三角形压轴题
- 格式:docx
- 大小:2.20 MB
- 文档页数:18
三角形40道压轴题型专训(8大题型)【题型目录】题型一 与三角形的高有关的计算压轴题题型二 根据三角形中线求面积压轴题题型三 与平行线有关的三角形内角和问题题型四 与角平分线有关的三角形内角和问题题型五 三角形折叠中的角度问题题型六 三角形内角和定理的应用题型七 三角形外角压轴题题型八 多边形内角和压轴题【经典例题一 与三角形的高有关的计算压轴题】1.(22-23七年级下·广东河源·期中)如图,已知ABC V 的面积为5,点M 在AB 边上移动(点M 与点A 、B 不重合),MN BC ∥,MN 交AC 于点N ,连接BN .设AM x AB=,MBN S y =V .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)点E 、F 分别是边AB ,AC 的中点,设MBN V 与EBF V 的公共部分的面积为S ,试用含x 的代数式表示S .2.(22-23七年级上·黑龙江哈尔滨·期末)如图,在平面直角坐标系中,点A 、点B 在x 轴上,点C 在y 轴上,若点(),0A a ,点(),0B b ,点()0,2C ,且22AO OB OC ==.(1)求a ,b 的值;(2)动点P 从点O 出发沿着y 轴的正半轴以每秒1个单位长度的速度运动,连接AP ,设APC △的面积为S ,点P 运动的时间为t 秒,求S 与t 的关系式;(3)在(2)的条件下,点D 是直线BC 上一点,点D 的横坐标为1,连接OD ,DA ,若DOA △的面积为2S ,求点P 的坐标.3.(23-24七年级下·福建厦门·期末)请用我们学过的知识解决下列问题:如图,平面直角坐标系中,A (a ,0),B (0,b ),C (0,c ),()2430a c +++=,b 为7的整数部分.(1)a +b +c = ;(2)点P 为坐标平面内的一个动点,若S △PBC =2S △ABC ,求点A 与点P 距离的最小值;(3)如图2,点D 在线段AB 上,将点D 向右平移4个单位长度至E 点,若△ACE 的面积等于14,求点D 坐标.4.(23-24七年级上·北京西城·阶段练习)设ABC V 的面积为a .(1)如图1,延长ABC V 的各边得到111A B C △,且1A B AB =,1B C BC =,1C A CA =,记111A B C △的面积为1S ,则1S =______.(用含a 的式子表示)(2)如图2,延长ABC V 的各边得到111A B C △,且12A B AB =,12B C BC =,12C A CA =,记111A B C △的面积为2S ,则2S =________.(用含a 的式子表示)(3)如图3,P 为ABC V 内一点,连接AP 、BP 、CP 并延长分别交边BC 、AC 、AB 于点D 、E 、F ,则把ABC V 分成六个小三角形,其中四个小三角形面积已在图上标明,则计算得到ABC V 的面积=a ________.5.(23-24七年级下·河南信阳·阶段练习)在平面直角坐标系中,已知点()3,6A ,()9,6B ,连接AB ,将AB 向下平移10个单位得线段CD ,其中点A 的对应点为点C .(1)填空:点C 的坐标为____________;(2)点E 从点A 出发,以每秒2个单位的速度沿A B D C A ----…运动,设运动时间为t 秒,① 当2t =时,点E 坐标为__________,② 当E 点在BD 边上运动时,点E 坐标为_____________;(用含t 的式子表示)③当点E到y轴距离为7时,求t值;(3)在(2)的条件下,连接DE并延长,交y轴于点P,当PD将四边形ACDB的面积分成3:5两部分时,求点P的坐标.【经典例题二根据三角形中线求面积压轴题】6.(23-24七年级上·黑龙江哈尔滨·阶段练习)如图,在平面直角坐标系中,点A在x轴的负半轴上,其坐-,点C在y轴的正半轴上,其坐标为(0,8),分别过点A、C作y轴、x轴的平行线,两平行线相标为(6,0)交于B.(1)点B坐标为(____,____);(2)动点P从点B出发,以每秒2个单位长度的速沿BA向终点A匀速移动,设点P移动的时间为t秒,M为AB中点,N为BP中点,用含t的式子表示MN的长;(3)在(2)的条件下,点P到达A后,继续沿着AO向终点O运动,连接CP,求t为何值时,CP把长方形OABC分成的两部分面积比为13:,并求出此时点P坐标.V的角平分线,点E、F分别在BC、AC上,7.(22-23七年级下·江苏扬州·期末)已知:如图,BD是ABCÐ.∥,EF平分DECDE AB(1)判断EF与BD的位置关系,并说明理由;(2)若2CD AD =,2CE BE =,2CF DF =,且ABC V 的面积为27,求DEF V 的面积.8.(22-23七年级下·江苏盐城·期中)典型题例:(1)如图1,AD 是ABC V 的中线,ABC V 与ABD △的面积有怎样的数量关系?为什么?(2)如图2,AD 是ABC V 的中线,你能把一个三角形分成面积相等的4个三角形吗?试画出相应的图形?(两种方法画图)迁移应用:(3)如图3,ABC V 的两条中线AD ,BE 相交于点G ,求证:AGE BGD S S D D =;(4)如图4,ABC V 的三条中线AD ,BE ,CF 相交于点G ,①请你写出所有与AGE V 面积相等的三角形;②写出AG 与GD 的数量关系式,并说明理由;拓展应用;(5)设ABC V 的面积为a ,如图①将边BC AC 、分别2等份,1BE 、1AD 相交于点O ,AOB V 的面积记为1S ;如图②将边BC AC 、分别3等份,1BE 、1AD 相交于点O ,AOB V 的面积记为2S ;……,以此类推,若43S =,则a 的值为__________.9.(23-24八年级上·湖南永州·阶段练习)如图,ABC V 中,90CAB Ð=°,AD BC ^于点D ,AE 为ABC V 的中线,6cm AB =,8cm AC =,10cm BC =.求:(1)AD 的长(2)ABE V 的面积(3)ACE △和ABE V 的周长的差10.(22-23七年级下·江苏淮安·阶段练习)已知ABC V 的面积是60,请完成下列问题:(1)如图1,若AD 是ABC V 的BC 边上的中线,则ABD △的面积______ACD V 的面积.(填“>”“<”“=”)(2)如图2,若CD 、BE 分别是ABC V 的AB 、AC 边上的中线,求四边形ADOE 的面积可以用如下方法,连接AO ,由AD DB =得:ADO BDO S S =V V ,同理:CEO AEO S S =V V ,设ADO S x =△,CEO S y =△,则BDO S x =V ,AEO S y =V 由题意得:1302ABE ABC S S ==V V ,1302ADC ABC S S ==V V ,可列方程组为:230230x y x y +=ìí+=î,解得______,则可得四边形ADOE 的面积为______.(3)如图3,:1:3AD DB =,:1:2CE AE =,则四边形ADOE 的面积为______.(4)如图4,D ,F 是AB 的三等分点,E ,G 是CA 的三等分点,CD 与BE 交于O ,且60ABC S =△,则四边形A DOE 的面积为______.【经典例题三 与平行线有关的三角形内角和问题】11.(23-24七年级下·广东汕头·期中)如图,已知A 、B 两点坐标分别为(),4A a ,(),0B b ,且a ,b 满足60a -=,()280b -£,E 是y 轴正半轴上一点.(1)求A 、B 两点的坐标(2)若C 为y 轴上一点,且14AOC AOB S S =V V ,求C 点的坐标(3)过B 作BD y ∥轴,若13DBF DBA Ð=Ð,13EOF EOA Ð=Ð,求F Ð与A Ð间的数量关系12.(23-24七年级下·广东佛山·期中)综合探究:如图1,已知两条直线AB CD ,被直线EF 所截,分别交于点E ,点F EM ,平分AEF Ð交CD 于点M ,且FEM FME Ð=Ð.(1)直线AB 与直线CD 平行吗?说明你的理由;(2)点G 是射线MD 上一动点(不与点M ,F 重合),EH 平分FEG Ð交CD 于点H ,过点H 作HN EM ^于点N ,设EHN EGF a b Ð=Ð=,.①当点G 在点F 的右侧时,请根据题意,在图2中补全图形,并求出当60b =°时α的度数;②当点G 在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并简单说明理由.13.(23-24七年级下·福建三明·期中)在数学探究活动课中,老师要求同学们把一块直角三角板(图中的ABC V ,30B Ð=°)摆放在画有两条平行直线PQ MN 、的纸面上进行操作探究.(1)小明同学把三角板按如图1摆放,请你直接写出C Ð与1Ð,2Ð之间的数量关系;(2)小明移动三角板按如图2摆放,当DQ 平分ADE Ð时,发现MEC Ð和CDE Ð存在特殊的数量关系,请写出这个数量关系并说明理由;(3)小明继续移动三角板,使顶点A 落在直线PQ 上,如图3,分别画出QAC Ð和CBF Ð的平分线相交于点E ,多次移动三角板位置(保持顶点A 在直线PQ 上),经度量并计算发现2AEB BFN Ð+Ð都等于270°,请问这个等式是否一定成立?如果成立,请你说明理由;如果不成立,请你画出一个符合条件且2AEB BFN Ð+Ð又不等于270°的图形.14.(23-24七年级下·陕西西安·期中)如图,AB CD ∥,E 是直线AB 上一点,F 是直线CD 上一点.问题提出(1)如图1,G 是直线AB 上一点,P 是线段EF 上一点,连接GP ,若60EGP Ð=°,50EFD Ð=°,则GPF Ð=问题探究(2)如图2,120EQF Ð=°,PE 平分BEQ Ð,PF 平分DFQ Ð,请计算EPF Ð的度数.问题解决(3)如图3,FG 平分CFP Ð,延长PE 到点H ,且EH 平分AEG Ð,若EGF P a Ð=-Ð,请你探究GEA Ð与GFC Ð之间的关系,并说明理由(用含a 的式子表示).15.(23-24七年级下·福建厦门·期中)已知:AB CD ∥,E 、G 是AB 上的点,F 、H 是CD 上的点,12Ð=Ð.(1)如图1,求证:EF GH ∥;(2)如图2,点M 在GH 的延长线上,作BEF Ð、DFM Ð的角平分线交于点N ,EN 交GH 于点P ,设N a Ð=.①若45a =°,试判断直线GH 上是否存在一点K 使得FK FM <,并说明理由;②如图3,作AGH Ð的角平分线交CD 于点Q ,若32FEN HFM Ð=Ð,请直接回答GQD Ð与N Ð的数量关系:______.【经典例题四 与角平分线有关的三角形内角和问题】16.(23-24七年级下·江苏扬州·期中)【认识概念】如图1,在ABC V 中,若BAD DAE EAC Ð=Ð=Ð,则AD ,AE 叫做BAC Ð的“三分线”.其中,AD 是“近AB 三分线”, AE 是“远AB 三分线”.【理解应用】(1)在ABC V 中,60A Ð=°,70B Ð=°,若A Ð的三分线AD 与B Ð的角平分线BE 交于点P ,则APB Ð= ____________;(2)如图2,在ABC V 中,BO 、CO 分别是ABC Ð的近AB 三分线和ACB Ð近AC 三分线,若BO CO ^,求A Ð的度数;【拓展应用】(3)如图3,在ABC V 中,BO 、CO 分别是ABC Ð的远BC 三分线和ACB Ð远BC 三分线,且A m Ð=°,直线PQ 过点O 分别交AC 、BC 于点P 、Q ,请直接写出12Ð-Ð的度数(用含m 的代数式表示).(4)在ABC V 中,ACD Ð是ABC Ð的外角,ABC Ð的近BC 三分线所在的直线与ACD Ð的三分线所在的直线交于点P .若A m Ð=,=60B а;直接写出BPC Ð 的度数(用含m 的代数式表示).17.(2024七年级下·浙江·专题练习)【基础巩固】(1)如图1,已知AD EF BC ∥∥,求证:AEB DAE CBE Ð=Ð+Ð;【尝试应用】(2)如图2,在四边形ABCD 中,AD BC ∥,点E 是线段CD 上一点.7030AEB DAE Ð=°Ð=°,,求CBE Ð的度数;【拓展提高】(3)如图3,在四边形ABCD 中,AD BC ∥,点E 是线段CD 上一点.若AE 平分DAC CAB ABC ÐÐ=Ð,.①试求出BAE Ð的度数;②已知30AEB ABE EBC Ð=ÐÐ=°,,点G 是直线AD 上的一个动点,连接CG 并延长.2.1若CA 恰好平分BCD Ð,当CG 与四边形ABCD 中一边所在直线垂直时,ACG Ð=_____°;2.2如图4,若CG 是ACD Ð的平分线与BA 的延长线交于点F ,与AE 交于点P ,且BFC a Ð=°,则ADC Ð=______°(用含a 的代数式表示).18.(23-24七年级下·黑龙江哈尔滨·期中)已知:如图,在ABC V 中,P 为ABC V 内一点,BP 平分ABC Ð,CP 平分ACP Ð.(1)如图1,当100A Ð=°时,则BPC Ð的度数为__________.(2)如图2,过C 作CQ CP ^,交BP 延长线于点Q ,求证:12Q BAC Ð=Ð.(3)如图3,在(2)的条件下,过C 作CM PQ ^,延长CM 与BA 延长线交于点N ,若57ABP HCM Ð=Ð,且5AHQ PCB ABC Ð-Ð=Ð,求BNC Ð的度数.19.(23-24七年级下·山西吕梁·期中)综合与探究如图1,已知2AOB a Ð=Ð,P 是其内部一点,过点P 作PC OB ∥,PD OA ∥,分别交OA ,OB 于点C ,D ,CM 平分ACP Ð,DN 平分PDB Ð.图1 图2(1)①写出所有等于a Ð的角:______.②试猜想CM 与DN 的位置关系,并说明理由.(2)如图2,点E 在射线CA 上,连接PO ,PE ,且POE OPE Ð=Ð,PF 平分CPE ∠,交OA 于点F ,延长FP 交DN 于点G ,若50OPF Ð=°,求AFP NGP Ð+Ð的度数.20.(22-23七年级下·江苏连云港·期中)【课本再现】苏科新版七年级数学下册第7章平面图形的认识(二)第43页第21题如下:如图1,90MON Ð=°,点A 、B 分别在OM 、ON 上运动(不与点O 重合),BC 是ABN Ð的平分线,BC 的反向延长线交OAB Ð的平分线于点D .【特殊探究】(1)当60OAB Ð=°时,ADB =∠ °;【推理论证】(2)随着点A 、B 的运动,ADB Ð的大小会变吗?如果不会,求ADB Ð的度数,请说明理由;【拓展探究1】(3)如图2,在图1的基础上分别作DAO Ð与DBO Ð的平分线,交于点E ,则AEB Ð= °;【拓展探究2】(4)如图3,若将图1中的“90MON Ð=°”拓展为一般情况,即MON a Ð=,连接BP ,OPB Ð与OBP Ð的平分线相交于点Q ,试判断PQG Ð与D Ð的数量关系,并说明理由.【经典例题五 三角形折叠中的角度问题】21.(23-24八年级上·广西桂林·期中)在我们苏科版义务教育教科书数学七下第42页曾经研究过双内角平分线的夹角和内外角平分线夹角问题.聪聪在研究完上面的问题后,对这类问题进行了深入的研究,他的研究过程如下:(1)【问题再现】如图1,在ABC V 中,ABC ACB ÐÐ、的角平分线交于点P ,若50A Ð=°.则P Ð=______;(2)【问题推广】如图2,在ABC V 中,BAC Ð的角平分线与ABC V 的外角CBM Ð的角平分线交于点P ,过点B 作BH AP ^于点H ,若76ACB Ð=°,则PBH Ð=______;(3)如图3,如图3,在ABC V 中,ABC Ð、ACB Ð的角平分线交于点P ,将ABC V 沿DE 折叠使得点A 与点P 重合.①若110BPC Ð=°,则12Ð+Ð=______;②若PD PE =,求证:12Ð=Ð;(4)【拓展提升】在四边形BCDE 中,EB CD ∥,点F 在直线ED 上运动(点F 不与E ,D 两点重合),连接BF CF EBF DCF ÐÐ,,、的角平分线交于点Q ,若EBF DCF a b Ð=Ð=,,直接写出∠Q 和α,β之间的数量关系.22.(23-24七年级下·福建厦门·期中)在平面直角坐标系中,有点(,0),(0,)A a B b ,且a ,b 满足4|2|0a b -++=,将线段AB 向上平移k 个单位得到线段CD .(1)求出点A 、B 的坐标;(2)如图1,若5k =,过点C 作直线l x ∥轴,点M 为直线l 上一点,若MAB △的面积为8,求点M 的坐标;(3)如图2,点E 为线段CD 上任意一点,点F 为线段AB 上任意一点,120EOF Ð=°.点G 为线段AB 与线段CD 之间一点,连接GE ,GF ,且13DEG DEO Ð=Ð,80EGF Ð=°.试写出AFG Ð与GFO Ð之间的数量关系,并证明你的结论;23.(23-24八年级上·山西大同·阶段练习)综合与探究(1)如图1,将ABC V 沿着DE 第一次折叠,顶点B 落在ABC V 的内部点O 处,试探究12Ð+Ð与B Ð之间的数量关系,并说明理由.(2)如图2,将ABC V 沿着FG 第二次折叠,顶点C 恰好与点O 重合,若85A Ð=°,562Ð=°,求13Ð+Ð的度数.(3)如图3,将ABC V 沿着GH 第三次折叠,顶点A 恰好与点O 重合,若A a Ð=,5b Ð=,用含a ,b 的代数式表示()61AGO Ð-Ð+Ð.24.(22-23七年级下·四川成都·期中)直线MN 与直线PQ 垂直相交于点C ,点A 在射线CP 上运动(点A 不与点C 重合),点B 在射线CN 上运动(点B 不与点C 重合).(1)如图1,已知AD 、CD 分别是BAC Ð和ACB Ð的角平分线,①当60BAC Ð=°时,求ADC Ð的度数;②点A 、B 在运动的过程中,ADC Ð的大小是否会发生变化?若发生变化,请说明变化的情况:若不发生变化,试求出ADC Ð的大小;(2)如图2,将ABC V 沿AD 所在直线折叠,点B 落在PQ 的点F 处,折痕与MN 交于点E ,连接DF 、EF ,在CDF V 中,如果有一个角是另一个角的2倍,请求出BAC Ð的度数.25.(22-23七年级上·江西南昌·期末)我们在小学已经学习了“三角形内角和等于180°”.在三角形纸片中,点D ,E 分别在边,AC BC 上,将C Ð沿DE 折叠,点C 落在点'C 的位置.(1)如图1,当点C 落在边BC 上时,若58ADC 'Ð=°,则C Ð= ,可以发现ADC 'Ð与C Ð的数量关系是 ;(2)如图2,当点C 落在ABC V 内部时,且42BEC 'Ð=°,20ADC 'Ð=°,求C Ð的度数;(3)如图3,当点C 落在ABC V 外部时,若设BEC 'Ð的度数为x ,ADC 'Ð的度数为y ,请求出C Ð与x ,y 之间的数量关系.【经典例题六 三角形内角和定理的应用】26.(2024七年级下·北京·专题练习)已知,如图,AB CD P ,直线MN 交AB 于点M ,交CD 于点N ,点E 是线段MN 上一点,,P Q 分别在射线,MB ND 上,连接,,PE EQ PF 平分,MPE QF Ð平分DQE Ð.(1)如图1,当PE QE ^时,求PFQ Ð的度数;(2)如图2,求PEQ Ð与PFQ Ð之间的数量关系,并说明理由.27.(23-24七年级下·湖北武汉·阶段练习)如图,在平面直角坐标系中,(),0A a ,()0,B b ,且满足30a a b +++=,将线段AB 先向右平移4个单位长度,再向下平移1个单位长度.点A 的对应点为C ,点B 的对应点为D .(1)求AB 、两点的坐标.(2)连接AC BD 、,求平行四边形ACDB 的面积.(3)设M 为x 轴负半轴上一动点(异于点A ),连接CM ,BAO Ð的平分线与DCM Ð的平分线交于点N ,请你探究AMC Ð与ANC Ð的数量关系,并证明你的结论.28.(23-24七年级下·湖南衡阳·阶段练习)如果两个角的差等于30°,就称这两个角互为“宝藏角”.其中一个角叫做另一个角的“宝藏角”.例如70a =°,40b =°,30a b -=°,则a 和b 互为“宝藏角”,即a 是b 的“宝藏角”,b 也是a 的“宝藏角”.