(完整)全等三角形压轴题训练(含答案),推荐文档
- 格式:doc
- 大小:971.52 KB
- 文档页数:8
八上全等三角形压轴题一、已知三角形ABC与三角形DEF全等,且AB=DE,BC=EF,若角A=50度,则角D的度数为?A. 50度B. 60度C. 80度D. 130度(答案)A解析:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应角相等,所以角D 等于角A,即50度。
二、在三角形ABC中,AB=AC,D是BC的中点,E是AD上的一点,且AE=1/3AD,连接BE并延长交AC于F,则AF与FC的长度比为?A. 1:2B. 1:3C. 2:3D. 3:4(答案)C解析:由于D是BC的中点,且AB=AC,所以AD垂直平分BC。
根据相似三角形的性质,可以得出三角形AEB与三角形ABC相似,进而得出AF与FC的长度比。
三、已知三角形ABC与三角形DEF全等,且AB=DE,AC=DF,若角B=60度,角C=80度,则角E的度数为?A. 40度B. 60度C. 80度D. 100度(答案)A解析:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应角相等。
已知角B 和角C的度数,可以求出角A的度数,进而得出角E的度数。
四、在三角形ABC中,AB=AC,D是AB上的一点,且AD=1/2AB,E是AC上的一点,且AE=2/3AC,连接DE并延长交BC于F,则BF与FC的长度比为?A. 1:2B. 1:3C. 2:3D. 3:5(答案)D解析:过D做AC的平行线交BC于G,由于D是AB的中点,所以DG是三角形ABC的中位线,根据中位线的性质,可以得出DG与AC的长度关系以及角DGB的度数。
再根据相似三角形的性质,可以得出BF与FC的长度比。
五、已知三角形ABC与三角形DEF全等,且AB=DE,BC=EF,若三角形ABC的周长为18,三角形DEF的面积为9,则三角形ABC的面积为?A. 3B. 6C. 9D. 12(答案)C解析:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,它们的面积相等。
全等三角形压轴题组卷一.选择题(共5小题)1.如图所示,是瑞安部分街道示意图,AB=BC=AC,CD=CE=DE,A,B,C,D,E,F,G,H为“公交汽车”停靠点,甲公共汽车从A站出发,按照A,H,G,D,E,C,F的顺序到达F站,乙公共汽车从B 站出发,按照B,F,H,E,D,C,G的顺序到达G站,如果甲、乙两车分别从A、B两站同时出发,各站耽误的时间相同,两辆车速度也一样,则( )A.甲车先到达指定站B.乙车先到达指定站C.同时到达指定站D.无法确定2.如图,在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是( )A.56°B.60°C.68°D.94°3.如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是( )A.SSSB.SASC.ASAD.AAS4.如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC 的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是( )A.n B.2n-1 C.D.3(n+1)5.如图,D为∠BAC的外角平分线上一点并且满足BD=CD,∠DBC=∠DCB,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有( )A .1个B .2个C .3个D .4个二.填空题(共3小题)6.如图,AC=BC ,∠ACB=90°,AE 平分∠BAC ,BF ⊥AE ,交AC 延长线于F ,且垂足为E ,则下列结论:①AD=BF ; ②BF=AF ; ③AC+CD=AB ,④AB=BF ;⑤AD=2BE .其中正确的结论有 .第6题第7题第8题7.如图,已知△ABC 和△BDE 都是等边三角形.则下列结论:①AE=CD .②BF=BG .③HB ⊥FG .④∠AHC=60°.⑤△BFG 是等边三角形,其中正确的有 . 8.如图,∠AOB 内一点P ,P 1、P 2分别是点P 关于OA 、OB 的对称点,P 1P 2交OA 于M ,交OB 于N ,若P 1P 2=5cm ,则△PMN 的周长是 . 三.解答题(共22小题)9.已知:如图,△ABC 中,∠ABC=45°,DH 垂直平分BC 交AB 于点D ,BE 平分∠ABC ,且BE ⊥AC于E ,与CD 相交于点F ,试说明一下论断正确的理由: (1).∠BDC=90°; (2).BF=AC ; (3).CE=12BF .10.已知,D是△ABC中AB上一点,并且∠BDC=90°,DH垂直平分BC交BC于点H.(1).试说明:BD=DC;(2).如图2,若BE⊥AC于E,与CD相交于点F,试说明:△BDF≌△ACD;(3).在(1)、(2)条件下,若BE平分∠ABC,试说明:BF=2CE.11.数学问题:如图1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分线分别交于点O1、O2、…、O n-1,求∠BO n-1C的度数?问题探究:我们从较为简单的情形入手.探究一:如图2,在△ABC中,∠A=α,∠ABC、∠ACB的角平分线分别交于点O1,求∠BO1C的度数?