AB=AC,D是BC上一点,DE⊥AB于点E,若∠A=50°,则∠BDE的度数是()A.65°B.50°C.30°D.25°4.如图,△ABC中,DE垂直平分AB,垂足为D,交BC于E,若∠B=32°,AC=CE,则∠C的度数是()A.52°B.55°C.60°D.65°5.等腰三角形其中两条边的长度为5和11,则该等腰三角形的周长为()A.21B.27C.21或32D.21或276.如图,△ABC是等腰三角形,点O是底边BC上任意一点,OE、OF分别与两边垂直,等腰三角形的腰长为6,面积为15,则OE+OF的值为()A.5B.7.5C.9D.107.如图,在等腰△ABC中,AB=AC=10,BC=12,O是△ABC外一点,O到三边的垂线段分别为OD,OE,OF,且OD:OE:OF=1:4:4,则AO的长度为()A.10B.9C.D.第3题第4题第6题第7题8.如图,在△ABC中,D、E分别为AB、AC边上的点,DA=DE,DB=BE=EC.若∠ABC=130°,则∠C的度数为()A.20°B.22.5°C.25°D.30°9.如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD,若∠BAD=55°,∠B=50°,则∠DEC的度数为()A.125°B.120°C.115°D.110°10.如图,已知∠AOB=10°,且OC=CD=DE=EF=FG=GH,则∠BGH=()A.50°B.60°C.70°D.80°11.如图,在△ABC中,AB=AC,∠A=30°,直线m∥n,顶点C在直线n上,直线m 交AB于点D,交AC于点E,若∠1=150°,则∠2的度数是()A.45°B.40°C.35°D.30°12.如图所示,△ABC中,AB=AC,AB的垂直平分线DE交BC的延长线于E,交AC于F,连接BF,∠A=50°,AB+BC=16cm,则△BCF的周长和∠E分别等于()A.16cm,25°B.8cm,30°C.16cm,40°D.8cm,25°第9题第10题第11题第12题13.等腰三角形一腰上的高与另一腰的夹角是45°,则这个三角形的底角为()A.67°31′B.22°30′C.67°30′D.22°30′或67°30′14.如图,在△ABC中,D,E是BC边上两点,且满足AB=BE,AC=CD,若∠B=α,∠C=β,则∠DAE的度数为()A.B.C.D.15.如图,在等腰△ABC中,顶角∠A=44°,BD平分底角∠ABC交AC于点D,E是BC 延长线上一点,且CD=CE,则∠E的度数为()A.22°B.44°C.34°D.68°16.如图,在△ABC中,AB=AC,点D,E在边BC上,∠BAD=∠CAE,若BC=15,DE =6,则CE的长为()A.3.5B.4.5C.5D.5.5第14题第15题第16题17.如图,等腰△ABC中,点P是底边BC上的动点(不与点B,C重合),过点P分别作AB、AC的平行线PM、PN,交AC、AB于点M、N,则下列数量关系一定正确的是()A.PM+PN=AB B.PM+PN=BCC.PM+PN=2BC D.PM+PN=AB+BC18.等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,则这个等腰三角形底边的长为()A.17cm B.5cm C.5cm或17cm D.无法确定19.如图,在△ABC中,AC=BC,∠C=36°,AD平分∠BAC,则图中等腰三角形的个数是()A.1个B.2个C.3个D.4个20.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC,∠BCD的角平分线,那么图中的等腰三角形有()A.2个B.3个C.4个D.5个21.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,若C也是图中的格点,则使得△ABC是以AB为一腰的等腰三角形时,点C的个数是()A.8B.6C.4D.722.如图,在Rt△ABC中,∠ACB=90°,∠CAB=36°,以C为原点,AC所在直线为y 轴,BC所在直线为x轴建立平面直角坐标系,在坐标轴上取一点M使△MAB为等腰三角形,符合条件的M点有()A.6个B.7个C.8个D.9个23.如图所示的方格纸中,每个方格均为边长为1的小正方形,我们把每个小正方形的顶点称为格点,现已知A、B、C、D都是格点,则下列结论中正确的是()A.△ABC、△ABD都是等腰三角形B.△ABC、△ABD都不是等腰三角形C.△ABC是等腰三角形,△ABD不是等腰三角形D.△ABC不是等腰三角形,△ABD是等腰三角形24.等腰三角形的周长为16,且边长为正整数,则底边长为.25.如图,在△ABC中,AE=DE=BD,AD=EC,∠1=17°,则∠EBC的度数是.26.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠DCB交AB于点E.(1)求证:∠AEC=∠ACE;(2)若∠AEC=2∠B,AD=1,求BD的长.27.如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G)28.在△ABC中,AD平分∠BAC,E是BC上一点,BE=CD,EF∥AD交AB于F点,交CA的延长线于P,CH∥AB交AD的延长线于点H,①求证:△APF是等腰三角形;②猜想AB与PC的大小有什么关系?证明你的猜想.29.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C 重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.参考答案1.解:根据题意∠C=∠B=70°,∴∠A=180°﹣70°﹣70°=40°.故选:C.2.解:本题可分两种情况:①当70°角为底角时,顶角为180°﹣2×70°=40°;②70°角为等腰三角形的顶角;因此这个等腰三角形的顶角为40°或70°.故选:B.3.解:∵AB=AC,∠A=50°,∴∠B=∠C=65°,∵DE⊥AB,∴∠BED=90°,∴∠BDE=90°﹣∠B=25°.故选:D.4.解:连结AE,∵△ABC中,DE垂直平分AB,∠B=32°,∴∠BED=58°,∴∠AED=58°,∴∠AEC=64°,∴∠C=180°﹣64°×2=52°.故选:A.5.解:若5为腰长,则三边为5,5,11,∵5+5<11,∴5,5,11不能构成三角形,若11为腰长,则三边为5,11,11,∵5+11>11,∴等腰三角形的周长为5+11+11=27,故选:B.6.解:连接AO,如图,∵AB=AC=6,∴S△ABC=S△ABO+S△AOC=AB•OE+AC•OF=15,∵AB=AC,∴AB(OE+OF)=15,∴OE+OF=5.故选:A.7.解:连接AO,OB,OC,∵O是△ABC外一点,O到三边的垂线段分别为OD,OE,OF,且OD:OE:OF=1:4:4,∴O在∠BAC的角平分线上,∵AB=AC,∴AO过D,且AD⊥BC,∵BC=12,∴BD=CD=6,在Rt△ADC中,由勾股定理得:AD===8,即BD=8,设OD=x,则OE=OF=4x,∵S△ABC+S△OBC=S△ABO+S△ACO,AB=AC=10,BC=12,AD=8,∴=+,∴=,解得:x=,即OD=,∴AO=AD+OD=8+=,故选:D.8.解:设∠C=x,根据等腰三角形的性质得∠EBC=x,则∠DBE=130°﹣x,根据等腰三角形的性质得∠EDB=25°+x,根据三角形外角的性质和等腰三角形的性质得∠A=12.5°+x,依题意有12.5°+x+x+130°=180°,解得x=30°.故选:D.9.解:∵AB=AC,∴∠B=∠C,∵∠B=50°,∴∠C=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠BAD=55°,∴∠DAE=25°,∵DE⊥AD,∴∠ADE=90°,∴∠DEC=∠DAE+∠ADE=115°.故选:C.10.解:∵OC=CD,∴∠CDO=∠O=10°∴∠DCE=∠O+∠CDO=20°,∵CD=DE,∴∠DCE=∠CED=20°,∴∠EDF=∠O+∠CED=30°,∵DE=EF,∴∠EDF=∠EFD=30°,同理∠GEF=∠EGF=40°,∠GFH=∠GHF=50°,∠BGH=60°,故选:B.11.解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=150°,∴∠AED=150°﹣30°=120°,∵m∥n,∴∠AED=∠2+∠ACB,∴∠2=120°﹣75°=45°,故选:A.12.解:∵在△ABC中,AB=AC,∠A=50°,∴∠ABC=∠ACB=65°,∵DE是AB的垂直平分线,∴AF=BF,∠BDE=90°,∴∠E=90°﹣∠ABC=25°,∵AB+BC=16cm,∴△BCF的周长为:BC+CF+BF=BC+CF+AF=BC+AC=BC+AB=16cm.故选:A.13.解:有两种情况;(1)如图,当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,已知∠ABD=45°,∴∠A=90°﹣45°=45°,∵AB=AC,∴∠ABC=∠C=×(180°﹣45°)=67.5°;(2)如图,当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,已知∠HFE=45°,∴∠HEF=90°﹣45°=45°,∴∠FEG=180°﹣45°=135°,∵EF=EG,∴∠EFG=∠G=×(180°﹣135°)=22.5°,故选:D.14.解:∵BE=BA,∴∠BAE=∠BEA,∴α=180°﹣2∠BAE,①∵CD=CA,∴∠CAD=∠CDA,∴β=180°﹣2∠CAD,②①+②得:α+β=360°﹣2(∠BAE+∠CAD)∴α+β=360°﹣2[(∠BAD+∠DAE)+(∠DAE+∠CAE)]=360°﹣2[(∠BAD+∠DAE+∠CAD)+∠DAE]=360°﹣2(∠BAC+∠DAE),∵∠BAC=180°﹣(α+β),∴α+β=360°﹣2[180°﹣(α+β)+∠DAE]∴α+β=2∠DAE,∴∠DAE=(α+β),故选:A.15.解:∵△ABC是等腰三角形,∴AB=AC,∴∠ABC=∠ACB,∵∠A=44°,∴∠ABC=∠ACB==68°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB=68°,∴∠E=34°,故选:C.16.解:∵AB=AC,∴∠B=∠C,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∵BC=15,DE=6,∴BD+CE=9,∴CE=4.5,故选:B.17.解:∵AB=AC,∴∠B=∠C,∵PN∥AC,∴∠BPN=∠C=∠B,∴PN=BN,∵PM∥AB,PN∥AC,∴四边形AMPN是平行四边形,∴PM=AN,∴PM+PN=AN+BN=AB,故选:A.18.解:设等腰三角形的腰长是xcm,底边是ycm.根据题意,得:或,解得或.再根据三角形的三边关系知:8,8,17不能组成三角形,应舍去.所以它的底边长是5cm.故选:B.19.解:∵AC=BC,∠C=36°,∴△ABC是等腰三角形,∠BAC=∠ABC=72°,∵AD平分∠BAC,∴∠CAD=∠BAD=∠C=36°∴△CAD为等腰三角形,∵∠BDA=∠C+∠CAD=72°=∠B,∴△BAD为等腰三角形,∴则图中等腰三角形的个数是3个.故选:C.20.解:共有5个.(1)∵AB=AC∴△ABC是等腰三角形;(2)∵BD、CE分别是∠ABC、∠BCD的角平分线∴∠EBC=∠ABC,∠ECB=∠BCD,∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;(3)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=(180°﹣36°)=72°,又BD是∠ABC的角平分线,∴∠ABD=∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD是等腰三角形.故选:D.21.解:如图,以AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.22.