(1)已知1Ð和2Ð互为“宝藏角”,12Ð>Ð,且1Ð和2Ð互补,求1Ð的度数;(2)在ABC V 中,90ACB Ð=°,AE 是BAC Ð的角平分线,①如图1,点P 在射线AC 上,CN 平分BCP Ð,与射线AE 交于点N ,若ANC Ð与B Ð互为“宝藏角”,求ANC Ð的度数;②如图2,若CP AB ∥,射线CN 平分BCP Ð且与射线AE 交于点N ,若ANC Ð与ABC Ð互为“宝藏角”,则ABC Ð的度数为______;③如图3,若CP AB ^于点P ,AE CP 、相交于点F ,若FCE Ð与CEF Ð互为“宝藏角”,求出CEF Ð的度数.29.(23-24七年级下·辽宁阜新·期中)如图,MN PQ ∥,点A 在MN 上,点B ,C 为PQ 上两点,60ABC Ð=°,40ACB Ð=°,AD 平分BAC Ð交BC 于点D .(1)求DAN Ð的度数;(2)射线BP 绕B 点每秒15°的速度顺时针旋转t 秒()0t >,当BP 转动至射线BQ 后立即以相同速度回转,当BP 第一次与AD 互相平行时,求t 的值;(3)当射线BP 绕B 点每秒15°的速度顺时针转动的同时,射线AB 绕A 点每秒5°的速度逆时针旋转,当AB 转动至射线AN 时,AB ,BP 同时停止转动,请求出BP 与AB 互相平行时t 的值.30.(23-24七年级下·山东青岛·期中)已知直线MN PQ ∥,点A 在直线MN 上,点B 、C 为平面内两点,AC DC ^于点C .(1)如图1,当点B 在直线MN 上,点C 在直线MN 上方时,则CAB Ð和CDP Ð之间的数量关系是 .(2)如图2,当点C 在直线MN 上且在点A 左侧,点B 在直线MN 与PQ 之间时,小明过点B 作BF MN ∥.请根据他的思路,写出ABC Ð与BDP Ð的关系;(3)如图3,在(2)的条件下,作ABD Ð的平分线交直线MN 于点E ,2AEB ABC Ð=Ð,直接写出ABC Ð的度数.(4)如图4,当点C 在直线MN 上且在点A 左侧,点B 在直线PQ 下方时,当2BDP BEN Ð=Ð时,请补充图形并直接写出ABC Ð的度数.【经典例题七 三角形外角压轴题】31.(23-24七年级下·福建莆田·阶段练习)已知:点A 在直线DE 上,点B C 、都在直线PQ 上(点B 在点C 的左侧),连接AB ,AC ,AB 平分CAD Ð,且ABC BAC Ð=Ð.(1)如图1,求证:DE PQ ∥;(2)如图2,点K 为线段AB 上一动点,连结CK ,且始终满足290EAC BCK Ð-Ð=°,①当CK AB ^时,在直线DE 上取点F ,连接FK ,使得12FKA AKC Ð=Ð,求此时AFK Ð的度数.②在点K 的运动过程中,AKC Ð与EAC Ð的度数之比为定值,请直接写出这个定值,不需要说明理由.32.(2024七年级下·北京·专题练习)已知,直线AB CD ∥,点E 为直线CD 上一定点,射线EK 交AB 于点F ,FG 平分AFK Ð,FED a Ð=.(1)如图1,当60a =°时,GFK Ð= °;(2)点P 为线段EF 上一定点,点M 为直线AB 上的一动点,连接PM ,过点P 作PN PM ^交直线CD 于点N .①如图2,当点M 在点F 右侧时,求BMP Ð与PNE Ð的数量关系;②当点M 在直线AB 上运动时,MPN Ð的一边恰好与射线FG 平行,直接写出此时PNE Ð的度数(用含α的式子表示).33.(23-24七年级下·河南郑州·期中)已知:直线AB 与直线CD 平行,E 、G 是直线AB 上的点,F 、H 是直线CD 上的点,且FEG FHG Ð=Ð.(1)如图1,EN 为BEF Ð的角平分线,交GH 于点P ,连接FN ,猜测N Ð、HPN Ð,NFH Ð之间的等量关系并给出证明.(2)如图2,在(1)的条件下,过点F 作FM GH ^于点M ,作AGH Ð的角平分线交CD 于点Q .若3MFN NFH Ð=Ð,且2:5GQH N ÐÐ=,请直接写出GQH Ð的度数.34.(2024七年级下·浙江·专题练习)已知:点A 在直线DE 上,点B C 、都在直线PQ 上(点B 在点C 的左侧),连接AB ,AC ,AB 平分CAD Ð,且ABC BAC Ð=Ð.(1)如图1,求证:DE PQ ∥;(2)如图2,点K 为线段AB 上一动点,连接CK ,且始终满足290EAC BCK Ð-Ð=°.①当CK AB ^时,在直线DE 上取点F ,连接FK ,使得12FKA AKC Ð=Ð,求此时AFK Ð的度数;②在点K 的运动过程中,AKC Ð与EAC Ð的度数之比是否为定值,若是,求出这个值;若不是,说明理由.35.(22-23七年级下·江苏扬州·期末)如图1,已知线段AB 、线段CD 被直线l 所截于点A 、点C ,150Ð=°,2Ð的度数是1Ð的3倍少20°.(1)求证:AB CD P ;(2)如图2,连接BD ,AB 沿BD 方向平移得到EF ,点F 在BD 上,点G 是BD 上的一点,连接AG 、EG ,30BAG Ð=°,20FEG Ð=°,求AGE Ð的度数;(3)如图3,点M 是线段BD 上一点,点N 是射线CD 上一点,CAM Ð度数为k ,AMN Ð度数为m ,MND Ð度数为n ,请直接写出k 、m 、n 之间的数量关系.(本题的角均小于180°)【经典例题八 多边形内角和压轴题】36.(23-24七年级下·重庆沙坪坝·期中)已知在ABC V 中,AD 是BC 边上的高,AE 是ABC V 的角平分线.(1)如图1,若4060B C Ð=°Ð=°,,求EAD Ð的度数;(2)如图2,PE 平分AEC Ð交AC 于点F ,交ACB △外角ACM Ð平分线于点P ,过F 作FG PC ∥交BC 于G ,请猜想EFG Ð与BAC Ð的数量关系,并说明理由;(3)如图3,在(2)的条件下,连接PA ,过点P 作PG BM ^于点G ,若EAD CAD Ð=Ð,且107B CPE CPG Ð+Ð=Ð,过点P 作PH AB ^交BA 的延长线于点H ,求EPH Ð的度数.37.(23-24七年级下·江苏南京·期中)几何图形千变万化,但是不同的图形之间往往存在联系,下面让我们一起来探索:(1)下列有A 、B 两题,请你选择其中一个进行证明(若两题都证明,按题A 给分).A .如图①,1Ð和2Ð是ABC V 的两个外角,求证12180A Ð+Ð=°+Ð;B .如图②D 、E 是ABC V 边AB 、AC 上的点,将ADE V 沿DE 翻折至FDE V ,若点F 在ABC V 内部,122A Ð+Ð=Ð.我选择 作答(2)如图③,BE 、CE 分别平分四边形ABCD 的外角CBM Ð、BCN Ð.已知100A Ð=°,120D Ð=°,求E Ð的度数;(3)如图④,已知五边形ABCDE ,延长AE 至F ,延长BC 至G ,连接CE ,点P 、Q 分别在边DE 、CD 上,将DPQ V 沿PQ 翻折至D PQ 'V ,若13DEF CEF Ð=Ð,13DCG ECG Ð=Ð,A m Ð=°,B n Ð=°.请你直接写出12Ð+Ð的度数(用含m 、n 的代数式表示)38.(23-24七年级下·吉林长春·期中)在ABC V 中,90,42C A Ð=°Ð=°.点D 、E 分别在ABC V 的边AC AB 、上,且均不与ABC V 的顶点重合,连接DE ,将ABC V 沿DE 折叠,使点A 的对称点A '始终落在四边形BCDE 的外部,A D '交边AB 于点F ,且点A '与点C 在直线AB 的异侧.(1)如图①,则B Ð=_______°.(2)如图②,则BED CDE Ð+Ð=_______°.(3)如图③,设图②中的1,2CDF A EF Ð=ÐÐ=Ð'.求12Ð-Ð的度数;(4)当A DE 'V 的某条边与AB 或AC 垂直时,直接写出ADE Ð的度数.39.(23-24七年级下·辽宁沈阳·期中)【问题背景】三角形和四边形是我们熟悉的几何图形,我们知道三角形内角和180°,四边形的内角和是360°.【问题思考】如图1,在ABC V 中,延长AB 到点D ,AM ,BM 分别平分CAB Ð和CBD Ð.(1)若58CAB Ð=°,40CBA Ð=°,求AMB Ð的度数;(2)设CAB x Ð=°,CBA y Ð=°,x 与y 都是变量,但x 与y 的和是个常量,即x y m +=,m 是常量.在x 与y 变化的过程中,AMB Ð的大小是否变化,若不变,请直接写出用含m 的代数式表示AMB Ð;若变化,请说明理由.【问题拓展】在四边形ABCD 中,设ADC a Ð=,BCD b Ð=,延长AB 到点E ,AP ,BQ 分别平分DAB Ð和CBE Ð.(3)如图2,当180a b +=°,此时AP ,BQ 的位置关系为 ;(4)如图3,当180a b +>°,AP ,BQ 所在直线交于点N ,请说明ANB Ð与α,β的数量关系;(5)将(4)中的条件180a b +>°改为180a b +<°,其余条件不变,请画出简图,并直接写出ANB Ð与α,β的数量关系.40.(23-24八年级上·云南·阶段练习)(概念学习)在平面中,我们把大于180°且小于360°的角称为优角,如果两个角相加等于360°,那么称这两个角互为组角,简称互组.(1)若1Ð、2Ð互为组角,且1135Ð=°,则2Ð=_____°;(理解运用)习惯上,我们把有一个内角大于180°的四边形俗称为镖形.(2)如图①,在镖形ABCD 中,优角BCD Ð与钝角BCD Ð互为组角,试探索内角A Ð、B Ð、D Ð与钝角BCD Ð之间的数量关系,(拓展延伸)(3)如图②,A B C D E F Ð+Ð+Ð+Ð+Ð+Ð=______;(用含α的代数式表示)(4)如图③,已知四边形ABCD 中,延长AD 、BC 交于点Q ,延长AB 、CD 交于P ,APD AQB ÐÐ、的平分线交于点M ,180A QCP Ð+Ð=°;直接运用(2)中的结论,试说明:PM QM ^.。
《中考压轴题》专题16:静态几何之三角形问题一、选择题1.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是A .1,2,3B .112 ,,C .113 ,,D .123 ,,2.已知△ABC 的三条边长分别为3,4,6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画A.6条B.7条C.8条D.9条3.如图,在四边形ABCD 中,AB=AD=6,AB ⊥BC ,AD ⊥CD ,∠BAD=60º,点M 、N 分别在AB 、AD 边上,若AM :MB=AN :ND=1:2,则tan MCN ∠=A.1333 B.1152 C.932 D.25-4.如图,在△ABC 中,点D 在边AB 上,BD=2AD ,DE ∥BC 交AC 于点E ,若线段DE=5,则线段BC 的长为【】A.7.5B.10C.15D.205.如图,△ABC 中,AB=4,AC=3,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于F ,交AB 于G ,连接EF ,则线段EF 的长为A.12B.1 C.72D.76.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC 7.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为A.BD=CE B.AD=AE C.DA=DE D.BE=CD8.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是A.1:2B.1:3C.1:4D.1:59.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于A .32b aB .32a bC .43b aD .43a b10.已知△A 1B 1C 1与△A 2B 2C 2的周长相等,现有两个判断:①若A 1B 1=A 2B 2,A 1C 1=A 2C 2,则△A 1B 1C 1≌△A 2B 2C 2;②若∠A 1=∠A 2,∠B 1=∠B 2,则△A 1B 1C 1≌△A 2B 2C 2,对于上述的两个判断,下列说法正确的是A.①正确,②错误B.①错误,②正确C.①,②都错误D .①,②都正确11.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S ∆=四边形中正确的有A.4个B.3个C.2个D.1个12.如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC=10,则PQ 的长为A .32B .52C .3D .413.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是A.15°B.25°C.35°D.45°14.如图,∠BAC=∠DAF=90°,AB=AC,A D=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有个.A.1B.2C.3D.415.如图,在等腰直角△ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.则下列结论:(1)图形中全等的三角形只有两对;(2)△ABC的面积等于四边形CDOE的面积的2倍;(3)CD+CE=2OA;(4)AD2+BE2=2OP•OC.其中正确的结论有A.1个B.2个C.3个D.4个16.在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为A.157B.125C.207D.21517.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于A.203B.154C.163D.17418.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②AM ANAB AC;③△PMN为等边三角形;④当∠ABC=45°时,BN=2PC.其中正确的个数是A.1个B.2个C.3个D.4个19.如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是A.4B.3C.2D.120.如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC =()A .118°B .119°C .120°D .121°21.已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为()A .10B .14C .10或14D .8或1022.△ABC 的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A .4B .4或5C .5或6D .623.如图,在四边形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD ,CD =12AB ,点E 、F 分别为AB 、AD 的中点,则△AEF 与多边形BCDFE 的面积之比为()A .17B .16C .15D .1424.如图,△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是()A .1对B .2对C .3对D .4对25.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD 于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,其中结论正确的有()A.1个B.2个C.3个D.4个26.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=12 GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个27.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.261cm C.61cm D.234cm28.如图,在△ABC 中,∠BAC =Rt ∠,AB =AC ,点D 为边AC 的中点,DE ⊥BC 于点E ,连接BD ,则tan ∠DBC 的值为()A .13B .21-C .23-D .1429.如图,在四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上.若点P 到BD 的距离为32,则点P 的个数为()A .2B .3C .4D .530.△ABC 中,AB =AC =5,BC =8,点P 是BC 边上的动点,过点P 作PD ⊥AB 于点D ,PE ⊥AC 于点E ,则PD +PE 的长是()A .4.8B .4.8或3.8C .3.8D .531.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC =3,则折痕CE 的长为()A .32B .323C .3D .632.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 2015的值为()A .20122()2B .20132()2C .20121()2D .20131()233.等腰三角形边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为()A .9B .10C .9或10D .8或1034.如图,A 、B 是双曲线xk y =上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为()A .34B .38C .3D .435.如图,D 是等边△ABC 边AB 上的一点,且AD :DB =1:2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE :CF =()A .34B .45C .56D .6736.若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似.如图,如果扇形AOB 与扇形A 1O 1B 1是相似扇形,且半径OA :O 1A 1=k (k 为不等于0的常数).那么下面四个结论:①∠AOB =∠A 1O 1B 1;②△AOB ∽△A 1O 1B 1;③11AB k A B =;④扇形AOB 与扇形A 1O 1B 1的面积之比为2k .成立的个数为()A .1个B .2个C .3个D .4个37.在数轴上截取从0到3的对应线段AB ,实数m 对应AB 上的点M ,如图1;将AB 折成正三角形,使点A 、B 重合于点P ,如图2;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P 的坐标为(0,2),PM 的延长线与x 轴交于点N (n ,0),如图3,当m =3时,n 的值为()A .423-B .432-C .332-D .33238.如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 2处,称为第1次操作,折痕DE 到BC 的距离记为h 1;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为h 2015,到BC 的距离记为h 2015.若h 1=1,则h 2015的值为()A .201521B .201421C .2015211-D .2014212-二、填空题1.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使1CF BC2..若AB=10,则EF的长是.2.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA=.3.如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE.设△ACD、△BCE、△ABC的面积分别是S1、S2、S3,现有如下结论:①S1:S2=AC2:BC2;②连接AE,BD,则△BCD≌△ECA;③若AC⊥BC,则S1•S2=34S32.其中结论正确的序号是.4.如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则AGFD的值为.5.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.6.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为.7.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为.8.规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx•cosy+cosx•siny.据此判断下列等式成立的是(写出所有正确的序号)①cos(﹣60°)=1 2-;②sin75°=62 4+;③sin2x=2sinx•cosx;④sin(x﹣y)=sinx•cosy﹣cosx•siny.9.如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=12∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为.10.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为.11.如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B 处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的,结果精确到0.1海里).速度为50海里/小时,则A,B之间的距离为(取31.712.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.13.设点P是△ABC内任意一点.现给出如下结论:①过点P至少存在一条直线将△ABC分成周长相等的两部分;②过点P至少存在一条直线将△ABC分成面积相等的两部分;③过点P至多存在一条直线将△ABC分成面积相等的两部分;④△ABC内存在点Q,过点Q有两条直线将其平分成面积相等的四个部分.其中结论正确的是▲.(写出所有正确结论的序号)14.如图,A、B、C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积.15.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为.16.在等腰三角形中,马彪同学做了如下研究:已知一个角是60°,则另两个角是唯一确定的(60°,60°),已知一个角是90°,则另两个角也是唯一确定的(45°,45°),已知一个角是120°,则另两个角也是唯一确定的(30°,30°).由此马彪同学得出结论:在等腰三角形中,已知一个角的度数,则另两个角的度数也是唯一确定的.马彪同学的结论是的.(填“正确”或“错误”)17.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.18.如图,△ABC三边的中线AD、BE、CF的公共点为G,若ABC 12S△,则图中阴影部分的面积是.19.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=43,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.20.如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.21.如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=12∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG=cm.22.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=34.有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤245,其中正确的结论是(填入正确结论的序号).23.如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为.24.如图,等腰直角三角形BDC 的顶点D 在等边三角形ABC 的内部,∠BDC =90°,连接AD ,过点D 作一条直线将△ABD 分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是度.25.在底面直径为2cm ,高为3cm 的圆柱体侧面上,用一条无弹性的丝带从A 至C 按如图所示的圈数缠绕,则丝带的最短长度为cm .(结果保留π)26.如图,矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,12AD AB ,△CEF 的面积为1S ,△AEB 的面积为2S ,则12S S 的值等于.27.如图,已知△ABC 的三边长为a 、b 、c ,且a <b <c ,若平行于三角形一边的直线l 将△ABC 的周长分成相等的两部分.设图中的小三角形①、②、③的面积分别为1S 、2S 、3S ,则1S 、2S 、3S 的大小关系是.(用“<”号连接)28.如图,在△ABC 中,∠BAC =60°,∠ABC =90°,直线l 1∥l 2∥l 3,l 1与l 2之间距离是1,l 2与l 3之间距离是2,且l 1,l 2,l 3分别经过点A ,B ,C ,则边AC 的长为.29.设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为.(用含n 的代数式表示,其中n 为正整数)30.已知菱形1111A B C D 的边长为2,111A B C =60°,对角线11A C ,11B D 相交于点O .以点O 为坐标原点,分别以1OA ,1OB 所在直线为x 轴、y 轴,建立如图所示的直角坐标系.以11B D 为对角线作菱形1212B C D A ∽菱形1111A B C D ,再以22A C 为对角线作菱形2222A B C D ∽菱形1212B C D A ,再以22B D 为对角线作菱形2323B C D A ∽菱形2222A B C D ,…,按此规律继续作下去,在x 轴的正半轴上得到点1A ,2A ,3A ,......,n A ,则点n A 的坐标为________.三、解答题1.(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图1写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外)](2)如图2,在▱ABCD中,对角线焦点为O,A1、B1、C1、D1分别是OA、OB、OC、OD的中点,A2、B2、C2、D2分别是OA1、OB1、OC1、OD1的中点,…,以此类推.若ABCD的周长为1,直接用算式表示各四边形的周长之和l;(3)借助图形3反映的规律,猜猜l可能是多少?2.我们把“按照某种理想化的要求(或实际可能应用的标准)来反映或概括的表现某一类或一种事物关系结构的数学形式”看作是一个数学中的一个“模式”(我国著名数学家徐利治).如图是一个典型的图形模式,用它可测底部可能达不到的建筑物的高度,用它可测河宽,用它可解决数学中的一些问题.等等.(1)如图,若B1B=30米,∠B1=22°,∠ABC=30°,求AC(精确到1);(参考数据:sin22°≈0.37,cos22°≈0.92,tan22°≈0.40,3≈1.73)(2)如图2,若∠ABC=30°,B1B=AB,计算tan15°的值(保留准确值);,则无需化简)(3)直接写出tan7.5°的值.(注:若出现双重根式a b c3.为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动,如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得的数据如下:①小明的身高DC=1.5m②小明的影长CE=1.7cm③小明的脚到旗杆底部的距离BC=9cm④旗杆的影长BF=7.6m⑤从D点看A点的仰角为30°≈≈,)请选择你需要的数据,求出旗杆的高度.(计算结果保留到0.1,参考数据2 1.414,3 1.7324.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°﹣cos72°的值.5.如图,在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,∠ADB=∠CAD+∠ABD,∠BAD=3∠CBD.(1)求证:△ABC为等腰三角形;(2)M是线段BD上一点,BM:AB=3:4,点F在BA的延长线上,连接FM,∠BFM的平分线FN交BD于点N,交AD于点G,点H为BF中点,连接MH,当GN=GD时,探究线段CD、FM、MH之间的数量关系,并证明你的结论.6.△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,(1)求证:△BDF∽△CEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;(3)已知A、D、F、E四点共圆,已知tan∠EDF=32,求此圆直径.7.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连结BE交AC于点F,连结DF.(1)证明:△CBF≌△CDF;(2)若AC=23,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.8.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据▲,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF 中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若▲,则△ABC≌△DEF.9.如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点,且DF=FE.(1)图1中是否存在与∠BDE相等的角?若存在,请找出,并加以证明,若不存在,说明理由;(2)求证:BE=EC;(3)若将“点D在BA的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE”分别改为“点D 在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE”,其他条件不变(如图2).当AB=1,∠ABC=α时,求BE的长(用含k、α的式子表示).10.问题背景:如图1:在四边形ABC中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.11.【探究发现】如图1,△ABC是等边三角形,∠AEF=60°,EF交等边三角形外角平分线CF所在的直线于点F,当点E是BC的中点时,有AE=EF成立;【数学思考】某数学兴趣小组在探究AE、EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E是直线BC上(B,C除外)任意一点时(其它条件不变),结论AE=EF仍然成立.假如你是该兴趣小组中的一员,请你从“点E是线段BC上的任意一点”;“点E是线段BC延长线上的任意一点”;“点E时线段BC反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并证明AE=EF.【拓展应用】当点E在线段BC的延长线上时,若CE=BC,在备用图2中画出图形,并运用上述结论求出S△ABC:S△AEF的值.12.如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM 于点N,AB=AC=BD.连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.13.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=38AC,AB=10时,求线段BO的长度.14.如图,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.(1)求证:△ABP≌△CBE;(2)连结AD、BD,BD与AP相交于点F.如图2.①当BCBP=2时,求证:AP⊥BD;②当BCBP=n(n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求12SS的值.15.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P.(1)若AE=CF.①求证:AF=BE,并求∠APB的度数.②若AE=2,试求AP AF的值.(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.16.课本作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段....叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x ,试画出示意图,并求出x所有可能的值;(3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.17.(1)如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.18.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P.(1)若AE=CF.①求证:AF=BE,并求∠APB的度数.的值.②若AE=2,试求AP AF(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.19.已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.20.如图1,点C 将线段AB 分成两部分,如果AC BC AB AC=,那么称点C 为线段AB 的黄金分割点。
第4单元相似三角形(压轴题45道)一.选择题(共14小题)1.如图,在矩形ABCD中,E、F分别在BC、CD上运动(不与端点重合),连接BF、AE,交于点P,且满足.连接CP,若AB=4,BC=6,则CP的最小值为()A.2﹣3B.2﹣2C.5D.32.如图,O为矩形ABCD的中心,将直角△OPQ的直角顶点与O重合,一条直角边OP与OA重合,使三角板沿逆时针方向绕点O旋转,两条直角边始终与边BC、AB相交,交点分别为M、N.若AB=4,AD=6,BM=x,AN =y,则y与x之间的函数图象是()A.B.C.D.3.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP ;③S △AOD =S 四边形OECF ;其中正确结论的个数( )A .1B .3C .2D .04.如图,正方形ABCD 中,BE =EF =FC ,CG =2GD ,BG 分别交AE 、AF 于M 、N ,下列结论:①AF ⊥BG ;②;③S 四边形CGNF =S △ABN ;④.其中正确的有( )A .①②③B .②③④C .①②④D .①③④5.如图,在△ABC 中,∠ACB =90°,CD 、CE 分别是高和角平分线,已知△BEC 的面积是15,△CDE 的面积为3,则△ABC 的面积为( )A .22.5或20B .22.5C .24或20D .206.如图,在正方形ABCD 中,点E 、F 分别是BC 、DC 边上的两点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N .下列结论:①AB 2=BN •DM ;②AF 平分∠DFE ;③AM •AE =AN •AF ;④.其中正确的结论是( )A.①②B.①③C.①②③D.①②③④7.如图,▱ABCD中,E为AD的中点.已知△DEF的面积为1,则▱ABCD的面积为()A.9B.12C.15D.188.如图:把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB=,则此三角形移动的距离AA′是()A.﹣1B.C.1D.9.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若=,DE=4,则EF的长是()A.B.C.6D.1010.如图,正方形ABCD的边长为25,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则每个小正方形的边长为()A.6B.5C.D.11.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.B.C.D.12.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O 为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为()A.(2,2),(3,2)B.(2,4),(3,1)C.(2,2),(3,1)D.(3,1),(2,2)13.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5B.2.8C.3D.3.214.如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.二.填空题(共11小题)15.如图,△ABC中,AB=8,AC=6,点E在AB上且AE=3,点F在AC上,连接EF,若△AEF与△ABC相似,则AF=.16.如图,线段AB为⊙O的直径,点C在AB的延长线上,AB=4,BC=2,点P是⊙O上一动点,连接CP,以CP为斜边在PC的上方作Rt△PCD,且使∠DCP=60°,连接OD,则OD长的最大值为.17.如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接P A,以P A,PC为邻边作平行四边形P AQC,连接PQ,则PQ的最小值为.18.如图,四边形ABCD是平行四边形,E为BC边的中点,DE、AC相交于点F,若△CEF的面积为6,则△ADF的面积为.19.如图,在正方形ABCD中,AB=2,M为CD的中点,N为BC的中点,连接AM和DN交于点E,连接BE,作AH⊥BE于点H,延长AH与DN交于点F,连接BF并延长与CD交于点G,则MG的长度为.20.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.21.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①△ABE≌△DCF;②=;③DP2=PH•PB;④=.其中正确的是.(写出所有正确结论的序号)22.如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,AD⊥BC,那么EH的长为.23.如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.24.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A 和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是米.25.把标准纸一次又一次对开,可以得到均相似的“开纸”.现在我们在长为2、宽为1的矩形纸片中,画两个小矩形,使这两个小矩形的每条边都与原矩形纸的边平行,或小矩形的边在原矩形的边上,且每个小矩形均与原矩形纸相似,然后将它们剪下,则所剪得的两个小矩形纸片周长之和的最大值是.三.解答题(共20小题)26.如图,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2,点P、Q同时从点D出发,以相同的速度分别沿射线DC、射线DA运动.过点Q作AC的垂线段QR,使QR=PQ,连接PR,当点Q到达点A时,点P、Q 同时停止运动、设PQ=x,△PQR与△ABC重叠部分的面积为S,当x=时,点R恰好在AB边上.(1)填空:点R恰好经过AB边时,S的值为;(2)求S关于x的函数关系式,并写出x的取值范围.27.