解:如图,①以A为圆心,AB为半径画圆,交直线AC有二点M1,M2,交BC有一点M3,(此时AB=AM);②以B为圆心,BA为半径画圆,交直线BC有二点M5,M4,交AC有一点M6(此时BM=BA).③AB的垂直平分线交AC一点M7(MA=MB),交直线BC于点M8;∴符合条件的点有8个.故选:C.23.解:由图可得,AC=BC=,AD=BD=5,∴△ABC、△ABD都是等腰三角形,故选:A.24.解:由题意得:2x+y=16,∵三角形的两边之和大于第三边,∴符合条件的三角形有:腰长为5,底边为6;腰长为6,底边为4;腰长为7,底边为2;∴底边长为2,4,6,故答案为:2或4或6.25.解:∵BD=DE,∴∠DEB=∠1=17°,∴∠ADE=∠1+∠DEB=34°,∵AE=DE,∴∠A=∠ADE=34°,∵BD=AE,AD=CE,∴AD+BD=CE+AE,即AB=AC,∴∠ABC=∠C=73°,∴∠CBE=∠ABC﹣∠1=56°,故答案为:56°.26.解:(1)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B,∵CE平分∠BCD,∴∠BCE=∠DCE,∴∠B+∠BCE=∠ACD+∠DCE,即∠AEC=∠ACE;(2)∵∠AEC=∠B+∠BCE,∠AEC=2∠B,∴∠B=∠BCE,又∵∠ACD=∠B,∠BCE=∠DCE,∴∠ACD=∠BCE=∠DCE,又∵∠ACB=90°,∴∠ACD=30°,∠B=30°,∴Rt△ACD中,AC=2AD=2,∴Rt△ABC中,AB=2AC=4,∴BD=AB﹣AD=4﹣1=3.27.证明:过点D作DG∥AC交BC于点G,如图所示.∵DG∥AC,∴∠GDF=∠E,∠DGB=∠ACB.在△GDF和△CEF中,,∴△GDF≌△CEF(ASA),∴GD=CE.∵BD=CE,∴BD=GD,∴∠B=∠DGB=∠ACB,∴△ABC是等腰三角形.28.①证明:∵EF∥AD,∴∠1=∠4,∠2=∠P,∵AD平分∠BAC,∴∠1=∠2,∴∠4=∠P,∴AF=AP,即△APF是等腰三角形;②AB=PC.理由如下:证明:∵CH∥AB,∴∠5=∠B,∠H=∠1,∵EF∥AD,∴∠1=∠3,∴∠H=∠3,在△BEF和△CDH中,∵,∴△BEF≌△CDH(AAS),∴BF=CH,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠H,∴AC=CH,∴AC=BF,∵AB=AF+BF,PC=AP+AC,∴AB=PC.29.解:(1)∠BAD=180°﹣∠ABD﹣∠BDA=180°﹣40°﹣115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2∵∠EDC+∠EDA=∠DAB+∠B,∠B=∠EDA=40°,∴∠EDC=∠DAB.,∵∠B=∠C,∴当DC=AB=2时,△ABD≌△DCE,(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣70°=30°;∴∠BDA=180°﹣30°﹣40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°﹣40°=60°,∴∠BDA=180°﹣60°﹣40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.。
2021-2022学年北师大版八年级数学下册《1-1等腰三角形》同步练习题(附答案)1.如图,在△ABC中,∠A=36°,∠C=72°,点D在AC上,BC=BD,DE∥BC交AB 于点E,则图中等腰三角形共有()A.3个B.4个C.5个D.6个2.如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC,则∠ABD的度数为()A.30°B.40°C.20°D.25°3.以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2B.1,1,3C.2,2,1D.2,2,54.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于点D,交AB于点E,下列叙述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.点D是线段AC的中点D.AD=BD=BC5.若(a﹣2)2+|b﹣3|=0,则以a、b为边长的等腰三角形的周长为()A.6B.7C.8D.7或86.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.7.如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF=cm.8.如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为度.9.如图,P、M、N分别是△ABC三边上的点,BM=BP,CP=CN,∠MPN=40°,则∠A =.10.如图,在△ABC中,AB=AC,D、E分别为AB、AC上的点,∠BDE、∠CED的平分线分别交BC于点F、G,EG∥AB.若∠BGE=110°,则∠BDF的度数为11.如图,在△ABC中,若AB=AC,∠A=40°,O点是△ABC的角平分线BD及高线CE 的交点,则∠DOC的度数为.12.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE =∠BAD.13.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.14.如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证:∠CFD=∠B.15.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.16.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O (1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.17.如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.18.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.19.如图,△ABC中,AC=BC,点D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分线CF于点F.(1)求证:CF∥AB;(2)若∠CAD=20°,求∠CFD的度数.20.如图所示,已知△ABC中,AB=AC,∠BAD=30°,AD=AE,求∠EDC的度数.参考答案1.解:在△ABC中,∠A=36°,∠C=72°,∴∠ABC=∠C==72°,∴△ABC是等腰三角形,∴∠DBC=36°,∴∠ABD=∠DBC=36°,∴BD平分∠ABC,∴∠ABD=∠DBC=36°,∵DE∥BC,∴∠EDB=∠DBC=36°,∴∠ABD=∠EDB=∠A,∴AD=BD,EB=ED,即△ABD和△EBD是等腰三角形,∵∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,即△BCD是等腰三角形,∵DE∥BC,∴∠AED=∠ABC,∠ADE=∠C,∴∠AED=∠ADE,∴AE=AD,即△AED是等腰三角形.∴图中共有5个等腰三角形.故选:C.2.解:∵AB=AC,∠A=100°,∴∠ABC=∠C=40°.∵BD平分∠ABC,∴∠ABD=∠DBC=20°.故选:C.3.解:A、∵1+1=2,∴本组数据不可以构成等腰三角形;故本选项不符合题意;B、∵1+1<3,∴本组数据不可以构成等腰三角形;故本选项不符合题意;C、∵1+2>2,且有两边相等,∴本组数据可以构成等腰三角形;故本选项符合题意;D、∵2+2<5,∴本组数据不可以构成等腰三角形;故本选项不符合题意;故选:C.4.解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°=∠ABD,∴BD平分∠ABC,故A正确;∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故B正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BD=BC,故D正确;∵BD>CD,∴AD>CD,∴点D不是线段AC的中点,故C错误.故选:C.5.解:∵(a﹣2)2+|b﹣3|=0,∴a﹣2=0,b﹣3=0,解得a=2,b=3,①当腰是2,底边是3时,三边长是2,2,3,此时符合三角形的三边关系定理,即等腰三角形的周长是2+2+3=7;②当腰是3,底边是2时,三边长是3,3,2,此时符合三角形的三边关系定理,即等腰三角形的周长是3+3+2=8.故选:D.6.解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.7.解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,∴S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,∵S△ABC=AC•BF,∴AC•BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.8.解:∵AD=AC,点E是CD中点,∴AE⊥CD,∴∠AEC=90°,∴∠C=90°﹣∠CAE=74°,∵AD=AC,∴∠ADC=∠C=74°,∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为37°.9.解:∵∠MPN=40°,∴∠BPM+∠CPN=140°,∵BM=BP,CP=CN,∴∠BMP=∠BPM,∠CPN=∠CNP,∴∠BMP+∠CNP=140°,∴∠B+∠C=80°,∴∠A=100°.故答案为:100°.10.解:∵EG∥AB,∠BGE=110°,∴∠B=180°﹣∠BGE=70°,∠CEG=∠A,∠GED=∠ADE.∵AB=AC,∴∠C=∠B=70°,∠A=180°﹣∠B﹣∠C=40°,∴∠CEG=∠A=40°,∵EG平分∠CED,∴∠GED=∠CEG=40°,∴∠ADE=∠GED=40°,∴∠BDE=180°﹣∠ADE=140°.∵DF平分∠BDE,∴∠BDF=∠BDE=70°.故答案为70°.11.解:∵在△ABC中,若AB=AC,∠A=40°,∴∠ABC=∠ACB=(180°﹣40°)=70°,∵BD是△ABC的角平分线,∴∠DBC=∠ABC=35°.∵CE是△ABC的高线,∴∠BEC=90°,∴∠BCE=90°﹣∠ABC=20°,∴∠DOC=∠DBC+∠BCE=35°+20°=55°.故答案为55°.12.证明:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∠BAD=∠CAD,∵BE⊥AC,∴∠BEC=∠ADC=90°.,∴∠CBE=90°﹣∠C,∠CAD=90°﹣∠C,∴∠CBE=∠CAD.,∴∠CBE=∠BAD.13.证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.∴∠ECB=∠DBC(等量代换).∴FB=FC(等角对等边),在△ABF和△ACF中,,∴△ABF≌△ACF(SSS),∴∠BAF=∠CAF(全等三角形对应角相等),∴AF平分∠BAC.14.解:(1)∵∠AFD=155°,∴∠DFC=25°,∵DF⊥BC,DE⊥AB,∴∠FDC=∠AED=90°,在Rt△FDC中,∴∠C=90°﹣25°=65°,∵AB=BC,∴∠C=∠A=65°,∴∠EDF=360°﹣65°﹣155°﹣90°=50°.(2)连接BF∵AB=BC,且点F是AC的中点,∴BF⊥AC,∠ABF=∠CBF=∠ABC,∴∠CFD+∠BFD=90°,∠CBF+∠BFD=90°,∴∠CFD=∠CBF,∴∠CFD=∠ABC.15.证明:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD,∴∠ABC=∠CBD+∠D,∵AD∥BC,∴∠CBD=∠D,∴∠ABC=∠D+∠D=2∠D,又∵∠C=∠ABC,∴∠C=2∠D.16.(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠BEC=∠BDC=90°∴△BEC≌△CDB∴∠DBC=∠ECB,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∵∠DOE+∠A=180°∴∠BOC=∠DOE=180°﹣80°=100°.17.证明:过E作EF∥AB交BC延长线于F.∵AB=AC,∴∠B=∠ACB,∵EF∥AB,∴∠F=∠B,∵∠ACB=∠FCE,∴∠F=∠FCE,∴CE=EF,∵BD=CE,∴BD=EF,在△DBG与△GEF中,,∴△DGB≌△EGF(AAS),∴GD=GE.18.解:设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°,∠ABC=∠ACB=72°.19.(1)证明:∵AC=BC,∴∠B=∠BAC,∵∠ACE=∠B+∠BAC,∴∠BAC=,∵CF平分∠ACE,∴∠ACF=∠ECF=,∴∠BAC=∠ACF,∴CF∥AB;(2)解:∵∠BAC=∠ACF,∠B=∠BAC,∠ADF=∠B,∴∠ACF=∠ADF,∵∠ADF+∠CAD+∠AGD=180°,∠ACF+∠F+∠CGF=180°,又∵∠AGD=∠CGF,∴∠F=∠CAD=20°.20.解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+30,解得x=15.所以∠EDC的度数是15°.。