在△ABC中,∠ACB=45°.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.(2)如果AB>AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=,BC=3,CD=x,求线段CP的长.(用含x的式子表示)28.如图,在矩形ABCD中对角线AC、BD相交于点F,延长BC到点E,使得四边形ACED是一个平行四边形,平行四边形对角线AE交BD、CD分别为点G和点H.(1)证明:DG2=FG•BG;(2)若AB=5,BC=6,则线段GH的长度.29.如图,已知矩形OABC,以点O为坐标原点建立平面直角坐标系,其中A (2,0),C(0,3),点P以每秒1个单位的速度从点C出发在射线CO 上运动,连接BP,作BE⊥PB交x轴于点E,连接PE交AB于点F,设运动时间为t秒.(1)当t=2时,求点E的坐标;(2)若AB平分∠EBP时,求t的值;(3)在运动的过程中,是否存在以P、O、E为顶点的三角形与△ABE相似.若存在,请求出点P的坐标;若不存在,请说明理由.30.已知:如图边长为2的正方形ABCD中,∠MAN的两边分别交BC、CD边于M、N两点,且∠MAN=45°①求证:MN=BM+DN;②若AM、AN交对角线BD于E、F两点.设BF=y,DE=x,求y与x的函数关系式.31.如图,已知ED∥BC,∠EAB=∠BCF,(1)四边形ABCD为平行四边形;(2)求证:OB2=OE•OF;(3)连接OD,若∠OBC=∠ODC,求证:四边形ABCD为菱形.32.如图,在一块如图所示的三角形余料上裁剪下一个正方形,如果△ABC为直角三角形,且∠ACB=90°,AC=4,BC=3,正方形的四个顶点D、E、F、G分别在三角形的三条边上.求正方形的边长.33.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?34.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B 出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒(0<t<),连接MN.(1)若△BMN与△ABC相似,求t的值;(2)连接AN,CM,若AN⊥CM,求t的值.35.如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.36.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.37.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.38.如图,已知在矩形ABCD中,AD=8cm,CD=4cm,点E从点D出发,沿线段DA以每秒1cm的速度向点A方向移动,同时点F从点C出发,沿射线CD方向以每秒2cm的速度移动,当B、E、F三点共线时,两点同时停止运动.设点E移动的时间为t(秒),(1)求证:△BCF∽△CDE;(2)求t的取值范围;(3)连接BE,当t为何值时,∠BEC=∠BFC?39.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.40.如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45度.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当△ADE是等腰三角形时,求AE的长.41.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连接AM,以AM为边作等边△AMN,连接CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连接AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连接CN.试探究∠ABC与∠ACN的数量关系,并说明理由.42.在△ABC中,∠BAC=90°,AB=AC,点O在BC上(与B,C不重合),连接AO,F是线段AO上的点(与A,O不重合),∠EAF=90°,AE=AF,连接FE,FC,BE,BF.(1)如图1,若AO⊥BC,求证:BE=BF;(2)如图2,若将△AEF绕点A旋转,使边AF在∠BAC的内部,延长CF 交AB于点G,交BE于点K.①求证:△AGC∽△KGB;②当△BEF为等腰直角三角形时,请你直接写出AB:BF的值.43.在矩形ABCD中,AB=6cm,BC=8cm.(1)如图①,若动点Q从点C出发,在对角线CA上以每秒3cm的速度向A 点匀速移动,同时动点P从点B出发,在BC上以每秒2cm的速度向点C匀速移动,运动时间为t秒(0≤t<3),t取何值时,四边形ABPQ的面积最小?(2)如图②,若点Q在对角线CA上,CQ=4cm,动点P从点B出发,以每秒1cm的速度沿BC运动至点C停止.设点P运动了t秒,当t为何值时,以Q、P、C为顶点的三角形是等腰三角形?44.数学课上,王老师出示问题:如图1,将边长为5的正方形纸片ABCD折叠,使顶点A落在边CD上的点P处(点P与C、D不重合),折痕为EF,折叠后AB边落在PQ的位置,PQ与BC交于点G.(1)观察操作结果,在图1中找到一个与△DEP相似的三角形,并证明你的结论;(2)当点P在边CD的什么位置时,△DEP与△CPG面积的比是9:25?请写出求解过程;(3)将正方形换成正三角形,如图2,将边长为5的正三角形纸片ABC折叠,使顶点A落在边BC上的点P处(点P与B、C不重合),折痕为EF,当点P在边BC的什么位置时,△BEP与△CPF面积的比是9:25?请写出求解过程.45.已知:如图,△ABC中,AD⊥BC,过点D作DE⊥AB,DF⊥AC,连接EF,(1)若AD2=BD•DC,①求证:∠BAC=90°.②AB=4,DC=6,求EF.(2)如图2,若AD=4,BD=2,DC=4,求EF.。
八上全等三角形压轴题一、已知三角形ABC与三角形DEF全等,且AB=DE,BC=EF,若角A=50度,则角D的度数为?A. 50度B. 60度C. 80度D. 130度(答案)A解析:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应角相等,所以角D 等于角A,即50度。
二、在三角形ABC中,AB=AC,D是BC的中点,E是AD上的一点,且AE=1/3AD,连接BE并延长交AC于F,则AF与FC的长度比为?A. 1:2B. 1:3C. 2:3D. 3:4(答案)C解析:由于D是BC的中点,且AB=AC,所以AD垂直平分BC。
根据相似三角形的性质,可以得出三角形AEB与三角形ABC相似,进而得出AF与FC的长度比。
三、已知三角形ABC与三角形DEF全等,且AB=DE,AC=DF,若角B=60度,角C=80度,则角E的度数为?A. 40度B. 60度C. 80度D. 100度(答案)A解析:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应角相等。
已知角B 和角C的度数,可以求出角A的度数,进而得出角E的度数。
四、在三角形ABC中,AB=AC,D是AB上的一点,且AD=1/2AB,E是AC上的一点,且AE=2/3AC,连接DE并延长交BC于F,则BF与FC的长度比为?A. 1:2B. 1:3C. 2:3D. 3:5(答案)D解析:过D做AC的平行线交BC于G,由于D是AB的中点,所以DG是三角形ABC的中位线,根据中位线的性质,可以得出DG与AC的长度关系以及角DGB的度数。
再根据相似三角形的性质,可以得出BF与FC的长度比。
五、已知三角形ABC与三角形DEF全等,且AB=DE,BC=EF,若三角形ABC的周长为18,三角形DEF的面积为9,则三角形ABC的面积为?A. 3B. 6C. 9D. 12(答案)C解析:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,它们的面积相等。
人教版数学八年级上册第十二章全等三角形压轴题训练1.已知,是等腰直角三角形,,点在轴负半轴上,直角顶点在轴上,点在轴左侧.如图,若的坐标是,点的坐标是,求点的坐标;如图,若点的坐标为,与轴交于点,求线段的长;如图,若轴恰好平分,与轴交于点,过点作轴于点,则、、间有怎样的数量关系?并说明理由.2.如图,在平面直角坐标系中,直线分别交轴、轴于、两点,且,满足,且,是常数.直线平分,交轴于点.若的中点为,连接交于,求证:;如图,过点作,垂足为,猜想与间的数量关系,并证明你的猜想;如图,在轴上有一个动点在点的右侧,连接,并作等腰,其中,连接并延长交轴于点,当点在运动时,的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.3.如图,点,分别在直线,上,,顶点在点右侧的两边分别交线段于,直线于,,,交直线于点.若平分,求证:;已知的平分线与的平分线交于点请把图形补完整,并证明:.4.解答下列问题:如图,,射线在这个角的内部,点、分别在的边、上,且,于点,于点求证:如图,点、分别在的边、上,点、都在内部的射线上,、分别是、的外角已知,且求证:如图,在中,,点在边上,,点、在线段上,若的面积为,求与的面积之和.5.在平面直角坐标系中,直线与两坐标轴分别交于点与点,以为边作直角三角形,并且.如图,若点在第三象限,请构造全等,求出点的坐标;若点不在第三象限,请直接写出所有满足条件的点的坐标;在的条件下,过点作交轴于点,求证:.6.已知,点在上以的速度由点向点运动,同时点在上由点向点运动.它们运动的时间为.如图,,,若点的运动速度与点的运动速度相等,当时,与是否全等,请说明理由,并判断此时线段和线段的位置关系;如图,将图中的“,”为改“”,其他条件不变.设点的运动速度为,是否存在实数,使得与全等?若存在,求出相应的、的值;若不存在,请说明理由.7.如图,点,将一个的角尺的直角顶点放在点处,角尺的两边分别交轴、轴正半轴于,即,求证:平分;作的平分线交于点,过点作轴于,求的值;把角尺绕点旋转时,的值是否会发生变化?若发生变化请说明理由;若不变请求出这个值.8.画,并画的平分线.图图图将一块足够大的三角尺的直角顶点落在射线的任意一点上,并使三角尺的一条直角边与垂直,垂足为点,另一条直角边与交于点如图证明:;把三角尺绕点旋转,三角尺的两条直角边分别交、于点、如图,与相等吗?请直接写出结论:_____填,,;若点在的反向延长线上,其他条件不变如图,与相等吗?若相等请进行证明,若不相等请说明理由.9.如图,,点是的中点,直线于点,点在直线上,直线点以每秒个单位长度的速度,从点沿路径向终点运动,运动时间设为秒.如图,当时,作直线于点,此时与全等吗请说明理由.如图,当点在上时,作于点,于点.是否存在或与全等的时刻若存在,求出的值若不存在,请说明理由.连接,当时,求的长.10.如图,已知在四边形中,,点、分别是边、上的点,连接、、,.直接写出、、三者之间的数量关系____________________;若,猜想线段、、三者之间有怎样的数量关系?并加以证明;如图,若点、分别是、延长线上的点,且,其它条件不变时,猜想线段、、三者之间有怎样的数量关系?并加以证明.11.如图:在四边形中,,,,,分别是,上的点,且探究图中线段,,之间的数量关系。
第11章三角形压轴题训练1.如图1的图形我们把它称为“8字形”,显然有;阅读下面的内容,并解决后面的问题:(1)如图2,AP、CP分别平分、,若,,求的度数;(2)①在图3中,直线AP平分的外角,CP平分的外角,猜想与、的关系,并说明理由.②在图4中,直线AP平分的外角,CP平分的外角,猜想与、的关系,直接写出结论,无需说明理由.③在图5中,AP平分,CP平分的外角,猜想与、的关系,直接写出结论,无需说明理由.2.如图,在中,,D为射线上一点,过点D作于点E.(1)如图①,当点在线段上时,请直接写出与的数量关系;(2)如图②,当点在的延长线上时,交的延长线于点,探究与的数量关系,并说明理由;(3)在()的条件下,若点为线段上一点,过点作于点,连接,且,,延长,交于点,求的度数.3.如图,直线MN的同侧放置着角度分别为45°、45°、90°的三角板OAB和角度分别为30°、60°、90°的三角板OCD.点A、O、C在直线MN上,点O、B、D三点共线,OA=OB=OC=3cm.(1)如图1,连接BC,则∠BCD=_________.(2)如图2,把三角板OAB向右沿NM方向平移1cm得△,交OD于点G,求四边形的面积.(3)如图3,三角板OAB绕着点O旋转,当AB MN时,AB与OD交于点H,在OA上取一点P,∠PHO的角平分线HQ与线段BO的延长线交于点Q,试探索∠AHP与∠HQB 的数量关系,并说明理由.(4)如图4,若将图1中的三角板OAB绕着点O以每秒5°的速度顺时针旋转一周,当边OA或OB与边CD平行时,求旋转时间t的值.4.如图,已知AB CD,直线MN交AB于点M,交CD于点N.点E是线段MN上一点,P,Q分别在射线MA,NC上,连接PE,QE,PF平分∠MPE,QF平分∠CQE.(1)如图1,若PE⊥QE,∠EQN=64°,则∠MPE=°,∠PFQ=°.(2)如图2,求∠PEQ与∠PFQ之间的数量关系,并说明理由.(3)如图3,当PE⊥QE时,若∠APE=150°,∠MND=110°,过点P作PH⊥QF交QF 的延长线于点H.将直线MN绕点N顺时针旋转,速度为每秒5°,直线MN旋转后的对应直线为,同时△FPH绕点P逆时针旋转,速度为每秒10°,△FPH旋转后的对应三角形为△,当直线MN首次落到CD上时,整个运动停止.在此运动过程中,经过t秒后,直线恰好平行于△的一条边,请直接写出所有满足条件的t的值.5.如图,在中,点D在上,过点D作,交于点E,平分,交的平分线于点P,与相交于点G,的平分线与相交于点Q.(1)若,则____________,____________;(2)若,当的度数发生变化时,的度数是否发生变化?并说明理由;(3)若,则____________,____________;(用含x的代数式表示);(4)若中存在一个内角等于另一个内角的三倍,请直接写出所有符合条件的的度数.6.在平面直角坐标系中,,,直角三角形的边与轴分别相交于、两点,与直线分别交于、点,.(1)将直角三角形如图位置摆放,如果,则______;(2)将直角三角形如图位置摆放,为上一点,①若,请直接写出与之间的等量关系:______;②若,请判断与之间的等量关系,并说明理由.(3)将直角三角形如图位置摆放,若,延长交于点,点是射线上一动点,探究,与的数量关系,请直接写出结论题中的所有角都大于小于:______.7.在中,(1)如图(1),、的平分线相交于点.①若,求的度数.②若,则_________.(2)如图(2),在中的外角平分线相交于点,,求的度数.(3)如图(3),的、的平分线相交于点,它们的外角平分线相交于点.请回答:与具有怎样的数量关系?并说明理由.8.(1)如图1,∠A=70°,BP、CP分别平分∠ABC和∠ACB,则∠P的度数是 .(2)如图2,∠A=70°,BP、CP分别平分∠EBC和∠FCD,则∠P的度数是 .(3)如图3,∠A=70°,BP、CP分别平分∠ABC和∠ACD,求∠P的度数.9.如图,,点A、分别在、上运动(不与点重合).(1)若是的平分线,的反方向延长线与的平分线交于点.①若,则______;②猜想:的度数是否随A,的移动发生变化?并说明理由.(2)如图,若,,则______;(3)若将改为(如图3),,,其余条件不变,则______(用含,的代数式表示,其中).10.(1)如图1,F是OC边上一点,求证:∠AFC=∠AOC+∠OAF;(2)如图2,∠AOB=36°,OC平分∠AOB,点D、E在射线OA、OC上,点P是射线OB 上的一个动点,连接DP交射线OC于点F.设∠EDP=x,若DE⊥OA,是否存在这样的x使得∠EFD=3∠EDF?若存在,求出x;若不存在,说明理由;(3)在(2)的条件下,若射线DA绕点D顺时针旋转至DO后立即回转,射线EO绕点E顺时针旋转至ED停止,射线DA转动的速度是4.5°/s,射线EO转动的速度是1°/s.若射线DA先旋转2s,射线EO才开始绕点E顺时针旋转,在射线EO到达ED之前,射线EO旋转到第________s时,射线DA与射线EO互相平行.11.已知AD∥BC,∠ADB=28°,点E在直线BD上,点F在射线BC上,E不与B、D 重合,F不与B、C重合.(1)如图1,当点E在线段BD的延长线上,点F在线段BC上时,连EF,求证:∠EFB +∠DEF=152°;(2)如图2,当点E在直线DB上运动,点F在线段BC上时,连EF,探究∠EFB与∠DEF 之间的数量关系,并说明理由;(3)如图3,当点E在线段BD延长线上,点Q在线段BC延长线上,点F在射线BC上,且点Q在点F的右侧时,直线DP平分∠ADE,直线FP平分∠EFQ,DP、FP交于点P,直接写出∠DEF和∠DPF的关系.12.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,AD、BC的延长线交于点F,点A、B在运动的过程中,∠F=;DE、CE又分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小也不发生变化,其大小为∠CED=.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于E、F,则∠EAF= ;在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.13.如图1,直线GH分别交AB,CD于点E,F(点F在点E的右侧),若∠1+∠2=180°.(1)求证:AB CD;(2)如图2所示,点M、N在AB,CD之间,且位于E,F的异侧,连MN,若2∠M=3∠N,则∠AEM,∠NFD,∠N三个角之间存在何种数量关系,并说明理由.(3)如图3所示,点M在线段EF上,点N在直线CD的下方,点P是直线AB上一点(在E的左侧),连接MP,PN,NF,若∠MPN=2∠MPB,∠NFH=2∠HFD,则请直接写出∠PMH与∠N之间的数量.14.【问题背景】(1)如图1的图形我们把它称为“8字形”,请说明;【简单应用】(2)阅读下面的内容,并解决后面的问题:如图2,AP、CP分别平分∠BAD,∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数;解:∵AP、CP分别平分∠BAD,∠BCD∴∠1=∠2,∠3=∠4由(1)的结论得:①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D∴∠P =(∠B+∠D)=26°.①【问题探究】如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想的度数,并说明理由.②【拓展延伸】在图4中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为:(用α、β表示∠P),并说明理由.15.如图1,在平面直角坐标系中,,过C作轴于B.(1)如图1,则三角形的面积_____________;(2)如图2,若过B作交y轴于D,则的度数为_____________;若分别平分,求的度数;(3)若线段与y轴交点M坐标为,在y轴上是否存在点P,使得三角形和三角形的面积相等?若存在,求出P点坐标;若不存在,请说明理由.16.如图,已知点E在四边形ABCD的边BC的延长线上,BM、CN分别是∠ABC、∠DCE 的角平分线,设∠BAD=α,∠ADC=β.(1)如图1,若α+β=180°,判断BM、CN的位置关系,并说明理由:(2)如图2,若α+β>180°,BM、CN相交于点O.①当α=70°,β=150°时,则∠BOC=_______;②∠BOC与α、β有怎样的数量关系?说明理由.(3)如图3,若α+β<180°,BM、CN的反向延长线相交于点O,则∠BOC=______.(用含α、β的代数式表示).17.已知:直线,动点在直线上运动,探究,,之间的关系.(1)【问题发现】若,,求的度数.(2)【结论猜想】当点在线段上时,猜想,,三个角之间的数量关系,并说明理由.