第01讲等腰三角形的性质与判定(6类热点题型讲练)1.经历“探索一发现一猜想一证明”的过程,逐步掌握综合法证明的方法,发展推理能力.2.进一步了解作为证明基础的几条基本事实的内容,能证明等腰三角形的性质.3.有意识地培养学生对文字语言、符号语言和图形语言的转换能力,关注证明过程及其表达的合理性.知识点01等腰三角形的性质(1)等腰三角形性质1:等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形性质2:文字:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一)图形:如下所示;符号:在ABC ∆中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD ∠=∠⎧⎪=⊥∠=∠⊥∠=∠⎨⎪⊥⎩==若则若则若,则知识点02等腰三角形的判定(1)等腰三角形的判定方法1:(定义法)有两条边相等的三角形是等腰三角形;(2)等腰三角形的判定方法2:有两个角相等的三角形是等腰三角形;(简称:等角对等边)题型01根据等腰三角形腰相等求第三边或周长【例题】(2023上·河南商丘·八年级商丘市实验中学校考阶段练习)一个等腰三角形的两条边长分别为8cm 和4cm ,则第三边的长为cm .【答案】8【分析】本题考查等腰三角形的性质及三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,是解题的关键.【详解】解:①若一腰长为8cm ,则底边为4cm ,则第三边的长为8cm ,488+>,故能组成三角形;②若一腰长为4cm ,则底边为8cm ,则第三边的长为4cm ,448+=,故不能组成三角形.故答案为:8.【变式训练】1.(2023上·甘肃陇南·八年级校考阶段练习)一个等腰三角形有两边分别为3cm 和8cm ,则周长是cm .【答案】19【分析】本题考查了等腰三角形的性质和三角形的三边关系.等腰三角形两边的长为3cm 和8cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】解:①当腰是3cm ,底边是8cm 时:338+<,不满足三角形的三边关系,因此舍去.②当底边是3cm ,腰长是8cm 时,388+>,能构成三角形,则其周长()38819cm =++=.故答案为:19.2.(2023上·山东潍坊·八年级校考阶段练习)若()2450a b -+-=,则以a ,b 为边长的等腰三角形的周长为.【答案】13或14【分析】本题考查了等腰三角形的概念,非负数的性质,以及三角形的三边关系,注意利用分类讨论思想解题.根据非负数的和为零,可得每个非负数同时为零,可得a ,b 的值,根据等腰三角形的概念进行分类讨论,可得答案.【详解】解:∵()2450a b -+-=,且()240a -≥,50b -≥,∴40a -=,50b -=,解得:4a =,5b =,当4为等腰三角形的腰长,5为等腰三角形的底边时,则等腰三角形的周长为44513++=,当5为等腰三角形的腰长,4为等腰三角形的底边时,则等腰三角形的周长为55414++=,故答案为:13或14.题型02根据等腰三角形等边对等角求角的度数题型03根据等腰三角形三线合一进行求解【答案】25【详解】解:如图,作BE ∵AB BC =,∴AE CE =,∵AC CD ⊥,90BAD ∠=︒∴EBA BAE BAE ∠+∠=∠+EBA CAD BAE ∠=∠∠=,【答案】10【详解】解:AB 5BD CD ∴==,210BC BD ∴==,故答案为:10.2.两个同样大小的含(1)求AF 的长.(2)求CD 的长.【详解】(1)解:连接AF ,如下图,根据题意,90BAC ∠=︒,AB ∴222(2)BC AB AC =+=∴190452B ACB ∠=∠=⨯︒=︒,∵F 为BC 中点,题型04根据等腰三角形三线合一进行证明(1)若106BAC DAE ∠∠=︒,(2)求证:BD EC =.【详解】(1)解:∵AB AC =(1180ADE AED ∠=∠=︒∵,AB AC AD AE ==,∴,BF CF DF EF ==,∴BD CE =.【变式训练】1.(2023上·山东威海·七年级校联考期中)如图,已知AB AE ABC AED BC ED =∠=∠=,,,点F 是CD 的中点,连接AF ,请判断AF 与CD 的位置关系.【答案】垂直【分析】此题考查全等三角形的判定和性质,等腰三角形三线合一的性质:连接AC AD ,,证明ABC AED ≌△△,得到AC AD =,根据等腰三角形三线合一的性质得到AF CD ⊥,熟练掌握全等三角形的判定定理及等腰三角形的性质是解题的关键.【详解】答:AF CD⊥连接AC AD,∵AB AE ABC AED BC ED=∠=∠=,,∴ABC AED≌△△∴AC AD=又∵点F 是CD 的中点∴AF CD ⊥.2.如图,在ABC 中,AB AC =,40BAC ∠︒=,AD 是BC 边上的高.线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,连接BE .(1)试问:线段AE 与BE 的长相等吗?请说明理由;(2)求EBD ∠的度数.【详解】(1)解:线段AE 与BE 的长相等,理由如下:连接CE ,如图所示:=,AD∵AB AC=,∴BD CD∴AD为BC的垂直平分线,∵点E在AD上,=,∴BE CE又∵线段AC的垂直平分线交题型05根据等角对等边证明等腰三角形∠,【例题】(2023上·广西玉林·八年级统考期中)如图,点E在BA的延长线上,已知AD平分CAE ∥.求证:ABCAD BC是等腰三角形.【答案】证明见解析【分析】本题主要考查了等角对等边,平行线的性质与角平分线的定义,先根据平行线的性质得到EAD B CAD C ∠=∠∠=∠,,再由角平分线的定义和等量代换得到B C ∠=∠,即可证明ABC 是等腰三角形.【详解】证明:∵AD BC ∥,∴EAD B CAD C ∠=∠∠=∠,,∵AD 平分CAE ∠,∴EAD CAD ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形.【变式训练】【答案】ABC 是等腰三角形,理由见解析【分析】本题主要考查了等腰三角形的判定,三角形外角的性质,角平分线的定义,设4ACD x ∠=,3ECD x =∠,由角平分线的定义得到13BEC x ABC =-∠∠,A =∠【答案】证明见解析【分析】本题考查了平行线的性质,等腰三角形的性质和判定,证明根据角平分线的定义可得,以及直线平行的性质证明题型06等腰三角形的性质和判定综合应用【例题】如图,在ABC 中,AB AC =,D 是BC 边的中点,连接AD ,BE 平分ABC ∠交AC 于点E .(1)若40C ∠=︒,求BAD ∠的度数;(2)过点E 作EF BC ∥交AB 于点F ,求证:BEF △是等腰三角形.(3)若BE 平分ABC 的周长,AEF △的周长为15,求ABC 的周长.【详解】(1)解:AB AC = ,C ABC ∴∠=∠,∵40C ∠=︒,∴40ABC ∠=︒,AB AC = ,D 为BC 的中点,AD BC ∴⊥,90BDA ∴∠=︒,∴90904050BAD ABC ︒︒︒︒∠=-∠=-=;(2)证明:BE 平分ABC ∠,ABE EBC ∴∠=∠,又∵EF BC ∥,∴EBC BEF ∠=∠,∴EBF FEB ∠=∠,BF EF ∴=,BEF ∴ 是等腰三角形;(3)解:AEF 的周长为15,15AE AF EF ∴++=,BF EF = ,15AE AF BF ∴++=,即15AE AB +=,BE 平分ABC 的周长,=15AE AB BC CE ∴++=,ABC ∴ 的周长+1515=30AE AB BC CE ++=+.【变式训练】1.如图,在ABC 中,AB AC =,D 为CA 延长线上一点,DE BC ⊥于点E ,交AB 于点F .(1)求证:ADF △是等腰三角形(2)若6,3,4AD BE EF ===,求线段AB 的长.(1)试判断折叠后重叠部分△的面积.(2)求重叠部分AFC△【详解】(1)解:AFC∵四边形ABCD是长方形,∥,∴AD BC一、单选题1.(2023上·河南许昌·八年级统考期中)等腰三角形的一个底角为80︒,则这个等腰三角形的顶角为().A .20︒B .80︒C .100︒D .20︒或100︒【答案】A【分析】本题主要查了等腰三角形的性质.根据“等腰三角形两底角相等”,即可求解.【详解】解:∵等腰三角形的一个底角为80︒,∴等腰三角形的顶角为180808020︒-︒-︒=︒.故选:A2.(2024下·全国·七年级假期作业)如图,在ABC 中,,AB AC AD =为BC 边上的中线,30B ∠=︒,则CAD ∠的度数为()A .50︒B .60︒C .70︒D .80︒【答案】B【解析】略3.(2023上·广东珠海·八年级校考阶段练习)下列条件中,可以判定ABC 是等腰三角形的是()A .40B ∠=︒,80C ∠=︒B .123A BC ∠∠∠=::::C .2A B C∠=∠+∠D .三个角的度数之比是2:2:1【答案】D 【分析】本题考查了等腰三角形的判定,三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.利用三角形内角和定理,等腰三角形的判定,进行计算并逐一判断即可解答.【详解】解:A .∵40B ∠=︒,80C ∠=︒,A .16【答案】A 【分析】此题考查的是全等三角形的判定与性质、等腰三角形的性质,解题关键是掌握并会运用全等三角形的判定与性质、等腰三角形性质定理.先得出ABD ACF ∠=∠,进而得到AF 长,求出AB 出即可.【详解】CE BD ⊥ ,90BEF ∴∠=︒,90BAC ∠=︒ ,90CAF ∴∠=︒,90FAC BAD ∴∠=∠=︒ABD ACF ∴∠=∠.在ABD △和ACF △中【答案】10︒,80︒,140︒或20︒【详解】本题考查了等腰三角形的性质,先利用三角形内角和定理可得:AP AB =时;当AP AB =时;当BA BP =解:∵130ABC ∠=︒,30ACB ∠=︒,+∵BAC ∠是ABP 的一个外角,∴20BAC APB ABP ∠=∠+∠=︒,∵AB AP =,∵AB AP=,20BAP∠=︒,∴180802BAPABP APB︒-∠∠=∠==︒;当BA BP=时,如图:∵BA BP=,∴20BAP BPA∠=∠=︒,∴180140ABP BAP BPA∠=︒-∠-∠=︒;当PA PB=时,如图:∵PA PB=,∴20BAP ABP∠=∠=︒;综上所述:当ABP是等腰三角形时,故答案为:10︒,80︒,140︒或20︒.11.