(3)【拓展延伸】若点在射线上或者在射线上时(不包括端点),试着探究,,之间的关系是否会发生变化,请挑选一种情形画出图形,写出结论,并说明理由.18.中,,点D,E分别是边AC,BC上的点,点P是一动点,令,,.初探:(1)如图1,若点P在线段AB上,且,则_____________;(2)如图2,若点P在线段AB上运动,则∠1,∠2,之间的关系为_____________;(3)如图3,若点P在线段AB的延长线上运动,则∠1,∠2,之间的关系为_____________;再探:(4)如图4,若点P运动到的内部,写出此时∠1,∠2,之间的关系,并说明理由.19.如图,AB、CD被AC所截,,∠CAB=108°,点P为直线AB上一动点(不与点A重合),连CP,作∠ACP和∠DCP的平分线分别交直线AB于点E、F.(1)当点P在点A的右侧时①若∠ACP=36°,则此时CP是否平分∠ECF,请说明理由.②求∠ECF的度数.(2)在点P运动过程中,直接写出∠APC与∠AFC之间的数量关系.20.已知,如图,AB CD,直线交于点,交于点点是线段上一点,,分别在射线,上,连接,,平分,平分.(1)如图,当时,______;(2)如图,猜想与之间的数量关系,并说明理由;(3)如图,在问的条件下,若,,过点作交的延长线于点将绕点顺时针旋转,速度为每秒,直线旋转后的对应直线为,同时绕点逆时针旋转,速度为每秒,旋转后的对应三角形为,当首次落到上时,整个运动停止.在此运动过程中,经过秒后,恰好平行于的其中一条边,请直接写出所有满足条件的的值.参考答案:1.(1)(2)①,理由见解析;②;③【分析】(1)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠P+∠3=∠1+∠ABC,∠P+∠2=∠4+∠ADC,相加得到2∠P+∠2+∠3=∠1+∠4+∠ABC+∠ADC,继而得到2∠P=∠ABC+∠ADC,代入数据得∠P的值;(2)①按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠PAD+∠P=∠PCD+∠D,∠PAB+∠P=∠4+∠B,分别用∠2,∠3表示出∠PAD 和∠PCD,再整理即可得解;②按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠BAP+∠P+∠4+∠B=360°,∠2+∠P+∠PCD+∠D=360°,分别用∠2,∠3表示出∠BAP 和∠PCD,再整理即可得解;③按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠BAD+∠B=∠BCD+∠D,∠2+∠P=∠PCD+∠D,分别用∠2,∠3表示出∠BAD、∠BCD 和∠PCD,再整理即可得解;(1)解:∵AP、CP分别平分∠BAD、∠BCD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,由(1)的结论得:∠P+∠3=∠1+∠ABC①,∠P+∠2=∠4+∠ADC②,①+②,得2∠P+∠2+∠3=∠1+∠4+∠ABC+∠ADC,∴2∠P=∠ABC+∠ADC,∴∠P=(∠ABC+∠ADC)=(36°+16°)=26°.(2),理由如下:①∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4.由(1)的结论得:∠PAD+∠P=∠PCD+∠D③,∠PAB+∠P=∠4+∠B④,∵∠PAB=∠1,∠1=∠2,∴∠PAB=∠2,∴∠PAD=∠PAB+∠BAD=∠2+180°-2∠2=180°-∠2,∴∠2+∠P=∠3+∠B⑤,③+⑤得∠2+∠P+∠PAD+∠P=∠3+∠B+∠PCD+∠D,∴∠2+∠P+180°-∠2+∠P=∠3+∠B+180°-∠3+∠D即2∠P+180°=∠B+∠D+180°,∴.②,理由如下:如图4,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∠BAD=180°﹣2∠1,∠BCD=180°﹣2∠3,由题干可知:∠BAD+∠B=∠BCD+∠D,∴(180°﹣2∠1)+∠B=(180°﹣2∠3)+∠D,在四边形APCB中,∠BAP+∠P+∠3+∠B=360°,即(180°﹣∠2)+∠P+∠3+∠B=360°,⑥在四边形APCD中,∠2+∠P+∠PCD+∠D=360°,即∠2+∠P+(180°﹣∠3)+∠D=360°,⑦⑥+⑦得:2∠P+∠B+∠D+∠2﹣∠2+∠3﹣∠3=360°∴2∠P+∠B+∠D=360°,∴;③,理由如下:如图5,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,由题干结论得:∠BAD+∠B=∠BCD+∠D,即2∠2+∠B=(180°﹣2∠3)+∠D⑧,∠2+∠P=∠PCD+∠D,即∠2+∠P=(180°﹣∠3)+∠D⑨,⑨×2﹣⑧得:2∠P﹣∠B=180°+∠D,∴.【点评】本题考查了三角形的内角和定理,角平分线的定义,准确识图并运用好“8”字形的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.2.(1)∠BAC=2∠EDC(2)∠BAC=2∠EDC,理由见解析(3)∠EKA=18°【分析】(1)如图1中,作AH⊥BC于H,利用等腰三角形的性质,等角的余角相等解决问题即可;(2)作AM⊥BC于M,由(1)同理可证∠BAC=2∠EDC;(3)如图2中,设∠C=∠FAC=∠ABC=x,则∠BAF=∠BFA=2x,构建方程求出x即可解决问题.(1)如图1中,作AH⊥BC于H,∵,∴∠BAC=2∠CAH.∵DE⊥AC,∴∠AHC=∠DEC=90°,∴∠C+∠CAH=90°,∠C+∠CDE=90°,∴∠CAH=∠CDE,∴∠BAC=2∠EDC.(2)结论:∠BAC=2∠EDC.理由如下:如图2中,作AM⊥BC于M,∵AB=AC,∴∠BAC=2∠CAM.∵DE⊥AC,∴∠AMC=∠DEC=90°,∴∠C+∠CAM=90°,∠C+∠CDE=90°,∴∠CAM=∠CDE,∴∠BAC=2∠EDC.(3)∵∠AFG=∠CFG,FG⊥AC,∴∠FAC=∠C.设∠C=∠FAC=∠ABC=x,∴∠BAF=∠BFA=2x.在△BAF中,∠BAF+∠BFA+∠ABC=180°,∴2x+2x+x=180°,解得:x=36°,∴∠EAK=∠ABC+∠C=36°+36°=72°.∵KE⊥EC,∴∠E=90°,∴∠EKA=90°−∠EAK=18°.【点评】本题考查等腰三角形的判定及性质,等角的余角相等,三角形内角和定理,直角三角形两锐角互余,三角形外角的性质等知识.解题的关键是学会利用参数构建方程解决问题.3.(1)15(2)四边形的面积=(2+3) ×1=2.5;(3)∠AHP=2∠HQB;(4)旋转时间t的值为12或30或48或66秒.【分析】(1)求得∠OBC =∠BCO=45°,利用角的和差即可求解;(2)求得AO= GO=3-1=2(cm),利用梯形面积公式即可求解;(3)由角平分线的定义得到并设∠PHQ=∠QHO=α,推出∠AHP+2α=90°,∠HQB+α=∠BOH=45°,消去α即可求解;(4)分四种情况讨论,画出图形,利用解方程的方法求解即可.(1)解:∵OA=OB=OC=3cm,∠AOB=∠BOC=90°,∠DCO=60°,∴∠OBC =∠BCO=45°,∴∠BCD=∠DCO-∠BCO=15°,故答案为:15;(2)解:∵=1cm,∠GAO=45°,∴AO= GO=3-1=2(cm),∴四边形的面积=(2+3) ×1=2.5();(3)解:∠AHP=2∠HQB,理由如下:∵HQ平分∠PHO,∴∠PHQ=∠QHO,设∠PHQ=∠QHO=α,∵AB MN,∴∠BOC=∠B=45°,∠AHO=∠HOC=90°,∴∠BOH=45°,∴∠AHP+2α=90°,∠HQB+α=∠BOH=45°,∴∠AHP+2α=2∠HQB+2α=90°,∴∠AHP=2∠HQB;(4)解:由题意得旋转的角度为5t,当OA CD时,如图:∴∠AOD=∠D=30°,∠AON=90°-30°=60°,∴5t=60,解得:t=12(秒);当OB CD时,如图:∴∠BOC=∠DCO=60°,∴∠AOC=90°-60°=30°,∴∠AON=180°-30°=150°,∴5t=150,解得:t=30(秒);当OA CD时,如图:∴∠AOC=∠DCO=60°,∴5t=180+60,解得:t=48(秒);当OB CD时,如图:∴∠BON=∠DCO=60°,∴∠AON=90°-60°=30°,∴5t=360-30,解得:t=66(秒);综上,当边OA或OB与边CD平行时,旋转时间t的值为12或30或48或66秒.【点评】本题目考查了平行线的性质,旋转的速度,角度,时间的关系,应用方程的思想是解决问题的关键.掌握分类思想,注意不能漏解.4.(1)26;135;(2)2∠PFQ-∠PEQ=180°,理由见解析;(3)t=或或.【分析】(1)延长PE交CD于G,设PE,FQ交于点H,设∠MPE=2α,则∠FPE=∠BPE=α,根据AB CD可表示出∠PGQ,进而根据三角形内角和推论表示出∠EQC,进而表示出∠EQH,然后结合△EQH和△PFH内角和得出关系式,进一步得出结果;(2)类比(1)的方法过程,得出结果;(3)分为△的三边分别与平行,分别画出图形求解即可.【详解】解:(1)如图1,延长PE交CD于G,设PE,FQ交于点H,设∠BPE=2α,则∠FPE=∠BPE=α,∵AB∥CD,∴∠PGQ=∠BPE=2α,∵PE⊥QE,∴∠QEH=QEG=90°,∴∠EQC=∠QEG+∠PGQ=90°+2α,∴∠EQH=∠EQC=45°+α,∵∠EQN=64°,∴∠EGQ=26°,∴∠BPE=26°.在△EQH和△PFH中,∵∠HEQ+∠HQE+∠EHQ=180°,∠FPH+∠FHP+∠PFH=180°,∠PHF=∠EHQ,∴∠HEQ+∠HQE=∠FPH+∠PFH,即:90°+45°+α=α+∠PFH,∴∠PFH=135°,故答案为:26;135;(2)2∠PFQ-∠PEQ=180°,理由如下:如图1,延长PE交CD于G,设PE,FQ交于点H,设∠BPE=2α,则∠FPE=∠BPE=α,∵AB CD,∴∠PGQ=∠BPE=2α,∵∠GEQ=180°-∠PEQ,∴∠EQC=∠QEG+∠PGQ=180°-∠PEQ+2α,∴∠HQE=∠EQC=90°+α-∠PEQ,在△EQH和△PFH中,∵∠PEQ+∠HQE+∠EHQ=180°,∠FPH+∠FHP+∠PFH=180°,∠PHF=∠EHQ,∴∠PEQ+∠HQE=∠FPH+∠PFH,即:∠PEQ+90°+α-∠PEQ=α+∠PFQ∴2∠PFQ-∠PEQ=180°;(3)根据题意,需要分三种情况:∵∠APE=150°,∴∠BPE=30°,∵PF平分∠MPE,∴∠FPE=∠BPF=15°,由(2)得2∠PFQ-∠PEQ=180°,又∠PEQ=90°,∴∠PFQ =135°,∴∠HPF=45°,∴∠HPB=30°,由题意得∠=10t,则∠=30+10t,∠=5t,则∠=110-5t,设与AB的交点为I,则∠=∠,如图3(1),当时,∠=∠=∠,110-5t=30+10t,∴t=,如图3(2),当时,∠=10t,则∠=30+10t,∴∠=∠-∠=90-(180-10t-30),同理∠=∠,∴90-(180-10t-30)=110-5t,∴t=,如图3(3),当时,∠=10t,则∠=5t-15,∴∠=∠,∴110-5t=10t-15,∴t=,综上所述:t=或或.【点评】本题考查了平行线的判定和性质,三角形内角和定理及其推论,四边形内角和等知识,解决问题的关键是正确分类,并找出相等关系列方程.5.(1)115,25(2)不发生变化,理由见解析(3),(4)45°,60°,120°,135°【分析】(1)由平行线的性质,角平分线的定义结合三角形内角和定理即可求解;(2)同理由平行线的性质,角平分线的定义结合三角形内角和定理即可求解;(3)将(2)中换成,同理即可求解;(4)设,由(3)可知,.再由不变,即可分类讨论①当时,②当时,③当时和④当时,分别列出关于x的等式,解出x即可.(1)∵,∴.∵平分,∴.∵,∴,.∵平分,∴.∴;∵,∴.∵CP平分,CQ平分,∴,.∵,∴,即,∴.故答案为:115,25;(2)当的度数发生变化时,、的度数不发生变化理由如下:∵,∴.∵,∴,.∵平分,平分,∴,.∴.∴由(1)可知不变,∴.∴当的度数发生变化时,、的度数不发生变化;(3)∵,∴.∵,∴,.∵平分,平分,∴,.∴.∴.由(1)可知不变,∴.故答案为:,;(4)设,由(3)可知,.∵,∴可分类讨论:①当时,∴,解得:,∴;②当时,∴,解得:,∴;③当时,∴,解得:,∴;④当时,∴,解得:,∴.综上可知或或或.【点评】本题考查平行线的性质,角平分线的定义,三角形内角和定理等知识.利用数形结合和分类讨论的思想是解题关键.6.(1)(2)①;②,见解析(3)或【分析】(1)过点作,可得轴,则,,结合,可得,即可得出答案.(2)①过点作轴,可得轴,则,,结合已知条件与邻补角的定义可得,根据,可得,结合,可得出答案.②由轴,可得,,结合已知条件与邻补角的定义可得,最后由,可得出答案.(3)当点在上时,或当点在线段的延长线上时,分别利用平行线的性质可得出答案.(1)解:过点作,,,轴,轴,,,,,,,.故答案为:.(2)解:①过点作轴,轴,,,,,,,,,,整理得.故答案为:..理由如下:轴,,,,,,,.(3)解:当点在上时,过点作,,,,,.当点在线段的延长线上时,,,,,,.故答案为:或.【点评】本题考查平行线的判定与性质、角的计算及坐标与图形,能够添加恰当的辅助线是解答本题的关键.7.(1)①;②;(2);(3)【分析】(1)①运用三角形的内角和定理及角平分线的意义,首先求出,进而求出,即可解决问题;②方法同①;(2)根据三角形的外角性质分别表示出和,再根据角平分线的性质求出,最后根据三角形内角和定理即可求解;(3)由(1)得,由(2)可得,两式相加即可得到结论.(1)解:①∵∠A=64°,∴∠ABC+∠ACB=116°,∵∠ABC、∠ACB的平分线相交于点P,∴,∴,∴,②∵∠A=n°,∴∠ABC+∠ACB=180°-n° ,∵∠ABC、∠ACB的平分线相交于点P,∴,∴,∴,故答案为:;(2)解:∵外角和的平分线相交于点Q,∴∴,∵,∴,(3)解:由(1)得,由(2)可得,∴【点评】本题主要考查了三角形内角和定理、外角的性质,角平分线定义等知识,灵活运用三角形内角和定理、外角的性质是解答本题的关键.8.(1)125°(2)55°(3)35°【分析】(1)根据三角形的内角和定理,角平分线的性质即可求解;(2)应用角平分线的性质,补角的概念即可求解;(3)综合(1)、(2)解题思路即可求解;【详解】解:(1)∵BP、CP分别平分∠ABC和∠ACB,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠PBC+∠PCB=(∠ABC+∠ACB),=×(180°﹣∠A)=55°,∴∠P=180°﹣(∠PCB+∠PBC)=125°,故答案为:125°.(2)∵∠EBC=∠A+∠ACB,∠FCB=∠A+∠ABC,∴∠EBC+∠FCB=∠A+∠ACB+∠A+∠ABC,=180°+70°=250°,∵BP、CP分别平分∠EBC和∠FCB,∴∠PBC=∠EBC,∠PCB=∠FCB,∴∠PBC+∠PCB=(∠EBC+∠FCB),=125°,∴∠P=180°﹣(∠PBC+∠PCB)=55°,故答案为:55°.(3)∠ACD=∠A+∠ABC,∵CP平分∠ACD,BP平分∠ABC,∴∠PBC=∠ABC,∠PCA=∠ACD=∠A+∠ABC,∵∠P=180°﹣(∠PBC+∠PCA+∠ACB),=∠A=35°,即∠P等于∠A的一半,答:∠P的度数是35°.【点评】本题主要考查三角形的内角和定理,三角形外角的性质,角平分线的性质,掌握相关知识并灵活应用是解题的关键.9.(1)①;②不随A,的移动发生变化,理由见解析(2)(3)【分析】(1)①先利用角平分线的定义求出,利用三角形内角和定理可得,即可得到,利用角平分线的定义可得,即可求解;②设,证明过程与①类似;(2)设,解题过程与(1)类似;(3)与(1)(2)类似,设出的度数,再进行推导即可.(1)解:①,平分,,,,,是的平分线,,,,,故答案为:;②的度数不随,的移动发生变化,理由如下:设,平分,,,,,是的平分线,,,,,的度数不随,的移动发生变化;(2)解:设,,,,,,,,,,,,,故答案为:;(3)解:设,,,,,,,,,,,,,故答案为:.【点评】本题考查三角形内角和定理,列代数式,角的计算等知识点,解题的关键是熟练掌握三角形内角和定理.10.(1)见解析;(2)存在,当x=27°或18°时,∠EFD=3∠EDF;(3)或.【分析】(1)根据三角形的内角和定理与平角的定义证明即可;(2)求出∠AOC=18°,然后分情况讨论:①若DP在DE左侧,求出∠FED=72°,根据三角形内角和定理可得x+3x+72°=180°,解方程可得x的值;②若DP在DE右侧,求出∠DEO =72°,根据三角形外角的性质可得x+3x=72°,解方程可得x的值;(3)分两种情况进行讨论:DP在DE左侧,DP在DE右侧,分别根据平行线的性质,列方程求解即可.【详解】(1)证明:由三角形的内角和定理可得:∠OAF+∠AOC+∠AFO=180°,∵∠AFC+∠AFO=180°,∴∠AFC=∠AOC+∠OAF;(2)解:存在这样的x的值,使得∠EFD=3∠EDF.∵∠AOB=36°,OC平分∠AOB,∴∠AOC=∠BOC=18°,分两种情况:①如图,若DP在DE左侧,∵DE⊥OA,∴∠FED=90°−18°=72°,∴x+3x+72°=180°,解得x=27°;②如图,若DP在DE右侧,∵DE⊥OA,∴∠DEO=90°−18°=72°,∵∠DEO=∠EDF+∠EFD,∴x+3x=72°,解得x=18°;综上所述,当x=27°或18°时,∠EFD=3∠EDF;(3)解:分两种情况:①当射线DA向DO旋转时,如图,当时,∠1=∠2,设射线EO旋转的时间为t秒,则∠1=(72−t)°,∠2=90−4.5(t+2)=(81-4.5t)°,∴72−t=81-4.5t,解得t=;②当射线DA由DO回转时,如图,当时,∠1=∠2,设射线EO旋转时间为t秒,则∠1=(72−t)°,∠2=4.5(t+2)−270=(4.5t-261)°,∴72−t=4.5t-261,解得t=;综上,射线EO旋转到第或s时,射线DA与射线EO互相平行,故答案为:或.【点评】本题考查了三角形内角和定理,三角形外角的性质,平行线的性质,一元一次方程的应用等知识,掌握三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和是解题的关键,另外在解题时注意分类讨论思想的运用.11.(1)见详解(2)当E点线段BD的延长线上时,∠EFB+∠DEF=152°;当E点在线段BD上(不含端点)时,∠DEF-∠EFB=28°;当E点在线段DB的延长线上时,∠DEF+∠EFB=28°,理由见详解(3)2∠DPF-∠DEF=180°,理由见详解【分析】(1)根据,可得∠ADB=∠DBF,再根据三角形内角和定理即可求证;(2)根据E点位置不同,分当E点线段BD的延长线上时、当E点在线段BD上(不含端点)时、当E点在线段DB的延长线上时,三种情况讨论,利用三角形的外角的定义与性质即可求解;(3)设DP交EF于点N,M点是PD延长线上的一点,延长DP交BQ于点G,根据DP平分∠ADE,可得∠ADM=∠EDM=76°,在根据,可得∠PGF=∠ADM,由PF平分∠EFQ,得到∠PFG=∠EFQ,再根据三角形的外角的定义与性质有∠DPF=∠PGF+∠PFG,∠DBF+∠DEF=∠EFQ,即可求解.