(2023上·广东汕尾·八年级校联考阶段练习)用一条长为21cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么各边的长是多少?(2)能围成有一边的长为5cm的等腰三角形吗?如果能,请求出另两边长.【答案】(1)三角形的三边分别为3cm9cm9cm、、(2)能围成一个底边是5cm,腰长是8cm的等腰三角形【分析】本题考查了等腰三角形的性质,三角形的周长,难点在于要分情况讨论并利用三角形的三边关系进行判断.(1)设底边长为x cm,表示出腰长,然后根据周长列出方程求解即可;(1)求BD的长.(2)求BE的长.【答案】(1)4 (2)5,AE CD ⊥Q ,AD AC =,AE ∴平分CAD ∠,CAE DAE ∴∠=∠,在CAE V 和DAE 中,AC AD CAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,()SAS CAE DAE ∴ ≌,CE DE ∴=,90ADE ACE ∠=∠=︒,设BE x =,则8CE DE x ==-,由勾股定理可得:222DE BD BE +=,()22284x x ∴-+=,解得:5x =,5BE ∴=.14.(2023上·浙江宁波·八年级统考期末)如图,在ABC 中,AB AC =,ED AB ∥,分别交BC 、AC 于点D 、E ,点F 在BC 的延长线上,且CF DE =,(1)求证:CEF △是等腰三角形;(2)连接AD ,当AD BC ⊥,8BC =,CEF △的周长为16时,求DEF 的周长.【答案】(1)证明见解析(2)20【分析】本题考查了等腰三角形的判定与性质,掌握等腰三角形的性质,等腰三角形的三线合一,是解答本题的关键.(1)利用等腰三角形的性质得到B ACB ∠=∠,然后推出EDC ECD ∠=∠,DE EC =,结合已知条件,得到结论.当AD BC ⊥时,AB AC =,∴142BD CD BC ===, DEF 的周长DE DF EF =++,∴DEF 的周长CE EF CD =+++15.(2023上·湖北武汉·八年级校联考阶段练习)的平分线,DF AB 交AE 的延长线于(1)若120BAC ∠=︒,求BAD ∠(2)求证:ADF △是等腰三角形.【答案】(1)60度(2)见解析(1)求证:BD CE =;(2)若BD AD =,B DAE ∠=∠,求【答案】(1)见解析(2)108BAC ∠=︒【答案】(1)等腰;(2)3;(3)12;(4)30;(5)5cm【分析】本题考查平行线的性质,角平分线的定义,对角对等边.(1)平行线的性质结合角平分线平分角,得到B C ∠=∠,即可得出结果;(2)平行线的性质结合角平分线平分角,得到A ABC CB =∠∠,进而得到AB AC =即可;(3)同法(2)可得:BD DE =,利用AB AD BD =+,求解即可;(5)同法(2)得到,PD BD PE CE ==,推出PDE △的周长等于BC 的长即可.掌握平行线加角平分线往往存在等腰三角形,是解题的关键.【详解】解:(1)∵AE BC ∥,∴,DAE B CAE C ∠=∠∠=∠,∵AE 平分DAC ∠,∴DAE CAE ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形;故答案为:等腰;(2)∵BC 平分ABD ∠,AC BD ∥,∴,ABC DBC ACB DBC ∠=∠∠=∠,∴A ABC CB =∠∠,∴3AB AC ==;故答案为:3;(3)同法(2)可得:7BD DE ==,∴5712AB AD BD =+=+=;故答案为:12;(4)同法(2)可得:,FD BD CE EF ==,∴ADE V 的周长30AD AE DE AD AE DF EF AD AE BD CE AB AC =++=+++=+++=+=;故答案为:30;(5)同法(2)可得:,PD BD PE CE ==,∴PDE △的周长5cm PD PE DE BD CE DE BC =++=++==;故答案为:5cm .18.(2023上·福建龙岩·八年级校考期中)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.(3)当ACD 是等腰三角形,DA DC =时,如图,则50ACD A ∠=∠=︒,50BCD A ∠=∠=︒∴100ACB ACD BCD ∠=∠+=︒∠;当ACD 是等腰三角形,DA AC =时,如图,则65ACD ADC ∠=∠=︒,50BCD A ∠=∠=︒,∴5065115ACB ∠=︒+︒=︒;当ACD 是等腰三角形,CD AC =的情况不存在;当BCD △是等腰三角形,DC BD =时,如图,则1803ACD BCD B ︒-∠=∠=∠=∴2603ACB ACD BCD ∠=+=∠∠当BCD △是等腰三角形,DB =则BDC BCD ∠=∠,设BDC BCD x ∠=∠=,则B ∠=则1802ACD B x ∠=∠=︒-,由题意得,180250x x ︒-+︒=,解得,2303x ︒=,∴8018023ACD x ︒∠=︒-=,∴3103ACB ︒∠=,综上所述:ACB ∠的度数为100。
1.1等腰三角形一、选择题1.如图,在△ABC中,AB=AC=6,该三角形的面积为15,点O是边BC上任意一点,则点O分别到AB,AC边的距离之和等于()A.5 B.7.5 C.9 D.102.如图,AB∥CD,∠A=70°,OC=OE,则∠C的度数为()A.25°B.35°C.45°D.55°3.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4 D.34.如果等腰三角形的一个外角为140°,那么底角为()A.40°B.60°C.70°D.40°或70°5.如图,点D在△ABC边BC的延长线上,BA=BC,DB=DA,若∠BAC=m,∠ADB=n,则m 与n之间的关系是()A.3m+n=180°B.4m﹣n=180°C.3m﹣n=180°D.2m+n=180°6.用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,则该等腰三角形的腰长为()A.4cm B.6cm C.4cm或6cm D.4cm或8cm7.如图,在△ABC中,AB=AC,点D,E分别在边BC和AC上,若AD=AE,则下列结论错误的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AEDC.∠B=∠C D.∠BAD=∠BDA8.等腰三角形一个外角等于110°,则底角为()A.70°或40°B.40°或55°C.55°或70°D.70°9.已知等腰三角形两边长是8cm和4cm,那么它的周长是()A.12cm B.16cm C.16cm或20cm D.20cm10.下列说法错误的是()A.等腰三角形的高、中线、角平分线互相重合B.三角形两边的垂直平分线的交点到三个顶点距离相等C.等腰三角形的两个底角相等D.等腰三角形顶角的外角是底角的二倍二、填空题11.等腰三角形的一个底角为50°,则它的顶角的度数为.12.如图,在凸四边形ABCD中,AB=BC=BD,∠ABC=80°,则∠ADC等于°.13.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为cm.14.等腰三角形的两边长是3和7,则这个三角形的周长等于.15.在△ABC中,AB=AC,CD=CB,若∠ACD=42°,则∠BAC=°.三、解答题16.如图所示,∠BAC=30°,D为角平分线上一点,DE⊥AC于E,DF∥AC,且交AB于点F.(1)求证:△AFD为等腰三角形;(2)若DF=10cm,求DE的长.17.如图,△ABC中,AD平分∠BAC,EG∥AD,找出图中的等腰三角形,并给出证明.18.已知:如图,AD∥BC,BD平分∠ABC.求证:△ABD为等腰三角形.19.如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,若点P从点B出发以2cm/s的速度向点A运动,点Q从点A出发以1cm/s的速度向点C运动,设P、Q分别从点B、A 同时出发,运动的时间为ts.(1)用含t的式子表示线段AP、AQ的长;(2)当t为何值时,△APQ是以PQ为底边的等腰三角形?(3)当t为何值时,PQ∥BC?。
2022-2023学年北师大版八年级数学下册《1.1等腰三角形》同步选择专项练习题(附答案)1.等腰三角形一边为6,另一边是方程4x﹣5=7的根,则这个等腰三角形的周长为()A.12B.15C.12或15D.不能确定2.如图,在△ABC中,AB=AC,BD为△ABC的高.若∠CBD=20°,则∠BAC的度数是()A.30°B.40°C.50°D.60°3.如图,在△ABC中,∠A=α,∠B=∠C,点D是△ABC外一点,E,F分别在AB,AC 上,ED与AC交于点G,且∠D=∠B,若∠1=2∠2,则∠EGF的度数为()A.180°﹣2αB.60°+αC.90°﹣αD.30°+α4.若等腰三角形一腰上的高与另一腰的夹角为50°,则这个等腰三角形的底角的度数为()A.20°B.50°或70°C.70°D.20°或70°5.如图,在等腰三角形ABC中,AC=BC,AC边上的垂直平分线分别交AC、BC于点D、点E.若∠BAE=45°,DE=2,则AE的长度为()A.2B.4C.6D.86.如图,△ABC中,AB=AC,D为BC上一点,BD=AD,AC=DC,则∠B的度数为()A.30°B.36°C.40°D.46°7.如图,AD=BC,AB=AC=BD,∠D=∠DEA=∠C,则图中一共有()个等腰三角形.A.3B.4C.5D.68.如图,已知点A(2,2),在x轴上确定一点P,使得△AOP为等腰三角形,则满足条件的点P共有()A.5个B.4个C.3个D.2个9.如图,在格点中找一点C,使得△ABC是等腰三角形,且AB为其中一条腰,这样的点C个数为()A.8B.9C.10D.1110.如图,△ABC中,IB,IC分别平分∠ABC,∠ACB,DE过点I,且DE∥BC,若AB=A.8B.9C.10D.1111.如图,△ABC中,∠B=2∠C,AD是高,BD=2,CD=7,则AB长为()A.4B.5C.6D.712.如图,DE=11,FG=3,BF、CG分别平分∠ABC、∠ACB,DE∥BC.则BD+CE=()A.3B.11C.7D.813.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②③C.①②④D.①③14.如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF=()A.3B.4C.5D.615.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.∠ADC=30°,A.B.4C.D.4.516.如图,在等腰三角形ABC中,∠CAB=120°,AD⊥BC于点D,DE⊥AB于点E.若AD=2,则BE的长为()A.2B.3C.4D.617.如图,△ABC是等边三角形,D为BA的中点,DE⊥AC,垂足为点E,EF∥AB,AE =2,下列结论错误的是()A.∠ADE=30°B.BD=4C.△EFC的周长为18D.△ABC的周长为2118.如图所示,在△ABC中,∠ACB=90°,∠B=15°.DE垂直平分AB,交BC于点E.若BE=10cm.则AC=()A.3cm B.4cm C.5cm D.10cm19.如图,已知在△ABC中,∠ACB=90°,∠A=60°,AC=4,点M,N在边AB上,CM=CN.若MN=2,则AM=()A.1B.2C.3D.420.用反证法证明命题“已知在△ABC中,AB=AC,则∠B<90°”时,首先应该假设()A.∠B≥90°B.∠B>90°C.AB≠AC D.AB≠AC且∠B≥90°21.如图,在△ABC中,∠ABC的角平分线与∠ACB的外角平分线交于点D,过点D作EF ∥BC,交AB于E,交AC于F,若BE=8,CF=6,则EF的长是()A.4B.2.5C.2D.1.522.已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列五个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④AN=BM;⑤△CMN是等边三角形.其中,正确的有()A.2个B.3个C.4个D.5个23.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当P A=CQ时,连PQ交AC边于D,则DE的长为()A.B.C.D.不能确定参考答案1.解:∵4x﹣5=7,∴x=3,当腰3时,三角形的三边为3、3、6,此时构不成三角形;当腰为6时,三角形三边的长为3、6、6,此时周长为15;综上,该等腰三角形的周长为15.故选:B.2.解:∵BD为△ABC的高,∴∠BDC=90°.∵∠CBD=20°,∴∠C=90°﹣∠CBD=90°﹣20°=70°,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC=70°,又∵∠ABC+∠ACB+∠BAC=180°.∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣70°=40°.故选:B.3.解:∵∠A=α,∠B=∠C,∴∠B=∠C=×(180°﹣α)=90°﹣,∴∠D=∠B=90°﹣,∵∠AGE=∠DGF,∴∠A+∠1=∠D+∠2,∵∠1=2∠2,∴α+2∠2=90°﹣+∠2,∴∠2=90°﹣α,∴∠EGF=∠D+∠2=90°﹣+90°﹣α=180°﹣2α,故选:A.4.解:①如图1,当该等腰三角形为钝角三角形时,∵一腰上的高与另一腰的夹角是50°,∴底角=(90°﹣50°)=20°,②如图2,当该等腰三角形为锐角三角形时,∵一腰上的高与另一腰的夹角是50°,∴底角=[180°﹣(90°﹣50°)]=70°.故选:D.5.解:设∠C=x,∵ED是AC的垂直平分线,∴∠EDA=90°,EA=EC,∴∠EAC=∠C=x,∵∠BAE=45°,∴∠BAC=∠BAE+∠EAC=45°+x,∵AC=BC,∴∠B=∠BAC=45°+x,∵∠B+∠BAC+∠C=180°,∴2(x+45°)+x=180°,解得:x=30°,∴∠EAC=∠C=30°,∵DE=2,∴AE=2DE=4,故选:B.6.解:设∠B=x°,∵AB=AC,∴∠B=∠C=x,∵DB=DA,∴∠B=∠BAD=x°,∴∠ADC=∠B+∠BAD=2x°,∵CD=CA,∴∠ADC=∠CAD=2x°,∵∠C+∠ADC+∠CAD=180°,∴5x°=180°,∴x=36,∴∠B=36°,故选:B.7.解:∵AB=AC=BD,∴△ABD和△ABC是等腰三角形,∵∠D=∠C=∠DEA=∠BEC,∴AD=AE,BC=BE,∴△ADE和△BEC是等腰三角形,∵AD=BC,∴AE=BE,∴△AEB是等腰三角形,故选:C.8.解:(1)若AO作为腰时,有两种情况,当A是顶角顶点时,P是以A为圆心,以OA 为半径的圆与x轴的交点,共有1个,若OA是底边时,P是OA的中垂线与x轴的交点,有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有1个;(2)若OA是底边时,P是OA的中垂线与x轴的交点,有1个.以上4个交点没有重合的,故符合条件的点有4个.故选:B.9.解:如图所示:满足条件的点C有9个,故选:B.10.解:∵∠ABC和∠ACB的平分线相交于点I,∴∠DBI=∠CBI,∠ECI=∠BCI,∵DE∥BC,∴∠DIB=∠CBI,∠BCI=∠EIC,∴∠DBI=∠DIB,∠ECI=∠EIC,∴DB=DI,EI=EC,∴△ADE的周长=AD+DE+AE=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC=5+4=9.故选:B.11.解:在CD上取一点E,使BD=DE=2,∵CD=7,∴CE=5,∵AD⊥BC,∴AB=AE,∴∠AEB=∠B=2∠C,∵∠AEB=∠C+∠EAC=2∠C,∴∠C=∠EAC,∴AE=CE=5,∴AB=5,故选:B.12.解:∵BF、CG分别平分∠ABC、∠ACB,∴∠DBF=∠CBF,∠ECG=∠BCG,∵DE∥BC,∴∠DFB=∠CBF,∠EGC=∠ECG,∴∠DBF=∠DFB,∠EGC=∠ECG,∴BD=DF,EG=CE,∴BD+CE=DF+EG=DE﹣FG=11﹣3=8,故选:D.13.解:∵有两个角等于60°,则第三个角为180°﹣60°﹣60°=60°,∴这个三角形是等边三角形,故①选项符合题意;有一个角等于60°的等腰三角形是等边三角形,故②选项符合题意;∵三个外角都相等,∴三个内角也都相等,∴这个三角形是等边三角形,故③选项符合题意;∵一腰上的中线也是这条腰上的高的等腰三角形,∴腰和底边相等,∴这个三角形是等边三角形,故④选项符合题意,∴正确的选项有①②③④,故选:A.14.解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.15.解:如图,以CD为边作等边△CDE,连接AE.∵∠BCD=∠BCA+∠ACD=∠DCE+∠ACD=∠ACE,∴在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE.又∵∠ADC=30°,∴∠ADE=90°.在Rt△ADE中,AE=5,AD=3,于是DE=,∴CD=DE=4.故选:B.16.解:∵AB=AC,∠BAC=120°,∴∠B=30°.∵AD⊥BC,∴∠BAD=60°,∵DE⊥AB于E,∴在△ADE中,∠ADE=30°,∴AD=2AE=2,∴AE=1,在△ABD中,AB=2AD=4,∴BE=AB﹣AE=3.故选:B.17.解:∵△ABC是等边三角形,∴∠A=60°,AB=BC=AC,∵DE⊥AC,∴∠AED=90°,∴∠ADE=30°∵AE=2,∴AD=2AE=BD=4,故选项A,B正确,∴AB=BC=AC=8,∴△ABC的周长为24,故选项D错误.∵EF∥AB,∴∠CEF=∠A=60°,∠EFC=∠B=60°,∴△EFC是等边三角形,∴△EFC的周长=3×(8﹣2)=18,故选项C正确,故选:D.18.解:∵DE垂直平分AB,∴EB=EA=10cm,∴∠B=∠BAE=15°,∴∠AEC=∠B+∠BAE=30°,∵∠ACB=90°,∴AC=AE=5(cm),故选:C.19.解:如图,过点C作CD⊥AB于D,∵CM=CN,且MN=2,∴DM=MN=1,∵CD⊥AB,∴∠ADC=90°,∵∠A=60°,∴∠ACD=30°,∴AD=AC,∵AC=4,∴AD=2,∴AM=2﹣1=1.故选:A.20.解:用反证法证明命题“已知在△ABC中,AB=AC,则∠B<90°”时,首先假设∠B ≥90°,故选:A.21.解:∵BD平分∠ABC,BE=8,CF=6,∴∠ABD=∠DBC,∵EF∥BC,∴∠EDB=∠DBC,∴∠ABD=∠EDB,∴EB=ED=8,同理可得FD=FC=6,∴EF=EO﹣FO=EB﹣FC=8﹣6=2.故选:C.22.解:∵△ABC和△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,∴△BCE≌△ACD(SAS),∴AD=BE,故选项①正确;∵∠ACB=∠ACE=60°,由△BCE≌△ACD得:∠CBE=∠CAD,∴∠BMC=∠ANC,故选项②正确;由△BCE≌△ACD得:∠CBE=∠CAD,∵∠ACB是△ACD的外角,∴∠ACB=∠CAD+∠ADC=∠CBE+∠ADC=60°,又∠APM是△PBD的外角,∴∠APM=∠CBE+∠ADC=60°,故选项③正确;在△ACN和△BCM中,,∴△ACN≌△BCM,∴AN=BM,故选项④正确;∴CM=CN,∴△CMN为等腰三角形,∵∠MCN=60°,∴△CMN是等边三角形,故选项⑤正确;故选:D.23.解:过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=1,∴DE=.故选:B.。
【巩固练习】一.选择题1.如图,在△ABC 中,若 AB =AC ,BC =BD ,AD =DE =EB ,则∠A 等于().A .30°B .36°C .45°D .54° 2.用反证法证明:a ,b 至少有一个为 0,应假设( )A. a ,b 没有一个为 0B. a ,b 只有一个为 0C. a ,b 至多有一个为 0D. a ,b 两个都为 03. 如图,在△ABC 中,∠ABC 、∠ACB 的平分线相交于 F ,过 F 作 DE∥BC ,交 AB 于 D ,交 AC 于 E ,那么下列结论正确的有( ①△BDF ,△CEF 都是等腰三角形; ②DE =DB +CE ;③AD +DE +AE =AB +AC ; ④BF =CF.A .1 个B .2 个 D .4 个)C .3 个 4. 等腰三角形一腰上的高与底边所成的角等于( )A .顶角的一半B .底角的一半C .90°减去顶角的一半D .90°减去底角的一半5.如图,在△ABC 中,∠ACB=90°,BE 平分∠ABC ,ED⊥AB 于 D .如果∠A=30°,AE=6cm , 那么 CE 等于( )A . cmB .2cmC .3cmD .4cm6. 如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点 P 是 BC 边上的动点,则 AP 长不可能 是( )A .3.5B .4.2C .5.8D .7二.填空题7.(2016•通辽)等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的 度数为 8. 用反证法证明“若|a|≠|b|,则 a≠b .”时,应假设,则其余两边长分别为________... 9. 等腰三角形的周长为 22cm ,其中一边的长是 8cm10.(2015 春•盐城校级月考)如图,在Rt△ABC 中,∠ACB=90°,AB=5cm ,BC=4cm .动点 D 从点 A 出发,以每秒 1cm 的速度沿射线 AC 运动,当 t= 等腰三角形. 时,△ABD 为 11.如图,钝角三角形纸片 ABC 中,∠BAC =110°,D 为 AC 边的中点.现将纸片沿过点 D 的直线折叠,折痕与 BC 交于点 E ,点 C 的落点记为 F .若点 F 恰好在 BA 的延长线上,则∠ ADF =_________°.12. 如图,在ΔABC 中,∠ABC =120°,点 D 、E 分别在 AC 和 AB 上,且 AE =ED =DB =BC ,则∠A 的度数为______°.三.解答题13. 用反证法证明:一条线段只有一个中点.14.(2016 秋•宜昌期中)一个等腰三角形的三边长分别为x ,2x ﹣3,4x ﹣6,求这个三角形 的周长.15.(2015 秋•东台市期中)如图,△ABC 中,∠C=90°,AB=10cm ,BC=6cm ,若动点 P 从点C 开始,按 C→A→B→C 的路径运动,且速度为每秒 1cm ,设出发的时间为 t 秒.(1)出发 2 秒后,求△ABP 的周长.(2)问 t 为何值时,△BCP 为等腰三角形?(3)另有一点 Q ,从点 C 开始,按 C→B→A→C 的路径运动,且速度为每秒 2cm ,若 P 、Q两点同时出发,当 P 、Q 中有一点到达终点时,另一点也停止运动.当 t 为何值时,直 线 PQ 把△ABC 的周长分成相等的两部分?【答案与解析】一.选择题1. 【答案】C ;x 【解析】设∠A = x ,则由题意∠ADE =180°-2 x ,∠EDB = ,∠BDC =∠BCD =90°- 2x ,因为∠ADE +∠EDB +∠BDC =180°,所以 x =45°. 22. 【答案】A ;【解析】由于命题:“a ,b 至少有一个为 0”的反面是:“a ,b 没有一个为 0”,故选 A.3. 【答案】C ;【解析】①②③正确.4. 【答案】A ;【解析】解 : △ ABC 中 , ∵ AB=AC ,BD 是高, 180A∴ ∠ ABC= ∠C= 2 180 A A 在 Rt △ BDC 中 , ∠ CBD=90 °-∠ C=90 °- 故选 A .= . 2 25. 【答案】C ;【解析】解:∵ED⊥AB ,∠A=30°,∴AE=2ED ,∵AE=6cm ,∴ED=3cm ,∵∠ACB=90°,BE 平分∠ABC ,∴ED=CE ,∴CE=3cm ;故选:C .6. 【答案】D;【解析】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选D.二.填空题7.