(1)∵,∴∠ADB=∠DBF,∵∠ADB=28°,∴∠DBF=28°,∵∠DBF+∠EFB+∠DEF=180°,∴∠EFB+∠DEF=180°-∠DBF=180°-28°=152°,得证;(2)根据E点位置不同,∠EFB与∠DEF之间的数量关系也不同,当E点线段BD的延长线上时,∠EFB+∠DEF=152°;当E点在线段BD上(不含端点)时,∠DEF-∠EFB=28°;当E点在线段DB的延长线上时,∠DEF+∠EFB=28°,理由如下,分情况讨论,第一种情况,当E点线段BD的延长线上时,根据(1)的结果可知:∠EFB+∠DEF=152°;第二种情况,当E点在线段BD上(不含端点)时,如图,∵∠EFB+∠DBF=∠DEF,又∵∠DBF=28°,∴∠EFB+28°=∠DEF,∴∠DEF-∠EFB=28°,此时数量关系为:∠DEF-∠EFB=28°;第三种情况,当E点在线段DB的延长线上时,如图,∵∠EFB+∠DEF=∠DBF,又∵∠DBF=28°,∴∠EFB+∠DEF=∠DBF=28°,∴∠EFB+∠DEF=28°,此时数量关系为:∠DEF+∠EFB=28°;(3)2∠DPF-∠DEF=180°,理由如下,设DP交EF于点N,M点是PD延长线上的一点,延长DP交BQ于点G,如图,∵∠ADB=28°,∴∠ADE=180°-28°=152°,∵DP平分∠ADE,∴∠ADM=∠EDM=∠ADE=76°,∵,∴∠PGF=∠ADM=76°,∵PF平分∠EFQ,∴∠PFG=∠EFQ,∵∠DPF=∠PGF+∠PFG,∠PGF=76°,∴∠DPF=76°+∠EFQ,∵∠DBF=28°,∠DBF+∠DEF=∠EFQ,∴∠DPF=76°+∠EFQ=76°+(28°+∠DEF),∴2∠DPF-∠DEF=180°,得证.【点评】本题主要考查了平行线的性质、三角形的外角定义及性质、角平分线的性质等知识.注重分类讨论的思想是解答本题的关键.12.(1)不变,∠AEB=135°;(2)45°,67.5°;(3)90°;∠ABO的度数为60°或45°.【分析】(1)先求出∠BAO+∠ABO=90°,结合角平分线的定义可得∠BAE+∠ABE=45°,再利用三角形的内角和定理可求解∠AEB的度数;(2)由平角的定义求出∠BAP+∠ABM=270°,利用角平分线的定义可求∠DAB+∠ABC=135°,利用三角形的内角和定理可求出∠F,然后根据四边形的内角和定理可得∠ADC+∠BCD=225°,再由角平分线的定义及三角形的内角和定理可求解;(3)先求出∠EAF=90°,∠ABO=2∠E,然后根据△AEF中,有一个角是另一个角的3倍分4种情况求解即可.(1)解:不变,∵MN⊥PQ,∴∠AOB=90°,∵∠AOB+∠BAO+∠ABO=180°,∴∠BAO+∠ABO=90°,∵AE平分∠BAO,BE平分∠ABO,∴∠BAE=∠BAO,∠ABE=∠ABO,∴∠BAE+∠ABE=45°,∵∠BAE+∠ABE+∠AEB=180°,∴∠AEB=135°;(2)∵∠ABO+∠BAO=90°,∴∠BAP+∠ABM=180°+180°−90°=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠DAB=∠BAP,∠ABC=∠ABM,∴∠DAB+∠ABC=135°,∴∠F=180°-∠DAB-∠ABC=45°,又∵∠DAB+∠ABC+∠ADC+∠BCD=360°,∴∠ADC+∠BCD=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE=∠ADC,∠DCE=∠BCD,∴∠CDE+∠DCE=112.5°,∴∠CED=180°-∠CDE-∠DCE=67.5°,故答案为:45°,67.5°;(3)∵AE平分∠BAO,AF平分∠OAG,∴∠EAO=∠BAO,∠FAO=∠OAG,∵∠BAO+∠OAG=180°,∴∠EAO+∠FAO=90°,即∠EAF=90°,∵OE平分∠BOQ,∴∠BOQ=2∠EOQ,∵∠EOQ=∠E+∠OAE,∠BOQ=∠ABO+∠BAO,∴∠ABO=2∠E,在△AEF中,∵有一个角是另一个角的3倍,故有4种情况:①∠EAF=3∠E=90°时,则∠E=30°,∠ABO=60°;②∠EAF=3∠F=90°时,则∠F=30°,∴∠E=90°-30°=60°,∴∠ABO=120°,(不合题意,舍去);③∠F=3∠E时,∵∠E+∠F=90°,∴∠E=22.5°,∴∠ABO=45°;④∠E=3∠F时,∵∠E+∠F=90°,∴∠E=67.5°,∴∠ABO=135°,(不合题意,舍去);综上,∠ABO的度数为60°或45°.故答案为:90°.【点评】本题主要考查了三角形的内角和定理,角平分线的定义,三角形外角的性质,四边形的内角和问题,灵活运用三角形的内角和是180°,四边形的内角和是360°来求解角的度数是解题的关键.13.(1)见解析(2),理由见解析(3),理由见解析【分析】(1)根据平行线的判定定理即可得到结论;(2)设,,,,过作,过作,推出,根据平行线的性质得到,,得到,于是得到结论;(3)设,,,,根据平行线的性质得到,由三角形的外角的性质得到,根据平角的定义得到,于是得到结论.(1)解:,,,,;(2)解:设,,,,过作,过作,,,,,,,,,,,;(3)解:,,设,,,,,,,,,,,,.【点评】本题考查了平行线的判定和性质,四边形的内角和,三角形的外角的性质,解题的关键是正确的识别图形.14.(1)见解析;(2)①26°,理由见解析;②∠P=α+β,理由见解析【分析】(1)根据三角形内角和定理即可证明.(2)【问题探究】由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠ADC+(180°-∠3),∠P+∠1=∠ABC+∠4,推出2∠P=∠ABC+∠ADC,即可解决问题.【拓展延伸】由(1)的结论易求∠P+∠PDC=∠C+∠CAP,∠P+∠PAB=∠B+∠BDP,再将已知条件代入化简即可求解∠P.【详解】(1)证明:∵∠A+∠B+∠AEB=180°,∠C+∠D+∠CED=180°,∴∠A+∠B+∠AEB=∠C+∠D+∠CED,∵∠AEB=∠CED,∴∠A+∠B=∠C+∠D;(2)①解∶如图3,∵AP平分∠FAD,CP平分∠BCE∴∠1=∠2,∠3=∠4,∵∠PAD=180°-∠2,∠PCD=180°-∠3,∴由(1)可得:∠P+180°-∠2=∠D+180°-∠3,∠P+∠PAB=∠B+∠4,又∠1=∠PAB,∴∠P+∠1=∠B+∠4,又∠P+180°-∠2=∠D+180°-∠3,∴2∠P+∠1+180°-∠2=∠B+∠4+∠D+180°-∠3,又∠1=∠2,∠3=∠4,∴2∠P=∠B+∠D∴∠P =(∠B+∠D)=26°②解:∠P=α+β.理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠CAB,∠BDP=∠CDB,由(1)可得:∠P+∠PDC=∠C+∠CAP,∠P+∠PAB=∠B+∠BDP,∴∠P+∠CDB =∠C+∠CAB,①∠P+∠CAB=∠B+∠CDB,②①×2+②,得2∠P+∠CDB+∠P+∠CAB=2∠C+∠CAB+∠B+∠CDB,∴3∠P=2∠C+∠B∴∠P==α+β.【点评】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型.15.(1)4;(2)90°,45°;(3)存在,或.【分析】(1)根据题意求出BC=2,AB=OA+OB=4,根据三角形面积公式即可求出三角形的面积为;(2)根据题意求出∠OBD+∠ODB=90°,根据得到∠OBD=∠BAC,即可得到;连接,得到,,,根据三角形内角和为180°和即可求出;(2)设P点坐标为,根据三角形和三角形的面积相等,得到,求出或,问题得解.(1)解:∵,轴,∴BC=2,AB=OA+OB=4,∴三角形的面积为;故答案为:4(2)解:∵OB⊥OD,∴∠BOD=90°,∴∠OBD+∠ODB=90°,∵∴∠OBD=∠BAC,∴,故答案为:90°;连接,如图2,∵,分别平分,,∴,,∴,∵,即,而,∴,∴;(3)解:存在.如图3,设P点坐标为,∵三角形和三角形的面积相等,∴,即,即∴或,∴P点坐标为或.【点评】本题考查了平面直角坐标系中点的坐标特点,三角形的内角和,直角三角形两锐角互余等知识,综合性较强,难度较大,理解相关知识并根据题意灵活应用是解题关键.16.(1)BM CN,理由见解析(2)①20°;②,理由见解析(3)【分析】(1)由α+β=180°先判断AB CD,根据平行线的性质得出∠DCE=∠ABC,再由角平分线的性质证得结论;(2)①根据α和β的度数,求出∠ABC+∠BCD,根据角平分线的性质可知,∠ECN=∠DCN,∠CBM=∠ABM,设∠ECN=∠DCN=x,∠CBM=∠ABM=y,利用外角表示∠BOC即可;②根据α和β的度数,求出∠ABC+∠BCD=180°-(α+β),根据角平分线的性质可知,∠ECN=∠DCN,∠CBM=∠ABM,设∠ECN=∠DCN=x,∠CBM=∠ABM=y,利用外角表示∠BOC 即可;(3)根据α和β的度数,求出∠ABC+∠BCD=180°-(α+β),根据角平分线的性质可知,∠ECN=∠DCN,∠CBM=∠ABM,设∠ECN=∠DCN=x,∠CBM=∠ABM=y,利用外角表示∠BOC 即可.(1)解:CN BM,理由如下:∵α+β=180°,∴AB CD,∴∠DCE=∠ABC,∵BM、CN分别是∠ABC、∠DCE的角平分线,∴∠ECN=∠CBM,∴CN BM;(2)解:①∵α=70°,β=150°,∴∠ABC+∠BCD=360°-70°-150°=140°,∵BM、CN分别是∠ABC、∠DCE的角平分线,∴∠ECN=∠DCN,∠CBM=∠ABM,设∠ECN=∠DCN=x,∠CBM=∠ABM=y,∵∠ECN=∠BOC+∠CBM,∴x=∠BOC+y,∴∠BOC=x-y,∵∠ECD+∠DCB=180°,∴2x+140°-2y=180°,∴x-y=20°,∴∠BOC=20°.故答案为:20°;②∠BOC=,理由如下:∵四边形内角和为360°,∴∠ABC+∠BCD=360°-(α+β),∵BM、CN分别是∠ABC、∠DCE的角平分线,∴∠ECN=∠DCN,∠CBM=∠ABM,设∠ECN=∠DCN=x,∠CBM=∠ABM=y,∵∠ECN=∠BOC+∠CBM,∴x=∠BOC+y,∴∠BOC=x-y,∵∠ECD+∠DCB=180°,∴2x+360°-(α+β)-2y=180°,∴,∴∠BOC=;(3)解:∠BOC=,理由如下:∵四边形内角和为360°,∴∠ABC+∠BCD=360°-(α+β),∵BM、CN分别是∠ABC、∠DCE的角平分线,∴∠ECN=∠DCN,∠CBM=∠ABM,设∠ECN=∠DCN=x,∠CBM=∠ABM=y,∵∠CBM=∠BOC+∠BCO,∠ECN=∠BCO,∴y=∠BOC+x,∴∠BOC=y-x,∵∠ECD+∠DCB=180°,∴2x+360°-(α+β)-2y=180°,∴,∴∠BOC=.故答案为:∠BOC=.【点评】本题考查了多边形的内角与外角,解题的关键是根据多边形的内角和正确表示出各个角.17.(1)60°;(2)∠DPC=∠ADP+∠PCB,理由见解析;(3)∠PCB=∠DPC+∠ADP;或∠ADP=∠DPC+∠PCB,图及理由见解析.【分析】(1)过P作,由,利用平行于同一条直线的两直线平行,得到PM平行于AB,由PM平行于CD,利用两直线平行内错角相等得到∠ADP=∠DPM,∠CPM=∠BCP,而∠DPC=∠DPM+∠CPM,等量代换可得证;(2)过P作,由,利用平行于同一条直线的两直线平行,得到PM平行于AB,由PM平行于CD,利用两直线平行内错角相等得到∠ADP=∠DPM,∠CPM=∠BCP,而∠DPC=∠DPM+∠CPM,等量代换可得证;(3)分别就两种情况画图2和图3,根据平行线的性质和外角的性质可得结论.(1)如图1,过P作,。
中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.三个等角的顶点在同一条直线上,称一线三等角模型(角度有锐角、直角、钝角,若为直角,则又称一线三垂直模型).解决此模型问题的一般方法是利用三等角关系找全等或相似三角形所需角的相等条件,利用全等或相似三角形解决问题.【证明体验】如图1,在四边形ABCD 中点P 为AB 上一点90DPC A B ∠=∠=∠=︒,求证:AD BC AP BP ⋅=⋅. 【思考探究】(2)如图2,在四边形ABCD 中点P 为AB 上一点,当DPC A B β∠=∠=∠=时,上述结论是否依然成立?说明理由. 【拓展延伸】(3)请利用(1)(2)获得的经验解决问题:如图3,在ABC 中22AB =45B ∠=︒以点A 为直角顶点作等腰Rt ADE △,点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若5CE =CD 的长.2.综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在ABC 中90,4B AB BC ∠=︒==分别取AB ,AC 的中点D ,E ,作ADE .如图2所示,将ADE 绕点A 逆时针旋转,连接BD ,CE .(1)探究发现旋转过程中线段BD 和CE 的长度存在怎样的数量关系?写出你的猜想,并证明. (2)性质应用如图3,当DE 所在直线首次经过点B 时,求CE 的长. (3)延伸思考如图4,在Rt ABC △中90,8,6ABC AB BC ∠=︒==,分别取AB ,BC 的中点D ,E .作BDE ,将BDE 绕点B 逆时针旋转,连接AD ,CE .当边AB 平分线段DE 时,求tan ECB ∠的值.3.如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=且DM 交AC 于F ,ME 交BC 于G .(1)写出图中两对相似三角形;(2)连接FG ,如果45α=︒,42AB =3AF =,求FG 的长.4.如图,在ABC 中6cm AB =,12cm BC =和90B .点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 分别从A 、B 同时出发,设移动时间为()s t .(1)当2t =时,求PBQ 的面积; (2)当t 为多少时,PBQ 的面积是28cm ? (3)当t 为多少时,PBQ 与ABC 是相似三角形?5.下面是小新同学在“矩形折叠中的相似三角形”主题下设计的问题,请你解答.如图,已知在矩形ABCD 中点E 为边AB 上一点(不与点A 、点B 重合),先将矩形ABCD 沿CE 折叠,使点B 落在点F 处,CF 交AD 于点H .(1)观察发现:写出图1中一个与AEG △相似的三角形:______.(写出一个即可)(2)迁移探究:如图2,若4AB =,6BC =当CF 与AD 的交点H 恰好是AD 的中点时,求阴影部分的面积. (3)如图③,当点F 落在边AD 上时,延长EF ,与FCD ∠的角平分线交于点M ,CM 交AD 于点N ,当FN AF ND =+时,请直接写出ABBC的值.6.【阅读】如图1,若ABD ACE ∽,且点B 、D 、C 在同一直线上,则我们把ABD △与ACE △称为旋转相似三角形.(1)【理解】如图2,ABC 和ADE 是等边三角形,点D 在边BC 上,连接CE .求证:ABD △与ACE △是旋转相似三角形.(2)【应用】如图3,ABD △与ACE △是旋转相似三角形AD CE ,求证:③ABC ADE △△∽;③AC DE =;(3)【拓展】如图4,AC 是四边形ABCD 的对角线90,D B ACD ∠=︒∠=∠,25,20BC AC ==和16AD =,试在边BC 上确定一点E ,使得四边形AECD 是矩形,并说明理由.7.综合与实践如图1,已知纸片Rt ABC △中90BAC ∠=︒,AD 为斜边BC 上的高(AD BC ⊥于点D ). 观察发现(1)请直接写出图中的一组相似三角形.(写出一组即可)实践操作第一步:如图2,将图1中的三角形纸片沿BE 折叠(点E 为AC 上一点),使点A 落在BC 边上的点F 处; 第二步:BE 与AD 交于点G 连接GF ,然后将纸片展平. 猜想探究(2)猜想四边形AEFG 是哪种特殊的四边形,并证明猜想. (3)探究线段GF ,BE ,GE 之间的数量关系,并说明理由.8.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=.证明思路是如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明AB BDAC CD=.(1)利用图2证明AB BDAC CD=; (2)如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,AB=2,求DE 的长.9.【教材原题】如图③,在ABC 中DE BC ∥,且3AD =,2DB =图中的相似三角形是__________,它们的相似比为__________ ;【改编】将图③中的ADE 绕点A 按逆时针方向旋转到如图③所示的位置,连接BD 、CE .求证:ABD ACE ∽△△;【应用】如图③,在ABC 和ADE 中90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒点D 在边BC 上,连接CE ,则ACE △与ABD △的面积比为__________.10.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=小慧的证明思路是:如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明.(1)尝试证明:请参照小慧提供的思路,利用图2证明AB BDAC CD=; (2)基础训练:如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,2AB =求DE 的长;(3)拓展升华:如图4,ABC 中6AB = ,AC=4,AD 为BAC ∠的角平分线,AD 的中垂线EF 交BC 延长线于F ,当3BD =时,求AF 的长.11.定义:两个相似三角形,如果它们的一组对应角有一个公共的顶点,那么把这两个三角形称为“阳似三角形”、如图1,在ABC 与AED △中ABC AED ∽△△.所以称ABC 与AED △为“阳似三角形”,连接EB DC ,,则DCEB为“阳似比”.(1)如图1,已知R ABC 与Rt AED △为“阳似三角形”,其中90CBA DEA ∠=∠=︒,当30BAC ∠=︒时,“阳似比”DCEB=______; (2)如图2,二次函数234y x x =-++交x 轴于点A 和B 两点,交y 轴于点C .点M 为直线12y x =在第一象限上的一个动点,且OMB △与CNB 为“阳似三角形”,连接CM ③当点N 落在二次函数图象上时,求出线段OM 的长度; ③若32CN =34BM MC +的最小值.12.已知在Rt ABC △中90ACB ∠=︒,CD AB ⊥于点D .(1)在图1中写出其中的两对相似三角形.(2)已知1BD =,DC=2,将CBD △绕着点D 按顺时针方向进行旋转得到C BD ',连接AC ',BC . ③如图2,判断AC '与BC 之间的位置及数量关系,并证明; ③在旋转过程中当点A ,B ,C '在同一直线上时,求BC 的长.13.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“和谐四边形”,这条对角线叫“和谐线”.(1)如图1,在44⨯的正方形网格中有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“和谐四边形”的是______.(2)如图2,BD 平分ABC ∠,43BD =10BC =,四边形ABCD 是被BD 分割成的“和谐四边形”,求AB 长; (3)如图3,A 为抛物线24y x =-+的顶点,抛物线与x 轴交于点B ,C .在线段AB 上有一个点P ,在射线BC 上有一个点Q .P 、Q 5/秒,5个单位/秒的速度同时从B 出发分别沿BA ,BC 方向运动,设运动时间为t ,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M ,使得四边形BQMP 是以PQ 为和谐线分割的“和谐四边形”,若存在,请直接写出t 的值;若不存在,请说明理由.14.【阅读理解】小白同学遇到这样一个问题:ABC 中D 是BC 的中点,E 是AB 上一点,延长DE 、CA 交于点F ,DE=EF ,AB=5,求AE 的长.小白的想法是:过点E 作EH BC ∥交AC 于H ,再通过相似三角形的性质得到AE 、BE 的比,从而得出AE 的长.请你按照小白的思路完成解答.【解决问题】请借助小白的解题经验,完成下面问题:ABC 中AD 平分BAC ∠交BC 于D ,E 为AB 边上一点,AE=AD ,H 、Q 为BC 上两点,CQ DH =和DQ mDH =,G 为AC 上一点,连接EQ 交HG 、AD 于F 、P ,180EFG EAD ∠+∠=︒猜想并验证EP 与GH的数量关系.15.【温故知新】(1)九(1)班数学兴趣小组认真探究了课本P 91第13题:如图1,在正方形ABCD 中E 是AD 的中点,F 是CD 上一点,且3CF DF =,图中有哪几对相似三角形?把它们表示出来,并说明理由.③小华很快找出ABE DEF △△∽,他的思路为:设正方形的边长4AB a =,则2,AE DE a DF a ===,利用“两边分别成比例且夹角相等的两个三角形相似”即可证明,请你结合小华的思路写出证明过程; ③小丽发现图中的相似三角形共有三对,而且可以借助于ABE 与DEF 中的比例线段来证明EBF △与它们都相似.请你根据小丽的发现证明其中的另一对三角形相似;【拓展创新】(2)如图2,在矩形ABCD 中E 为AD 的中点,EF EC ⊥交AB 于F ,连结FC .()AB AE > ③求证:AEF ECF ∽△△;③设2,BC AB a ==,是否存在a 值,使得AEF △与BFC △相似.若存在,请求出a 的值;若不存在,请说明理由.参考答案:1.(3)52.(1)2BD CE =(2)6CE =(3)1tan 2ECB ∠=3.(1)DMG ③DBM △,EMF ③EAM △ (2)53FG =4.(1)8(2)2秒或4秒(3)当t 为3或1.2秒钟,使PBQ 与ABC 相似.5.(1)FHG △或DHC (写出一个即可)(2)阴影部分的面积是23 (3)AB BC 的值为357.(1)ABC DBA ∽ ABC CAD ∽ DBA DAC ∽(其中一个即可,答案不唯一);(2)四边形AEFG是菱形,(3)212GF GE BE =⋅ 8. 5 9.【教材原题】ADE ABC △△∽,35【应用】13 10.5(3)611.23105337 12.(1)BCD ACD ∽ BCD BAC ∽△△ CAD BAC △∽△(任写两对即可)(2)③2AC BC '= AC BC '⊥ ③BC 2595+2595-+13.(1)四边形ABCE ;(2)10AB =或245; (3)1118t = 2881t = 1825t = 180169t =.14.阅读理解 54AE =;解决问题,猜想:12EP m GH m +=+. 15.③存在 3。