【答案】69°或21°;【解析】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.8.【答案】a=b;【解析】a,b的等价关系有a=b,a≠b两种情况,因而a≠b的反面是a=b.9.【答案】7cm ,7cm或8cm,6cm;【解析】边长为8cm的可能是底边,也可能是腰.10.【答案】5,6,;【解析】解:在Rt△ABC中,∠ACB=90°,AB=5cm,BC=4cm,由勾股定理得:AC=3cm,由运动可知:AD=t,且△ABD时等腰三角形,有三种情况:①若AB=AD,则t=5;②若BA=BD,则AD=2AC,即t=6;③若DA=DB,则在Rt△BCD中,CD=t﹣3,BC=4,BD=t,即(t﹣3)+4=t,222解得:t=,综合上述:符合要求的t值有3个,分别为5,6,.11.【答案】40;【解析】AD=FD,∠FAD=∠AFD=70°,所以∠ADF=40°.12.【答案】15°;【解析】设∠A=,∠BED=∠EBD=2,∠CBD=120°-2,∠C=∠BDC=30°+,x x x x而∠A+∠C=60°,所以+30°+=60°,解得=15°.x x x三.解答题13.【解析】已知:一条线段AB,M为AB的中点.求证:线段AB只有一个中点M.证明:假设线段AB有两个中点M、N,不妨设M在N的左边,则AM<AN,这与AM<AN矛盾,所以线段AB只有一个中点M.14.【解析】解:①x=2x﹣3,则x=3,∴4x﹣6=6,∵3+3=6,∴3、3、6不能构成三角形;②x=4x﹣6,则x=2,∴2x﹣3=1,∵1、2、2任意两边之和大于第三边,∴这个三角形的周长为1+2+2=5;③2x﹣3=4x﹣6,则x= ,∴2x﹣3=0,∴此三角形不存在.综上可知:这个三角形的周长为5.15.【解析】解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P 从点C 开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2 秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴有勾股定理得PB=2 cm∴△ABP的周长为:AP+PB+AB=6+10+2 =(16+2 )cm;(2)若P 在边AC 上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P 在AB 边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P 运动的路程为12cm,所以用的时间为12s,故t=12s 时△BCP为等腰三角形;②若CP=BC=6cm,过C 作斜边AB 的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P 运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP 时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC∴PA=PB=5cm∴P的路程为13cm,所以时间为13s 时,△BCP为等腰三角形.∴t=6s或13s 或12s 或 10.8s 时△BCP为等腰三角形;(3)当P 点在AC 上,Q 在AB 上,则AP=8﹣t,AQ=16﹣2t,∵直线PQ 把△ABC的周长分成相等的两部分,∴8﹣t+16﹣2t=12,∴t=4;当P 点在AB 上,Q 在AC 上,则AP=t﹣8,AQ=2t﹣16,∵直线PQ 把△ABC的周长分成相等的两部分,∴t﹣8+2t﹣16=12,∴t=12,∴当t 为4 或12 秒时,直线PQ 把△ABC的周长分成相等的两部分.9.【答案】7cm ,7cm或8cm,6cm;【解析】边长为8cm的可能是底边,也可能是腰.10.【答案】5,6,;【解析】解:在Rt△ABC中,∠ACB=90°,AB=5cm,BC=4cm,由勾股定理得:AC=3cm,由运动可知:AD=t,且△ABD时等腰三角形,有三种情况:①若AB=AD,则t=5;②若BA=BD,则AD=2AC,即t=6;③若DA=DB,则在Rt△BCD中,CD=t﹣3,BC=4,BD=t,即(t﹣3)+4=t,222解得:t=,综合上述:符合要求的t值有3个,分别为5,6,.11.【答案】40;【解析】AD=FD,∠FAD=∠AFD=70°,所以∠ADF=40°.12.【答案】15°;【解析】设∠A=,∠BED=∠EBD=2,∠CBD=120°-2,∠C=∠BDC=30°+,x x x x而∠A+∠C=60°,所以+30°+=60°,解得=15°.x x x三.解答题13.【解析】已知:一条线段AB,M为AB的中点.求证:线段AB只有一个中点M.证明:假设线段AB有两个中点M、N,不妨设M在N的左边,则AM<AN,这与AM<AN矛盾,所以线段AB只有一个中点M.14.【解析】解:①x=2x﹣3,则x=3,∴4x﹣6=6,∵3+3=6,∴3、3、6不能构成三角形;②x=4x﹣6,则x=2,∴2x﹣3=1,∵1、2、2任意两边之和大于第三边,∴这个三角形的周长为1+2+2=5;③2x﹣3=4x﹣6,则x= ,∴2x﹣3=0,∴此三角形不存在.综上可知:这个三角形的周长为5.15.【解析】解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P 从点C 开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2 秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴有勾股定理得PB=2 cm∴△ABP的周长为:AP+PB+AB=6+10+2 =(16+2 )cm;(2)若P 在边AC 上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P 在AB 边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P 运动的路程为12cm,所以用的时间为12s,故t=12s 时△BCP为等腰三角形;②若CP=BC=6cm,过C 作斜边AB 的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P 运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP 时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC∴PA=PB=5cm∴P的路程为13cm,所以时间为13s 时,△BCP为等腰三角形.∴t=6s或13s 或12s 或 10.8s 时△BCP为等腰三角形;(3)当P 点在AC 上,Q 在AB 上,则AP=8﹣t,AQ=16﹣2t,∵直线PQ 把△ABC的周长分成相等的两部分,∴8﹣t+16﹣2t=12,∴t=4;当P 点在AB 上,Q 在AC 上,则AP=t﹣8,AQ=2t﹣16,∵直线PQ 把△ABC的周长分成相等的两部分,∴t﹣8+2t﹣16=12,∴t=12,∴当t 为4 或12 秒时,直线PQ 把△ABC的周长分成相等的两部分.9.【答案】7cm ,7cm或8cm,6cm;【解析】边长为8cm的可能是底边,也可能是腰.10.【答案】5,6,;【解析】解:在Rt△ABC中,∠ACB=90°,AB=5cm,BC=4cm,由勾股定理得:AC=3cm,由运动可知:AD=t,且△ABD时等腰三角形,有三种情况:①若AB=AD,则t=5;②若BA=BD,则AD=2AC,即t=6;③若DA=DB,则在Rt△BCD中,CD=t﹣3,BC=4,BD=t,即(t﹣3)+4=t,222解得:t=,综合上述:符合要求的t值有3个,分别为5,6,.11.【答案】40;【解析】AD=FD,∠FAD=∠AFD=70°,所以∠ADF=40°.12.【答案】15°;【解析】设∠A=,∠BED=∠EBD=2,∠CBD=120°-2,∠C=∠BDC=30°+,x x x x而∠A+∠C=60°,所以+30°+=60°,解得=15°.x x x三.解答题13.【解析】已知:一条线段AB,M为AB的中点.求证:线段AB只有一个中点M.证明:假设线段AB有两个中点M、N,不妨设M在N的左边,则AM<AN,这与AM<AN矛盾,所以线段AB只有一个中点M.14.【解析】解:①x=2x﹣3,则x=3,∴4x﹣6=6,∵3+3=6,∴3、3、6不能构成三角形;②x=4x﹣6,则x=2,∴2x﹣3=1,∵1、2、2任意两边之和大于第三边,∴这个三角形的周长为1+2+2=5;③2x﹣3=4x﹣6,则x= ,∴2x﹣3=0,∴此三角形不存在.综上可知:这个三角形的周长为5.15.【解析】解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P 从点C 开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2 秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴有勾股定理得PB=2 cm∴△ABP的周长为:AP+PB+AB=6+10+2 =(16+2 )cm;(2)若P 在边AC 上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P 在AB 边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P 运动的路程为12cm,所以用的时间为12s,故t=12s 时△BCP为等腰三角形;②若CP=BC=6cm,过C 作斜边AB 的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P 运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP 时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC∴PA=PB=5cm∴P的路程为13cm,所以时间为13s 时,△BCP为等腰三角形.∴t=6s或13s 或12s 或 10.8s 时△BCP为等腰三角形;(3)当P 点在AC 上,Q 在AB 上,则AP=8﹣t,AQ=16﹣2t,∵直线PQ 把△ABC的周长分成相等的两部分,∴8﹣t+16﹣2t=12,∴t=4;当P 点在AB 上,Q 在AC 上,则AP=t﹣8,AQ=2t﹣16,∵直线PQ 把△ABC的周长分成相等的两部分,∴t﹣8+2t﹣16=12,∴t=12,∴当t 为4 或12 秒时,直线PQ 把△ABC的周长分成相等的两部分.。
1.1等腰三角形同步练习一.选择题1.等腰三角形的一边等于3,一边等于7,则此三角形的周长为()A.10B.13C.17D.13或172.已知等腰三角形的一个内角为50°,则它的另外两个内角是()A.65°,65°B.80°,50°C.65°,65°或80°,50°D.不确定3.如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B等于()A.54°B.60°C.72°D.76°4.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD 的角平分线,DF∥AB交AE的延长线于点F,则DF的长为()A.4.5B.5C.5.5D.65.如图,已知∠ACB=60°,PC=12,点M,N在边CB上,PM=PN.若MN=3,则CM 的长为()A.3B.3.5C.4D.4.56.如图,△ABC与△DCE都是等边三角形,B,C,E三点在同一条直线上,若AB=3,∠BAD=150°,则DE的长为()A.3B.4C.5D.67.若等腰三角形的一个内角是40°,则这个等腰三角形的其他内角的度数为()A.40°100°B.70°70°C.40°100°或70°70°D.以上都不对8.如图,D为△ABC边上一点,连接CD,则下列推理过程中,因果关系与所填依据不符的是()A.∵AD=BD,∠ACD=∠BCD(已知)∴AC=BC(等腰三角形三线合一)B.∵AC=BC,AD=BD(已知)∴∠ACD=∠BCD(等腰三角形三线合一)C.∵AC=BC,∠ACD=∠BCD(已知)∴AD=BD(等腰三角形三线合一)D.∵AC=BC,AD=BD(已知)∴CD⊥AB(等腰三角形三线合一)9.如图,等边△ABC中,AB=4,点P在边AB上,PD⊥BC,DE⊥AC,垂足分别为D、E,设P A=x,若用含x的式子表示AE的长,正确的是()A.2﹣x B.3﹣x C.1D.2+x10.如图,在平面直角坐标系中,点A,B分别在y轴和x轴上,∠ABO=60°,在坐标轴上找一点P,使得△P AB是等腰三角形,则符合条件的P点的个数是()A.5B.6C.7D.8二.填空题11.已知等腰三角形的一个外角等于130˚,则它的顶角等于.12.如图,BD为等边△ABC的边AC上的中线,E为BC延长线上一点,且DB=DE,若AB=6cm,则CE=cm.13.如图,B在AC上,D在CE上,AD=BD=BC,∠ACE=25°,∠ADE=度.14.如图,在△ABC中,CA=CB,∠ACB=120°,E为AB上一点,∠DCE=∠DAE=60°,AD=2.4,BE=7,则DE=.15.如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD 是等边三角形,∠A=24°,则∠1=°.三.解答题16.如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=40°.求:(1)∠ADC的大小;(2)∠BAD的大小.17.如图,在△ABC中,AB=BC=AD,BD=CD,求∠ABC的度数.18.如图所示,已知△ABC中,AB=AC=BC=10厘米,M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度是1厘米/秒的速度,点N的速度是2厘米/秒,当点N第一次到达B点时,M、N同时停止运动.(1)M、N同时运动几秒后,M、N两点重合?(2)M、N同时运动几秒后,可得等边三角形△AMN?(3)M、N在BC边上运动时,能否得到以MN为底边的等腰△AMN,如果存在,请求出此时M、N运动的时间?参考答案一.选择题1.解:①当等腰三角形的三边长是3,3,7时,3+3<7,不符合三角形的三边关系定理,此时不能组成等腰三角形;②当等腰三角形的三边长是3,7,7时,符合三角形的三边关系定理,能组成等腰三角形,此三角形的周长是3+7+7=17;综合上述:三角形的周长是17,故选:C.2.解:∵AB=AC,∴∠B=∠C,①当底角∠B=50°时,则∠C=50°,∠A=180°﹣∠B﹣∠C=80°;②当顶角∠A=50°时,∵∠B+∠C+∠A=180°,∠B=∠C,∴∠B=∠C=×(180°﹣∠A)=65°;即其余两角的度数是50°,80°或65°,65°,故选:C.3.解:∵OA=OC,∴∠ACO=∠A=36°,∵BC∥AO,∴∠BCA=∠A=36°,∴∠BCO=72°,∵OB=OC,∴∠B=72°.故选:C.4.解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°.∵DF∥AB,∴∠F=∠BAE=30°.∴∠DAF=∠F=30°,∴AD=DF.∵AB=11,∠B=30°,∴AD=5.5,∴DF=5.5故选:C.5.解:过点P作PD⊥CB于点D,∵∠ACB=60°,PD⊥CB,PC=12,∴DC=6,∵PM=PN,MN=3,PD⊥OB,∴MD=ND=1.5,∴CM=6﹣1.5=4.5.故选:D.6.解:∵△ABC与△DCE都是等边三角形,AB=3,∠BAD=150°,∴AB=AC=3,DE=DC,∠BAC=∠DCE=∠ACB=60°,∴∠ACD=60°,∠CAD=150°﹣60°=90°,∴∠ADC=30°,∴DC=2AC=6,∴DE=DC=6,故选:D.7.解:①当这个角为顶角时,底角=(180°﹣40°)÷2=70°;②当这个角是底角时,底角=40°,顶角为180°﹣2×40°=100°;综上:其它两个内角的度数为70°,70°或40°,100°.故选:C.8.解:A.∵AD=BD,∠ACD=∠BCD(已知),∴AC=BC(等腰三角形三线合一),条件没有等腰三角形,故因果关系与所填依据不符;B.∵AC=BC,AD=BD(已知),∴∠ACD=∠BCD(等腰三角形三线合一),因果关系与所填依据相符;C.∵AC=BC,∠ACD=∠BCD(已知),∴AD=BD(等腰三角形三线合一),因果关系与所填依据相符;D.∵AC=BC,AD=BD(已知),∴CD⊥AB(等腰三角形三线合一),因果关系与所填依据相符;故选:A.9.解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∵PD⊥BC,DE⊥AC,∴BD=PB,CE=CD,∵P A=x,∴BP=4﹣x,∴BD=PB=2﹣x,∴CD=4﹣(2﹣x)=2+x,∴CE=1+x,∴AE=4﹣(1+x)=3﹣x,故选:B.10.解:①当AB=AP时,在y轴上有2点满足条件的点P,在x轴上有1点满足条件的点P.②当AB=BP时,在y轴上有1点满足条件的点P,在x轴上有2点满足条件的点P,有1点与AB=AP时的x轴正半轴的点P重合.③当AP=BP时,在x轴、y轴上各有一点满足条件的点P,有1点与AB=AP时的x轴正半轴的点P重合.综上所述:符合条件的点P共有6个.故选:B.二.填空题11.解:∵等腰三角形的一个外角等于130˚,∴与其相邻的内角为50°.当50°为顶角时,其他两角为65°、65°;当50°为底角时,其他两角为50°、80°.所以等腰三角形的顶角可以是50°,也可以是80°.故答案为:50°或80°.12.解:∵BD为等边△ABC的边AC上的中线,∴BD⊥AC,∵DB=DE,∴∠DBC=∠E=30°∵∠ACB=∠E+∠CDE=60°∴∠CDE=30°∴∠CDE=∠E,即CE=CD=AC=3cm.故填3.13.解:∵BD=BC,∠ACE=25°∴∠BDC=∠C=25°∴∠ABD=50°∵AD=BD∴∠A=∠ABD=50°∴∠ADE=∠A+∠C=75°.故填75.14.解:如图,在AB上截取BF=AD,连接CF,∵CA=CB,∠ACB=120°,∴∠CAB=∠CBA=30°,∵∠DAE=60°∴∠DAC=∠DAE﹣∠CAB=30°∴∠DAC=∠CBA,且AD=BF,AC=BC∴△ADC≌△BFC(SAS)∴∠ACD=∠BCF,CD=CF,∵∠ACB=∠ACE+∠ECF+∠BCF=∠ACE+∠ECF+∠ACD=∠DCE+∠ECF=120°∴∠ECF=60°=∠DCE,且CE=CE,DC=CF∴△DCE≌△FCE(SAS)∴DE=EF∴DE=BE﹣BF=BE﹣AD=7﹣2.4=4.6,故答案为4.6.15.解:∵a∥b,∴∠1=∠ACD,∵△BCD是等边三角形,∴∠BDC=60°,∵∠BDC=∠A+∠ACD,∴∠ACD=∠BDC﹣∠A=60°﹣24°=36°,∴∠1=36°.故答案为36.三.解答题16.解:(1)∵AB=AC,D是BC边上的中点,∴AD⊥BC,即∠ADC=90°;(2)∵∠B=40°,∴∠BAD=50°.17.解:∵BD=CD,∴∠BCD=∠CBD,设∠BCD=∠CBD=x°,∵AB=BC=AD,∴∠ABD=∠ADB=∠BCD+∠CBD=2x°,∠A=∠C=x°,∴∠ABC=3∠C=3x°,∵∠B+∠ABC+∠C=180°,∴5x=180,解得x=36,∴∠C=36°∴∠ABC=3∠C=108°.18.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+10=2x,解得:x=10;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=10﹣2t,∵三角形△AMN是等边三角形,∴t=10﹣2t,解得t=,∴点M、N运动秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知10秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN(AAS),∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣10,NB=30﹣2y,CM=NB,y﹣10=30﹣2y,解得:y=.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰△AMN,此时M、N运动的时间为秒.。
【巩固练习】一.选择题1.(2016•曲靖一模)等腰三角形中一个外角等于100°,则另两个内角的度数分别为()A.40°,40°B.80°,20°C.50°,50°D.50°,50°或80°,20°2. 用反证法证明命题:如果AB⊥CD,AB⊥EF,那么CD∥EF,证明的第一个步骤是()A. 假设CD∥EF ;B. 假设AB∥EFC. 假设CD和EF不平行D. 假设AB和EF不平行3. 将两个全等的且有一个角为30°的直角三角形拼成如图所示形状,两条长直角边在同一条直线上,则图中等腰三角形的个数是(A. 4个B. 3个C. 2个)D. 1个4. 已知实数 x,y 满足|x−4|+(y−8)2=0,则以 x,y 的值为两边长的等腰三角形的周长是()A.20或16 B.20 C.16 D.以上答案均不对5. 如图,D是AB 边上的中点,将沿过D的直线折叠,使点A落在BC上F处,若AB CB 50,则BD F度数是()A.60°B.70°C.80°D.不确定6.(2015•永州模拟)在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()A.1个B.2个C.3个D.4个二.填空题7.如图,△ABC中,D为AC边上一点,AD=BD=BC,若∠A=40°,则∠CBD=_____°.8.(2015•嘉峪关模拟)等腰三角形的两边长分别是2和5,那么它的周长是.9.用反证法证明“如果同位角不相等,那么这两条直线不平行“的第一步应假设_________.10. 等腰三角形的一个角是70°,则它的顶角的度数是.11.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△AB C是等腰三角形的是_________ .(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.12. 如图,△ABC 的周长为32,且AB=AC ,AD⊥BC 于D,△ACD 的周长为24,那么AD 的长为.三.解答题13.已知:如图,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.14.(2016春•安岳县期末)等腰三角形一腰上的中线将三角形的周长分成了21和27两个部分,求等腰三角形的底边和腰长.15.用反证法证明:等腰三角形的底角是锐角.【答案与解析】一.选择题1. 【答案】D;【解析】解:∵外角等于100°,∴这个内角为80°,=50°,此时另两个内角的度当这个80°角为顶角时,则底角为数分别为50°,50°;当这个80°角为底角时,则另一个底角为80°,顶角为20°,此时可得另两个内角的度数分别为80°,20°;故选D.2.【答案】C;【解析】用反证法证明CD∥EF时,应先假设CD与EF不平行.故选C.3.【答案】B;4.【答案】B;【解析】根据题意得4=0x,y 8=0解得4x.y 8(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.5.【答案】C;BDF【解析】AD=DF=BD,∠B=∠BFD=50°,=180°-50°-50°=80°.6.【答案】D;【解析】解:如图,∵以点O为圆心,以OA为半径画弧,交x轴于点B、C;以点A为圆心,以AO为半径画弧,交x轴于一点D(点O除外),∴以OA为腰的等腰三角形有3个;作OA的垂直平分线,交x轴于一点,∴以OA为底的等腰三角形有1个,综上所述,符合条件的点P共有4个,故选:D.二.填空题7.【答案】20;【解析】∠A=∠ABD=40°,∠BDC=∠C=80°,所以∠CBD=20°.8.【答案】12;【解析】解:①2是腰长时,三角形的三边分别为2、2、5,∵2+2=4<5,∴不能组成三角形,②2是底边长时,三角形的三边分别为2、5、5,能组成三角形,周长=2+5+5=12,综上所述,它的周长是12.故答案为:12.9.