重难专题05 全等三角形的压轴题(1)已知等腰ABE V 和,100,,ADC BAE DAC AB AE AD AC Ð=Ð=°==△,连接BD CE 、,若直线BD CE 、交于点O ,则BOC Ð= ;(2)如图所示,90,,BAE DAC AB AE AD AC Ð=Ð=°==,连接BC 和DE ,过点A 作AF D E ^交BC 于点G ,垂足为F ,若11,10AG GF ==,求ABC V 的面积.【分析】(1)根据SAS 证明BAD V 与EAC V 全等,进而利用全等三角形的性质解答即可;(2)作BM AF ^于M ,CN AF ^于N ,证明BAM AEF V V ≌,ACN DAF V V ≌,进而利用全等三角形的性质和三角形面积公式解答即可.【详解】解:如图:∵100,,BAE DAC AB AE AD AC Ð=Ð=°==,∴BAD EAC Ð=Ð,∴BAD EAC V V ≌,∴DBA CEA Ð=Ð,∵12Ð=Ð,∴100BOC BAE Ð=Ð=°;如图:∵100,,BAE DAC AB AE AD AC Ð=Ð=°==,∴BAD EAC Ð=Ð,∴ΔΔBAD EAC @,(2)作BM AF ^于M ,CN AF ^于N ∵AF D E ^,∴90BMA AFE Ð=Ð=°,∵90,BAE AB AE Ð=°=,∴90BAM FAE Ð+Ð=°,E FAE Ð+Ð=∴BAF E Ð=Ð,231ABC ABG ACG S S S =+=V V V .【点拨】本题考查了全等三角形的判定与性质,解题关键是恰当作辅助线,构建全等三角形,利用全等三角形的性质解决问题.如图1,BE 是ABC V 中AC 边上的高,点D 是AB 上一点,连接CD 交BE 于点F ,EFC A Ð=Ð.(1)求证:CD AB ^;(2)若2ACB ABE Ð=Ð,求证:AC BC =;(3)如图2,在(2)的条件下,延长BE 至点G ,连接AG ,CG ,若22ABCGBC S =四边形,16ABG S =△,求线段AB 的长.(注:不能应用等腰三角形的相关性质和判定)【分析】(1)首先根据ABC V 高的意义得出,90ACD EFC Ð+Ð=°,再结合已知条件可得到90ACD A Ð+Ð=°,据此得出结论;(2)首先根据ABC V 高的意义及(1)的结论可得出ACD ABE Ð=Ð,然后再结合已知条件可得出BCD ACD ABE Ð=Ð=Ð,据此可证明BCD D 和ACD D 全等,进而可得出结论;(3)首先根据四边形ABGC 的面积ABG =V 的面积BCG +V 面积可得出BG BC =,过点G 作GH BA ^交BA 的延长线于点H ,再证GBH V 和BCD V 全等,从而得GH BD =,由(2)可知AD BD =,据此可得2AB BD =,然后根据16ABG S =V 可求出BD 的长,进而可得出AB 的长.【详解】(1)证明:BE Q 是ABC V 中AC 边上的高,BE AC \^,则90H Ð=°,由(1)知:CD AB ^,90CDB \Ð=°,H CDB \Ð=Ð,由(2)知:ABE BCD =∠∠即:GBH BCD Ð=Ð,4BD \=,28AB BD \==.【点拨】此题主要考查了全等三角形的判定和性质,三角形的面积计算公式等,解答此题的关键是熟练掌握全等三角形的判定方法与技巧,理解全等三角形的性质,难点是在解答(3)时,过点G 作GH BA ^交BA 的延长线于点H ,从而构成全等三角形.如图,Rt ACB V 中,90ACB Ð=°,AC BC =,E 点为射线CB 上一动点,连接AE ,作AF AE ^且AF AE =.(1)如图1,过F 点作FD AC ^交AC 于D 点,求证:ADF ECA V V ≌,并写出EC CD 、和DF 的数量关系;(2)如图2,连接BF 交AC 于G 点,若3AG CG=,求证:E 点为BC 中点;(3)当E 点在射线CB 上,连接BF 与直线AC 交于G 点,若73BC BE =,求AG CG .∵ADF ECA V V ≌,∴FD AC BC ==,在FDG △和BCG V 中,90FGD CGB FDG C Ð=ÐìïÐ=Ð=°íï,∵73BC BE =,BC AC CE CB ==,∴710AC CE =,由(1)(2)知:ADF ECA V V ≌∴CG GD AD CE ==,,∴710AC AD =,∴73AC CD =,∵73BC BE =,BC AC CE CB BE ==-,∴74AC CE =,由(1)(2)知:ADF ECA V V V ≌,∴CG GD AD CE ==,,如图,直线AB ,CD 交于点O ,点E 是BOC Ð平分线的一点,点M ,N 分别是射线OA ,OC 上的点,且ME NE =.(1)求证:MEN AOC Ð=Ð;(2)点F 在线段NO 上,点G 在线段NO 延长线上,连接EF ,EG ,若EF EG =,依题意补全图形,用等式表示线段NF ,OG ,OM 之间的数量关系,并证明.【分析】(1)先根据角的平分线的性质,过点E 作EH CD ^,EK AB ^,垂足分别是H ,K ,得EH EK =,再根据三角形全等的判定,证明Rt EHN Rt EKM V V ≌即可得结论.(2)作辅助线,在线段OM 上截取1OG OG =,连接EG 1,先证明1EOG EOG V V ≌,得1EG EG =,1EG O EGF Ð=Ð,再证明1ENF EMG V V ≌,得1NF MG =,再推导得出结论.【详解】(1)(1)证明:作EH CD ^,EK AB ^,垂足分别是H ,K ,如图.∵OE 是BOC Ð的平分线,∴EH EK =.∵ME NE =,∴Rt EHN Rt EKM V V ≌.∴ENH EMK ÐÐ=.记ME 与OC 的交点为P ,∴EPN OPM ÐÐ=.∴MEN AOC ÐÐ=.(2)(2)OM NF OG =+.证明:在线段OM 上截取1OG OG =,连接EG 1,如图.∵OE 是BOC Ð的平分线,∴EON EOB ÐÐ=.∵MOF DOB ÐÐ=,∴EOM EOD ÐÐ=.∵OE OE =,∴1EOG EOG V V ≌.∴1EG EG =,1EG O EGF Ð=Ð. ∵EF EG =,∴1EF EG =,EFG EGF Ð=Ð.∴1EFG EG O Ð=Ð.∴1EFN EG M Ð=Ð.∵1ENF EMG Ð=Ð.∴1ENF EMG V V ≌.∴1NF MG =.∵11OM MG OG =+,∴OM NF OG =+.【点拨】此题考查了角平分线的性质、全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.如图,四边形ABCD 和四边形AEFG 是正方形,(正方形四条边都相等,四个内角都是直角)【感知】(1)某学习小组探究如下问题:如图1,连接DG ,BE ,直线AH DG ^于点H ,交BE 于点M ,则ADG △与ABE V 面积的大小关系是:ADG S V _________ABE S V .【探究】(2)该学习小组在探究(1)中面积问题时,发现M 为BE 中点,你认为是否成立?若成立,请证明;若不成立,请说明理由.【拓展】(3)经过以上探究,该学习小组也提出问题:若正方形ABCD 和正方形AEFG 的位置如图2所示,点M 为BE 中点,连接AM 交DG 于点H ,那么AM 与DG 有怎样的关系?试探究,并说明理由【分析】(1)过点E 作EQ AB ^于点Q ,延长DA ,过点G 作GP DA ⊥于点P ,证明()AAS AEQ AGP V V ≌,得出EQ GP =,根据AD AB =,得出ADG ABE S S =V V ;(2)过点E 作EP MH ⊥于点P ,过点B 作BQ MH ⊥于点Q ,证明()AAS AGH EAP V V ≌,得出AH EP =,同理得:AHD BQA V V ≌,证明AH BQ =,求出EP BQ =,证明()AAS EMP BMQ V V ≌,得出EM BM =;(3)延长AM ,在延长线上截取MN AM =,连接EN 、BN ,证明()SAS AMB NME V V ≌,得出EN AB =,ENM BAM =∠∠,证明()SAS ADG ENA V V ≌,得出2DG AN AM ==,AGD EAN =∠∠,证明90AGD NAG +=°∠∠,得出90AHG Ð=°,即AH DG ^.【详解】解:(1)过点E 作EQ AB ^于点Q ,延长DA ,过点G 作GP DA ⊥于点P ,如图所示:则90APG AQE ==°∠∠,∵90BAD Ð=°,∴90BAP Ð=°,∵90GAE Ð=°,∴90EAQ EAP EAP GAP +=+=°∠∠∠∠,∴EAQ GAP =∠∠,∵AG AE =,∴()AAS AEQ AGP V V ≌,∴EQ GP =,∵AD AB =,∴ADG ABE S S =V V .故答案为:=.(2)成立;理由如下:过点E 作EP MH ⊥于点P ,过点B 作BQ MH ⊥于点Q ,如图所示:∵AH DG ^,∴90AHG APE ==°∠∠,∵90GAE Ð=°,∴90GAH EAP EAP AEP +=+=°∠∠∠∠,∴GAH AEP =∠∠,∵AG AE =,∴()AAS AGH EAP V V ≌,∴AH EP =,同理得:AHD BQA V V ≌,∴AH BQ =,∴EP BQ =,∵90EPM BQM ==°∠∠,EMP BMQ Ð=Ð,∴()AAS EMP BMQ V V ≌,∴EM BM =,∴M 为BE 中点.(3)2DG AM =,AM DG ^.理由如下:延长AM ,在延长线上截取MN AM =,连接EN 、BN ,如图所示:∵M 为BE 的中点,∴BM EM =,∵NME AMB =∠∠,∴()SAS AMB NME V V ≌,∴EN AB =,ENM BAM =∠∠,∵AB AD =,∴EN AD =,∵ENM BAM =∠∠,∴EN AB ∥,∴180AEN EAB +=°∠∠,∵180DAB EAG Ð=Ð=°,EAG EAB BAG =+∠∠∠,∴180DAB EAB BAG ++=°∠∠∠,即180DAG EAB Ð+Ð=°,∴AEN DAG =∠∠,∵AE AG =,∴()SAS ADG ENA V V ≌,∴2DG AN AM ==,AGD EAN =∠∠,∵90EAN GAN +=°∠∠,∴90AGD NAG +=°∠∠,∴90AHG Ð=°,∴AH DG ^.【点拨】本题主要考查了全等三角形的判定和性质,余角的性质,平行线的判定和性质,垂线定义理解,解题的关键是作出辅助线,熟练掌握三角形全等的判定方法.【初步探索】(1)如图1,在四边形ABCD 中,AB AD =,90B ADC Ð=Ð=°,E 、F 分别是BC 、CD 上的点,且EF BE FD =+,探究图中BAE Ð、FAD Ð、EAF Ð之间的数量关系.小王同学探究此问题的方法是:延长FD 到点G ,使DG BE =.连接AG ,先证明ABE ADG △≌△,再证明AEF AGF V V ≌,可得出结论,他的结论应是 ;【灵活运用】(2)如图2,若在四边形ABCD 中,AB AD =,180B D Ð+Ð=°.E 、F 分别是BC 、CD 上的点,且EF BE FD =+,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD 中,180ABC ADC Ð+Ð=°,AB AD =,若点E 在CB 的延长线上,点F 在CD 的延长线上,如图3所示,仍然满足EF BE FD =+,请写出EAF Ð与DAB Ð的数量关系,并给出证明过程.【分析】(1)延长FD 到点G ,使DG BE =,连接AG ,可判定ABE ADG △≌△,进而得出BAE DAG Ð=Ð,AE AG =,再判定AEF AGF V V ≌,可得出EAF GAF DAG DAF BAE DAF Ð=Ð=Ð+Ð=Ð+Ð,据此得出结论;(2)延长FD 到点G ,使DG BE =,连接AG ,先判定ABE ADG △≌△,进而得出BAE DAG Ð=Ð,AE AG =,再判定AEF AGF V V ≌,可得出EAF GAF DAG DAF BAE DAF Ð=Ð=Ð+Ð=Ð+Ð;(3)在DC 延长线上取一点G ,使得DG BE =,连接AG ,先判定ABE ADG △≌△,再判定AEF AGF V V ≌,得出FAE FAG Ð=Ð,最后根据360FAE FAG GAE Ð+Ð+Ð=°,推导得到2360FAE DAB Ð+Ð=°,即可得出结论.【详解】(1)解:结论:BAE FAD EAF Ð+Ð=Ð.理由:如图1,延长FD 到点G ,使DG BE =,连接AG ,在ABE V 和ADG △中,90AB AD B ADG BE DG =ìïÐ=Ð=°íï=î,(SAS)ABE ADG \V V ≌,BAE DAG \Ð=Ð,AE AG =,EF BE DF =+Q ,EF DF DG FG \=+=,在AEF △和AGF V 中,1.阅读理解在通过构造全等三角形解决的问题中,有一种典型的方法是倍延中线法.如图1,AD 是ABC V 的中线,7AB =,5AC =,求AD 的取值范围.我们可以延长AD 到点M ,使DM AD =,连接BM ,易证ADC MDB ≌△△,所以BM AC =.接下来,在ABM V 中利用三角形的三边关系可求得AM 的取值范围,从而得到中线AD 的取值范围是______;类比应用如图2,在四边形ABCD 中,//AB DC ,点E 是BC 的中点.若AE 是BAD Ð的平分线,试判断AB ,AD ,DC 之间的等量关系,并说明理由;拓展创新如图3,在四边形ABCD 中,//AB CD ,AF 与DC 的延长线交于点F ,点E 是BC 的中点,若AE 是BAF Ð的平分线,试探究AB ,AF ,CF 之间的数量关系,请直接写出你的结论.2.如图,在ABC V 和ADE V 中,AB AC =,AD AE =,BAC DAE Ð=Ð,CE 的延长线交BD 于点F .(1)求证:CE BD =.(2)过点A 作AP DE ^于点P ,求证:AEP ADP Ð=Ð.(3)若30ACE Ð=°,15BAE Ð=°,6DAE AED Ð=Ð-°,求BDE Ð的度数.(4)过点A 作AH BD ^于点H ,试写出EF ,FH ,DH 之间的数量关系,并证明.3.问题提出,如图(1),在ABC V 和DEC V 中,60ACB DCE °Ð=Ð=,BC AC =,EC DC =,点E 在ABC V 内部,直线AD 与BE 交于点F ,线段,,AF BF CF 之间存在怎样的数量关系?问题探究(1)先将问题特殊化.如图(2),当点D ,F 重合时,直接写出一个等式,表示,,AF BF CF 之间的数量关系;(2)再探究一般情形.如图(1),当点D ,F 不重合时,证明(1)中的结论仍然成立.问题拓展(3)如图(3),在ABC V 和DEC V 中,60ACB DCE °Ð=Ð=,BC AC =,EC DC =,点E 在ABC V 内部,直线AD 与BE 交于点F ,直线AF 与BC 交于点G ,点H 为线段AB 上一点,BH CG =,BF 与CH 交于点I ,若AG m =,BF n =,则IF =___________(用含m ,n 的式子表示)4.已知O 是四边形ABCD 内一点,且OA OD =,OB OC =,E 是CD 的中点.(1)如图1,连接AC ,BD ,若AC BD =,求证:AOD BOC Ð=Ð;(2)如图2,连接OE ,若2AB OE =,求证:180AOD BOC Ð+Ð=°;(3)如图3,若90AOD BOC Ð=Ð=°,OF AB ^,垂足为F ,求证:点E ,O ,F 在同一条直线上.5.在直角三角形ABC 中,90ACB Ð=°,直线l 过点C .(1)当AC BC =时,①如图1,分别过点A 和B 作AD ^直线l 于点D ,BE ^直线l 于点E .求证:ACD CBE V V ≌;②如图2,过点A 作AD ^直线l 于点D ,点B 与点F 关于直线l 对称,连接BF 交直线l 于E ,连接CF .求证:DE AD EF =+.(2)当8AC =cm ,6BC =cm 时,如图3,点B 与点F 关于直线l 对称,连接BF 、CF .点M 从A 点出发,以每秒1cm 的速度沿A C ®路径运动,终点为C ,点N 以每秒3cm 的速度沿F C B C F ®®®®路径运动,终点为F ,分别过点M 、N 作MD ^直线l 于点D ,NE ^直线l 于点E ,点M 、N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒.当MDC △与CEN V 全等时,求t 的值.6.如图①,在ABC V 中,AB =12cm ,BC =20cm ,过点C 作射线CD AB ∥.点M 从点B 出发,以4cm /s 的速度沿BC 匀速移动;点N 从点C 出发,以acm /s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动,连接AM 、MN ,设移动时间为t (s ).(1)点M 、N 从移动开始到停止,所用时间为 s ;(2)当ABM V 与MCN △全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求t 的值;(3)如图②、当点M 、N 开始移动时,点P 同时从点A 出发,以3cm /s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM V 与MCN △全等的情形?若存在,求出t 的值,若不存在,说明理由.7.已知:ABC V 中,90ACB Ð=°,AC CB =,D 为直线BC 上一动点,连接AD ,在直线AC 右侧作AE AD ^,且AE AD =.(1)如图1,当点D 在线段BC 上时,过点E 作EH AC ^于H ,连接DE .求证:EH BC =;(2)如图2,当点D 在线段BC 的延长线上时,连接BE 交CA 的延长线于点M ,求证:BM EM =;(3)当点D 在直线CB 上时,连接BE 交直线AC 于M ,若27AC CM =,请求出ADB AEM S S △△的值.8.在ABC V 中,BD 平分ABC Ð,CE 平分ACB Ð,BD 和CE 交于点O ,其中令BAC x Ð=,BOC y Ð=.(1)【计算求值】如图1,①如果50x =°,则y =______;②如果130y =°,则x =______.(2)【猜想证明】如图2请你根据(1)中【计算求值】的心得猜想写出y 与x 的关系式为y =______,并请你说明你的猜想的正确性.(3)【解决问题】如图3,某校园内有一个如图2所示的三角形的小花园,花园中有两条小路,BD 和CE 为三角形的角平分线,交点为点O ,在O 处建有一个自动浇水器,需要在BC 边取一处接水口F ,经过测量得知120BAC Ð=°,12000OD OE ×=米2,170BC BE CD --=米,请你求出水管OF 至少要多长?(结果取整数)。
三角形(五大压轴题专练)【题型一三角形中高线的综合问题】(1)如图1,连接AB 、AC ,求ABC 的面积;(2)如图2,延长BA 交直线m 交于点D ,在CD 上存在点P 坐标;(3)请在备用图中画图探究:若点P 是直线m 上的一个动点,连接1CMP BCM S S -=△时,直接写出点M的坐标.【答案】(1)3(2)点P 的坐标(3,2)或(9,2),(3)点M 的坐标为2(,0)3或2(,0)3-【分析】(1)根据点A 、B 、C 的坐标得2,OA OC OB ===(2)设(,2),(,2)D m P n ,根据BCD △的面积:113322m ⨯=⨯113(6)3(6)2222n n ⨯-⨯-⨯-⨯=,或11(6)3(6)22n n ⨯-⨯-⨯-(3)设(,2),(,2)D m P n ,根据+PCB BCM PCM S S S =△△△得132⨯1CMP BCM S S -=△得111231223t t ⨯⨯-⨯⨯=,计算得2t =,则BCD △的面积:11322m ⨯=⨯6m =,∵12ABP ABC S S =△△,∴11(6)3(6)22n n ⨯-⨯-⨯-⨯解得,3n =或9n =,∴点P 的坐标(3,2)或(9,2);(3)解:如图3中,设(D m +PCB BCM PCM S S S =△△△,111332222t a t ⨯⨯=⨯⨯=⨯⨯,13a t =,∵1CMP BCM S S -=△,(1)在题干的基础上,①如图2,点P 为BC 上一点,作PM AB ⊥,PN AC ⊥,设②如图3,当点P 在CB 延长线上时,猜想1d 、2d 之间又有什么样的数量关系,请证明你的猜想;(2)如图4,在ABC 中,10AB AC ==,12BC =,ABC S △点B 作BE BC ⊥,点P 是直线BE 上一动点,点Q 是直线值.【答案】(1)①见解析;②猜想:213412d d -=,证明见解析222∴124312d d +=②猜想:213412d d -=理由如下:,作PM AB ⊥,PN (2)作点D 关于直线BE 的对称点∴PD PD '=,PD PQ PD PQ'+=+∵点D 在BC 延长线上,则D ¢、B 、【点睛】本题考查了三角形高的定义,垂线段最短,熟练掌握等面积法求线段的长是解题的关键.3.在平面直角坐标系中,有点(),0A a ,(0,B 单位得到线段CD .(1)直接写出=a ______,b =______;(2)如图1,点E 为线段CD 上任意一点,点F 为线段AB 上任意一点,,求则OP CD AB ∥∥,∴180DEO EOP ∠+∠=︒,∴DEO EOP AFO ∠+∠+∠即33135360x y ++︒=︒,∴75x y +=︒,过G 作GH CD ∥,则GH ∴EGH DEG x ∠=∠=,∵6k =,∴()0,3C ,()6,6D ,设(),3K n ,∵BCK ABC ACK S S S =+△△△,∴1116663222n n ⨯⨯=⨯⨯+⨯⨯,【题型二三角形中中线的综合问题】【深入探究】(1)如图2,点D 在ABC 的边BC 上,点P 在AD 上.①若AD 是ABC 的中线,求证:APB APC S S =△△;②若3BD DC =,则:APB APC S S =△△______.【拓展延伸】∵点A、B、C、D分别为∴AG,BC,CE,∴12 GAH GADS S S==∴12 ADC ADGS S S==(1)如图2,延长ABC 的边BC 到点D ,使CD BC =,连接DA .若ACD 的面积为1S ,则1S =代数式表示);(2)如图3,延长ABC 的边BC 到点D ,延长边CA 到点E ,使CD BC =,AE CA =,连接DE .若面积为2S ,则2S =(用含a 的代数式表示);(3)在图3的基础上延长AB 到点F ,使BF AB =,连接FD ,FE ,得到DEF (如图4).若阴影部分的面积为3S ,则3S =(用含a 的代数式表示);拓展应用:(4)如图5,点D 是ABC 的边BC 上任意一点,点E ,F 分别是线段AD ,CE 的中点,且ABC 的面积为延长ABC 的边BC ∴12ACD AED ECD S S S ∆∆∆==22ECD ABC S S a ∆∆∴==,即22S a =;(3)由(2)得ECD S ∆同理:2EFA ABC S S ∆∆=3ECD EFA S S S ∆∆∴=++(4)2BEF S a =△,理由如下:理由:∵点E 是线段∴ABE BDE S S = ,S △∴12BCE ABC S S = .=,连接FD,FE,得到(3)在图3的基础上延长AB到点F,使BF AB积为3S,则3S=___________;(用含a的代数式表示)拓展与应用:(4)如图5,已知四边形ABCD的面积是a,E、F、G、H分别是AB、BC【答案】(1)a;(2)2a;(3)6a;(4)12 a.延长ABC∆的边BC∴12ACD AED ECD S S S∆∆∆==22ECD ABCS S a∆∆∴==,(4)解:如图5所示,连接则1,2AEO ABO S S S ∆∆=∴AEO AHO S S S ∆∆∆++【点睛】此题考查了阅读与理解:三角形中线的性质即等底同高的三角形面积相等,灵活运用这个结论并适当添加辅助线是解答此题的关键.【题型三三角形中角平分线的综合问题】1.已知,AB DE ∥,点C 是直线AB ,DE 下方一点,连接BC ,DC .【点睛】本题考查平方数、二次根式的非负性,利用面积法求点的坐标,角平分线的定义,三角形内角和定理等,难度一般,解第二问的关键是熟练运用数形结合思想,解第三问的关键是利用角度等量代换.【题型四三角形内角和与外角和的综合问题】1.在ABC 中,点E 是CA 延长线上一点.(1)如图1,过点B 作BD BC ⊥,交CE 于点F ,D C ∠=∠.①若36C ∠=︒,则DAF ∠=______°;②试写出DAF ∠与C ∠的数量关系,并说明理由;③当DAF D ∠=∠时,求C ∠的度数;④若D ABD ∠=∠,请说明BA CF ⊥;(2)如图2,BD 交CE 于点F ,D C ∠=∠,直接写出DAC ∠、C ∠与DBC ∠之间的数量关系.【答案】(1)①18;②290DAF C ∠+∠=︒,理由见解析;③30C ∠=︒;④见解析(2)2DAC C DBC∠=∠+∠【分析】(1)①根据180BFC C DBC ∠=︒-∠-∠,DAF BFC D ∠=∠-∠,即可求得答案.②根据180BFC C DBC ∠=︒-∠-∠,DAF BFC D ∠=∠-∠,结合等量代换,即可求得答案.③根据②的结论,采用等量代换即可求得答案.④根据2+18090DAF C DAF D ABD FAB ∠+∠=∠+∠∠=︒-∠=︒,即可求得FAB ∠的度数,问题即可得证.(2)延长BA 至K ,根据DAC DAK CAK ∠=∠+∠,结合三角形的外角的性质可求得答案.【详解】(1)①∵0910********BFC C DBC ∠︒=︒-∠-∠=︒-︒=︒-,∴543618DAF BFC D ∠︒=︒-∠-==∠︒.故答案为:18.②290DAF C ∠+∠=︒.理由如下:∵DAK D DBA∠∠=∠+∠,CAK∴DAC DAK CAK D∠=∠+∠=∠+【点睛】本题主要考查三角形内角和定理、三角形的外角的性质(三角形的一个外角等于与它不相邻的两个内角的和),牢记三角形的外角的性质是解题的关键.中,点2.(1)如图①所示,ABC,不用说明理由,直接填空.(2)如图③所示,13OBC DBC ∠=∠,13OCB ECB ∠=∠,若A α∠=,则BOC ∠填空并说明理由.【答案】(1)902α︒+,1203α︒+.;(2)1203α︒-1(1)如图1,若AD BC ∥,求证:AC BD ∥;(2)如图2,若BD BC ⊥,垂足为B ,BD 交CE 于点G ,请探究DAE ∠论,并说明理由;(3)如图3,在(2)的条件下,过点D 作DF BC ∥交射线CE 于点F ,当(1)如图1,如果点F 在线段AE 上,且50C ∠=︒,30B ∠=︒,则EFD ∠=______.(2)如果点F 在ABC 的外部,分別作出CAE ∠和EDF ∠的角平分线,交于点K ,请在图2中补全图形,探究AKD ∠、C ∠、B ∠三者之间的数量关系,并说明理由:(3)如图3,若点F 与点A 重合,PE 、PC 分别平分AEC ∠和ABC 的外角ACM ∠,连接PA PG BC ⊥交BC 延长线于点G ,PH AB ⊥交BA 的延长线于点H ,若EAD CAD ∠=∠,且44(3)解:设EAD CAD ∠=∠=∵AE 平分BAC ∠,∴BAE CAE EAD ∠=∠=+∠∠∴6BAD α∠=,∵AD BC⊥【题型五多边形的内角和与外角和综合问题】1.【感知】如图1所示,在四边形AEFC 中,EB FD 、分别是边AE CF 、的延长线,我们把BEF DFE ∠∠、称为四边形AEFC 的外角,若220A C ∠+∠=︒,则BEF DFE ∠+∠=___________;【探究】如图2所示,在四边形AECF 中,EB FD 、分别是边AE AF 、的延长线,我们把BEC DFC ∠∠、称为四边形AECF 的外角,试探究A C ∠∠、与BEC DFC ∠∠、之间的数量关系,并说明理由;【应用】如图3所示,FM EM 、分别是四边形AEFC 的外角DFE BEF ∠∠、的平分线,若200A C ∠+∠=︒,则M ∠的度数为___________.【答案】(感知)220︒;(探究)A C BEC DFC∠+∠=∠+∠,理由见解析;(应用)【分析】(感知)根据四边形的内角和和邻补角的定义即可求出答案.(探究)根据四边形的内角和和邻补角的定义即可求出答案.(应用)根据四边形的内角和和邻补角定义可求出BEF DFE∠+∠的度数,结合角平分线的定义即可求出∠的度数.MFE MEF∠+∠度数,最后利用三角形内角和即可求出M①如图1,若B C ∠=∠,则C ∠=________︒;②如图2,若ABC ∠的平分线BE 交DC 于点E 、且BE AD ∥,则C ∠=③如图3,若ABC ∠和BCD ∠的平分线相交于点E ,则BEC ∠=________(2)如图3,当A D αβ∠=∠=,时,若ABC ∠和BCD ∠的平分线交于点数量关系.∵,BE CE 平分,ABC ∠∴111,222ABC ∠=∠∠=∴112(2ABC ∠+∠=∠∴在BCE 中,BEC ∠故答案为:110︒.(2)解:在四边形ABCD ∴360ABC BCD ∠+∠=∵ABC ∠和BCD ∠的平分线交于点∴111,222ABC ∠=∠∠=、两外角平分线所成的(1)如图2,在四边形ABCD 中,BP 、CP 分别平分ABC ∠和BCD ∠,则(2)如图3,在四边形ABCD 中,BM 、CM 分别平分EBC ∠和BCF ∠,请探究并说明理由.(3)在四边形ABCD 中,F ∠为ABC ∠的平分线与边CD 和BC 延长线所成角的平分线所在的直线构成的锐角,若设A α∠=,D β∠=,则F ∠=.(用α、β表示)【答案】(1)()1P A D ∠=∠+∠BF 平分ABC ∠,CF 平分12CBF ABC ∴∠=∠,DCF ∠180DCG BCD ∠=︒-∠ ,。
三角形压轴题
试卷第2页,总1页
试卷第3页,总1页
试卷第4页,总1页
(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE边DE上的高,连接BE.
①求证:2CM+BE=AE;
②若将图2中的△DCE绕点C旋转至图3所示位置,①中的结论还成立吗?若不成立,写出它们之间的数量关系.
5.如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.
(1)如图1,填空∠B= °,∠C= °;
试卷第5页,总13页
(2)若M为线段BC上的点,过M作直线MH⊥AD 于H,分别交直线AB、AC与点N、E,如图2
①求证:△ANE是等腰三角形;
②试写出线段BN、CE、CD之间的数量关系,并加以证明.
6.(9分)探究题:如图:
(1)△ABC为等边三角形,动点D在边CA上,动点P在边BC上,若这两点分别从C、B点同时出发,以相同的速度由C向A和由B向C运动,连接AP,BD交于点Q,两点运动过程中AP=BD成立吗?请证明你的结论;
(2)如果把原题中“动点D在边CA上,动点P 边BC上,”改为“动点D,P在射线CA和射线BC 上运动”,其他条
件不变,如图(2)所示,两点运动过程中∠BQP 的大小保持不变.请你利用图(2)的情形,
求证:∠BQP=60°;
(3)如果把原题中“动点P在边BC上”改为“动点P在AB的延长线上运动,连接PD交BC于E”,其他条件不变,如图(3),则动点D,P在运动过
试卷第6页,总13页
程中,DE始终等于PE吗?写出证明过程.
7.已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M。
请探究:
(1)如图(1),当点E在线段AC上,点D在AB 延长线上时,若BD=CE,请判断线段MD和线段ME 的数量关系,并证明你的结论。
(2)如图(2),当点E在CA的延长线上,点D 在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;
(3)如图(3),当点E在CA的延长线上,点D 在线段AB上(点D不与A,B重合),DE所在直线与直线BC交于点M,若CE=2BD,请直接写出线段MD与线段ME的数量关系。
试卷第7页,总13页
8.(1)如图1,在△ABC中,∠ABC的平分线BF 交AC于F,过点F作DF∥BC,求证:BD=DF.(2)如图2,在△ABC中,∠ABC的平分线BF与∠A CB的平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?并证明这种关系.
(3)如图3,在△ ABC中,∠ABC的平分线BF与∠ACB的外角平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?请写出你的猜想.(不需证明)
9.阅读下面材料:
试卷第8页,总13页
小明遇到这样一个问题:
如图1,△ABC中,∠A=90°,∠B=30°,点D,E 分别在AB,BC上,且∠CDE=90°.当BE=2AD时,图1中是否存在与CD相等的线段?若存在,请找出并加以证明,若不存在,说明理由.
小明通过探究发现,过点E作AB的垂线EF,垂足为F,能得到一对全等三角形(如图2),从而将解决问题.
请回答:
(1)小明发现的与CD相等的线段是.
(2)证明小明发现的结论;
参考小明思考问题的方法,解决下面的问题:(3)如图3,△ABC中,AB=AC,∠B AC=90°,点D在BC上,BD=2DC,点E在AD上,且∠BEC=135°,
求BE
CE的值.
10.(1)如图1,△ABC和△CDE都是等边三角形,且B,C,D三点共线,连接AD,BE相交于点P,
试卷第9页,总13页
求证:BE = AD;
(2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和BD为边在△BCD外部作等边三角形ABC、等边三角形CDE和等边三角形BDF,连接AD,BE 和CF交于点P,下列结论正确的是(只填序号即可)①AD=BE=CF;②∠BEC=∠ADC;③∠DPE=∠EPC=∠CPA=60°;
(3)如图2,在(2)的条件下,求证:PB+PC+PD=BE.
11.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。
试卷第10页,总13页
(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想并证明;
(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明。
12.(本题8分)如图,点C、E、B和F在同一直线上,AC∥DF,AC=DF,BC=EF.
求证:(1)△ABC≌△DEF;
(2)AB∥ED.
13.如图,在△ABC中,AC=BC,∠ACB=90°,D 为△ABC内一点,∠BAD=15°,AD=AC,CE ⊥AD于E,且CE=5.
(1)求BC 的长;
(2)求证:BD =CD.
A
B C D
E
14.如图,在Rt ABC △中, 90=∠B ,ED 是AC 的垂直平
分线,交AC 于点D ,交BC 于点E .(1)、若∠BAE=200
,求C ∠的度数。
(2)、若AB=6,AC=10,求BE 的长。
15.如图,△ABC 中,AC=BC ,∠ACB=120°,点D 在AB 边上运动(D 不与A 、B 重合),连结CD .作∠CDE=30°,DE 交AC 于点E .
(1)当DE∥BC时,△ACD的形状按角分类是直角三角形;
(2)在点D的运动过程中,△ECD的形状可以是等腰三角形吗?若可以,请求出∠AED的度数;若不可以,请说明理由.
16.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O.
(1)求证:OB=OC;
(2)若∠ABC=50°,求∠BOC的度数.
17.已知两个共一个顶点的等腰直角△ABC和等腰直角△CEF,∠ABC=∠CEF=90°,连接AF,M是AF 的中点,连接MB、ME.
(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;
(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.
18.如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°.
(1)求∠B的度数;
(2)若∠BAC=70°,判断△ABC的形状,并说明理由.
19.如图,在△ABC中,AC=BC,BD⊥AC于点D,在△ABC外作∠CAE=∠CBD,过点C作CE⊥AE于点E.如果∠BCE =140 ,求∠BAC的度数.
A
D
E
20.如图,△ABC中,AB=AC,点P是三角形右外一点,且∠APB=∠ABC.
(1)如图1,若∠BAC=60°,点P恰巧在∠ABC 的平分线上,PA=2,求PB的长;
(2)如图2,若∠BAC=60°,探究PA,PB,PC的数量关系,并证明;
(3)如图3,若∠BAC=120°,请直接写出PA,PB,PC的数量关系.
21.如图,已知△ABC中AB=AC,BD、CD分别平分∠EBA、∠ECA,BD交AC于F,连接AD.
(1)当∠BAC=50°时,求∠BDC的度数;
(2)请直接写出∠BAC与∠BDC的数量关系;(3)求证:AD∥BE.
22.如图,等腰△ABC中,AB=AC,∠BAC=120°,D为BC上一点,AD=DC=2,
(1)求AC 的长;
(2)求△ABC 的面积.
23.如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,DE ∥AB ,过点E 作EF ⊥DE ,交BC 的延长线于点F .
(1)求∠F 的度数;
(2)若CD=2,求DF 的长.
24.如图,在Rt ABC △中,
90=∠B ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .
(1)、若∠BAE=200,求C ∠的度数。
(2)、若AB=6,
AC=10,求BE的长。
25.如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.
(1)求∠BDF的度数
(2)求AB的长.。