【答案】两直线平行;【解析】根据已知条件和反证法的特点进行证明,即可求出答案.10.【答案】70°或40°;【解析】解:(1)当70°角为顶角,顶角度数即为70°;(2)当70°为底角时,顶角=180°-2×70°=40°.故答案为:70°或40°.11.【答案】②③④;【解析】:②当∠B A D=∠C A D时,∵A D是∠B A C的平分线,且A D是BC边上的高;则△A B D≌△A C D,∴△B A C是等腰三角形;③延长D B至E,使BE=A B;延长D C至F,使CF=A C;连接AE、A F;∵A B+B D=C D+A C,∴DE=DF,又AD⊥B C;∴△AEF是等腰三角形;∴∠E=∠F;∵A B=BE,∴∠A B C=2∠E;同理,得∠A C B=2∠F;∴∠A B C=∠A C B,即A B=A C,△A B C是等腰三角形;④△A B C中,A D⊥BC,根据勾股定理,得:2222A B﹣B D=A C﹣C D,即(A B+B D)(A B﹣B D)=(A C+C D)(A C﹣C D);∵A B﹣B D=A C﹣C D,∴A B+B D=A C+C D;∴两式相加得,2A B=2A C;∴A B=A C,∴△A B C是等腰三角形故填②③④.12.【答案】8;【解析】解:∵AB=AC,AD⊥BC,∴BD=DC.∵AB+AC+BC=32,即AB+BD+CD+AC=32,∴AC+DC=16∴AC+DC+AD=24∴AD=8.故填8.三.解答题13.【解析】证明:ED⊥BC;延长ED,交BC边于H,∵AB=AC,AE=AD.∴设∠B=∠C=x,则∠EAD=2x,1802x∴∠ADE=90x2即∠BDH=90°-x∴∠B+∠BDH=x+90°-x=90°,∴∠BHD=90°,ED⊥BC.14.【解析】解:设等腰三角形的腰长为x,底边长为y,则有或,解得:或,此时两种情况都符合三角形三边关系定理,答:等腰三角形的腰长为14,底边长为20;或腰长为18,底边长为12.15.【解析】证明:假设等腰三角形的底角不是锐角,则它们大于或者等于90°;根据等腰三角形的两个底角相等,则两个底角的和大于或者等于180°;则该三角形的三个内角的和一定大于180°,这与三角形的内角和定理相矛盾;所以假设错误,原命题正确;即等腰三角形的底角是锐角.∴△A B C是等腰三角形故填②③④.12.【答案】8;【解析】解:∵AB=AC,AD⊥BC,∴BD=DC.∵AB+AC+BC=32,即AB+BD+CD+AC=32,∴AC+DC=16∴AC+DC+AD=24∴AD=8.故填8.三.解答题13.【解析】证明:ED⊥BC;延长ED,交BC边于H,∵AB=AC,AE=AD.∴设∠B=∠C=x,则∠EAD=2x,1802x∴∠ADE=90x2即∠BDH=90°-x∴∠B+∠BDH=x+90°-x=90°,∴∠BHD=90°,ED⊥BC.14.【解析】解:设等腰三角形的腰长为x,底边长为y,则有或,解得:或,此时两种情况都符合三角形三边关系定理,答:等腰三角形的腰长为14,底边长为20;或腰长为18,底边长为12.15.【解析】证明:假设等腰三角形的底角不是锐角,则它们大于或者等于90°;根据等腰三角形的两个底角相等,则两个底角的和大于或者等于180°;则该三角形的三个内角的和一定大于180°,这与三角形的内角和定理相矛盾;所以假设错误,原命题正确;即等腰三角形的底角是锐角.∴△A B C是等腰三角形故填②③④.12.【答案】8;【解析】解:∵AB=AC,AD⊥BC,∴BD=DC.∵AB+AC+BC=32,即AB+BD+CD+AC=32,∴AC+DC=16∴AC+DC+AD=24∴AD=8.故填8.三.解答题13.【解析】证明:ED⊥BC;延长ED,交BC边于H,∵AB=AC,AE=AD.∴设∠B=∠C=x,则∠EAD=2x,1802x∴∠ADE=90x2即∠BDH=90°-x∴∠B+∠BDH=x+90°-x=90°,∴∠BHD=90°,ED⊥BC.14.【解析】解:设等腰三角形的腰长为x,底边长为y,则有或,解得:或,此时两种情况都符合三角形三边关系定理,答:等腰三角形的腰长为14,底边长为20;或腰长为18,底边长为12.15.【解析】证明:假设等腰三角形的底角不是锐角,则它们大于或者等于90°;根据等腰三角形的两个底角相等,则两个底角的和大于或者等于180°;则该三角形的三个内角的和一定大于180°,这与三角形的内角和定理相矛盾;所以假设错误,原命题正确;即等腰三角形的底角是锐角.∴△A B C是等腰三角形故填②③④.12.【答案】8;【解析】解:∵AB=AC,AD⊥BC,∴BD=DC.∵AB+AC+BC=32,即AB+BD+CD+AC=32,∴AC+DC=16∴AC+DC+AD=24∴AD=8.故填8.三.解答题13.【解析】证明:ED⊥BC;延长ED,交BC边于H,∵AB=AC,AE=AD.∴设∠B=∠C=x,则∠EAD=2x,1802x∴∠ADE=90x2即∠BDH=90°-x∴∠B+∠BDH=x+90°-x=90°,∴∠BHD=90°,ED⊥BC.14.【解析】解:设等腰三角形的腰长为x,底边长为y,则有或,解得:或,此时两种情况都符合三角形三边关系定理,答:等腰三角形的腰长为14,底边长为20;或腰长为18,底边长为12.15.【解析】证明:假设等腰三角形的底角不是锐角,则它们大于或者等于90°;根据等腰三角形的两个底角相等,则两个底角的和大于或者等于180°;则该三角形的三个内角的和一定大于180°,这与三角形的内角和定理相矛盾;所以假设错误,原命题正确;即等腰三角形的底角是锐角.。
北师大版八年级下册数学
重难点突破
知识点梳理及重点题型巩固练习
【巩固练习】
一.选择题
1. (2016•曲靖一模)等腰三角形中一个外角等于100°,则另两个内角的度数分别为()A.40°,40°B.80°,20°
C.50°,50° D.50°,50°或80°,20°
2. 用反证法证明命题:如果AB⊥CD,AB⊥EF,那么CD∥EF,证明的第一个步骤是()
A. 假设CD∥EF ;
B. 假设AB∥EF
C. 假设CD和EF不平行
D. 假设AB和EF不平行
3. 将两个全等的且有一个角为30°的直角三角形拼成如图所示形状,两条长直角边在同一
条直线上,则图中等腰三角形的个数是()
A. 4个
B. 3个
C. 2个
D. 1个
4. 已知实数x,y满足|x−4|+(y−8)2=0,则以x,y的值为两边长的等腰三角形的周长是
()
A.20或16 B.20 C.16 D.以上答案均不对
∆沿过D的直线折叠,使点A落在BC上F处,若5. 如图,D是AB边上的中点,将ABC
∠=︒,则BDF
B
50
∠度数是()
A.60° B.70° C.80° D.不确定
6.(2015•永州模拟)在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()
A.1个 B.2个 C.3个 D.4个
二.填空题
7.如图,△ABC中,D为AC边上一点,AD=BD=BC,若∠A=40°,则∠CBD=_____°.
8.(2015•嘉峪关模拟)等腰三角形的两边长分别是2和5,那么它的周长是.
9.用反证法证明“如果同位角不相等,那么这两条直线不平行“的第一步应假设_________.
10. 等腰三角形的一个角是70°,则它的顶角的度数是 .
11.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△AB C是等腰三角形的是_________ .(把所有正确答案的序号都填写在横线上)
①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.
12. 如图,△ABC的周长为32,且AB=AC,AD⊥BC于D,△ACD的周长为24,那
么AD的长为 .
三.解答题
13.已知:如图,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.
14.(2016春•安岳县期末)等腰三角形一腰上的中线将三角形的周长分成了21和27两个部分,求等腰三角形的底边和腰长.
15. 用反证法证明:等腰三角形的底角是锐角.
【答案与解析】
一.选择题
1. 【答案】D;
【解析】解:∵外角等于100°,
∴这个内角为80°,
当这个80°角为顶角时,则底角为
=50°,此时另两个内角的度
数分别为50°,50°;
当这个80°角为底角时,则另一个底角为80°,顶角为20°,此时可得另两个内角的度数分别为80°,20°;
故选D .
2. 【答案】C ;
【解析】用反证法证明CD ∥EF 时,应先假设CD 与EF 不平行.故选C .
3. 【答案】B ;
4. 【答案】B ;
【解析】根据题意得 4080
x y -⎧⎨-⎩==, 解得
48
x y =⎧⎨=⎩. (1)若4是腰长,则三角形的三边长为:4、4、8,
不能组成三角形;
(2)若4是底边长,则三角形的三边长为:4、8、8,
能组成三角形,周长为4+8+8=20.
故选B .
5. 【答案】C ;
【解析】AD =DF =BD ,∠B =∠BFD =50°,BDF ∠=180°-50°-50°=80°.
6. 【答案】D ;
【解析】解:如图,
∵以点O 为圆心,以OA 为半径画弧,交x 轴于点B 、C ;
以点A 为圆心,以AO 为半径画弧,交x 轴于一点D (点O 除外),
∴以OA 为腰的等腰三角形有3个;
作OA 的垂直平分线,交x 轴于一点,
∴以OA 为底的等腰三角形有1个,
综上所述,符合条件的点P 共有4个,
故选:D .
二.填空题
7. 【答案】20;
【解析】∠A=∠ABD=40°,∠BDC=∠C=80°,所以∠CBD=20°.
8. 【答案】12;
【解析】解:①2是腰长时,三角形的三边分别为2、2、5,
∵2+2=4<5,
∴不能组成三角形,
②2是底边长时,三角形的三边分别为2、5、5,
能组成三角形,
周长=2+5+5=12,
综上所述,它的周长是12.
故答案为:12.
9. 【答案】两直线平行;
【解析】根据已知条件和反证法的特点进行证明,即可求出答案.
10.【答案】70°或40°;
【解析】解:(1)当70°角为顶角,顶角度数即为70°;
(2)当70°为底角时,顶角=180°-2×70°=40°.
故答案为:70°或40°.
11.【答案】②③④;
【解析】:②当∠BAD=∠CAD时,
∵AD是∠BAC的平分线,且AD是BC边上的高;
则△ABD≌△ACD,
∴△BAC是等腰三角形;
③延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF;
∵AB+BD=CD+AC,
∴DE=DF,又AD⊥BC;
∴△AEF是等腰三角形;
∴∠E=∠F;
∵AB=BE,
∴∠ABC=2∠E;
同理,得∠ACB=2∠F;
∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形;
④△ABC中,AD⊥BC,根据勾股定理,得:
AB2﹣BD2=AC2﹣CD2,
即(AB+BD)(AB﹣BD)=(AC+CD)(AC﹣CD);
∵AB﹣BD=AC﹣CD,
∴AB+BD=AC+CD;
∴两式相加得,
2AB=2AC;
∴AB=AC,
∴△ABC是等腰三角形
故填②③④.
12.【答案】8;
【解析】解:∵AB=AC,AD⊥BC,
∴BD=DC.
∵AB+AC+BC=32,
即AB+BD+CD+AC=32,
∴AC+DC=16
∴AC+DC+AD=24
∴AD=8.
故填8.
三.解答题
13.【解析】
证明:ED⊥BC;延长ED,交BC边于H,
∵AB=AC,AE=AD.
∴设∠B=∠C=x,则∠EAD=2x,
∴∠ADE=1802
90
2
x
x ︒-
=︒-
即∠BDH=90°-x
∴∠B+∠BDH=x+90°-x=90°,
∴∠BHD=90°,ED⊥BC.
14.【解析】
解:设等腰三角形的腰长为x,底边长为y,
则有或,
解得:或,
此时两种情况都符合三角形三边关系定理,
答:等腰三角形的腰长为14,底边长为20;或腰长为18,底边长为12.
15.【解析】
证明:假设等腰三角形的底角不是锐角,则它们大于或者等于90°;
根据等腰三角形的两个底角相等,则两个底角的和大于或者等于180°;
则该三角形的三个内角的和一定大于180°,这与三角形的内角和定理相矛盾;
所以假设错误,原命题正确;
即等腰三角形的底角是锐角.。