解:由题意可得∠O1BC=12∠ABC,∠O1CB=12∠ACB∴∠O1BC+∠O1CB=12(∠ABC+∠ACB)=12(180°-α)∴∠BO1C=180°-12(180°-α)=90°+12α.探究二:如图3,∠A=α,∠ABC、∠ACB三等分线分别交于点O1、O2,求∠BO2C的度数.解:由题意可得∠O2BC=23∠ABC,∠O2CB=23∠ACB22∴∠BO2C=180°-23(180°-α)=60°+23α.探究三:如图4,∠A=α,∠ABC、∠ACB四等分线分别交于点O1、O2、O3,求∠BO3C的度数.(仿照上述方法,写出探究过程)问题解决:如图1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分线分别交于点O1、O2、…、O n-1,求∠BO n﹣1C的度数.问题拓广:如图2,在△ABC中,∠A=α,∠ABC、∠ACB的角平分线交于点O1,两条角平分线构成一角∠BO1C.得到∠BO1C=90°+12α.探究四:如图3,∠A=α,∠ABC、∠ACB三等分线分别交于点O1、O2,四条等分线构成两个角∠BO1C,∠BO2C,则∠BO2C+∠BO1C= .探究五:如图4,∠A=α,∠ABC、∠ACB四等分线分别交于点O1、O2、O3,六条等分线构成三个角∠BO3C,∠BO2C,∠BO1C,则∠BO3C+∠BO2C+∠BO1C= .探究六:如图1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分线分别交于点O1、O2、…、O n-1,(2n-2))等分线构成(n-1)个角∠BO n-1C…∠BO3C,∠BO2C,∠BO1C,则∠BO n-1C+…∠BO3C+∠BO2C+∠BO1C= .12.如图,在Rt△ABC中,AB=AC=4cm,∠BAC=90°,O为边BC上一点,OA=OB=OC,点M、N分别在边AB、AC上运动,在运动过程中始终保持AN=BM.(1).在运动过程中,OM与ON相等吗?请说明理由.(2).在运动过程中,OM与ON垂直吗?请说明理由.(3).在运动过程中,四边形AMON的面积是否发生变化?若变化,请说明理由;若不变化,求出四边形AMON的面积.13.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1).当∠BDA=115°时,∠EDC= °,∠DEC= °;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2).当DC等于多少时,△ABD≌△DCE,请说明理由;(3).在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.14.如图,等腰直角三角形ABC,AB=BC,直角顶点B在直线PQ上,且AD⊥PQ于D,CE⊥PQ于E.(1).△ADB与△BEC全等吗?为什么?(2).图1中,AD、DE、CE有怎样的等量关系?说明理由.(3).将直线PQ绕点B旋转到如图2所示的位置,其他条件不变,那么AD、DE、CE有怎样的等量关系?说明理由.15.如图,在等腰△ABC中,CB=CA,延长AB至点D,使DB=CB,连接CD,以CD为边作等腰△CDE,使CE=CD,∠ECD=∠BCA,连接BE交CD于点M.(1).BE=AD吗?请说明理由;(2).若∠ACB=40°,求∠DBE的度数.16.阅读理解基本性质:三角形中线等分三角形的面积.如图,AD是△ABC边BC上的中线,则S△ABD=S△ACD=12S△ABC理由:∵AD是△ABC边BC上的中线∴BD=CD又∵S△ABD=12BD×AH;S△ACD=12CD×AH∴S△ABD=S△ACD=12S△ABC∴三角形中线等分三角形的面积基本应用:(1).如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.则S△ACD与S△ABC的数量关系为:;(2).如图2,延长△ABC的边BC到点D,使CD=BC,延长△ABC的边CA到点E,使AE=AC,连接DE.则S△CDE与S△ABC的数量关系为:(请说明理由);(3).在图2的基础上延长AB到点F,使FB=AB,连接FD,FE,得到△DEF(如图3).则S△EFD与S△ABC的数量关系为:;拓展应用:如图4,点D是△ABC的边BC上任意一点,点E,F分别是线段AD,CE的中点,且△ABC 的面积为18cm2,则△BEF的面积为cm2.17.如图,在△ABC中,DE,FG分别是AB,AC的垂直平分线,连接AE,AF,已知∠BAC=80°,请运用所学知识,确定∠EAF的度数.18.问题发现:如图①,△ABC与△ADE是等边三角形,且点B,D,E在同一直线上,连接CE,求∠BEC的度数,并确定线段BD与CE的数量关系.拓展探究:如图②,△ABC与△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,且点B,D,E在同一直线上,AF⊥BE 于F,连接CE,求∠BEC的度数,并确定线段AF,BF,CE之间的数量关系.19.如图,△ABC中,AB=AC,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足AE=CF.求证:DE=DF.20.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1).求证:△ACD≌△BCE;(2).若AB=3cm,则BE= cm.(3).BE与AD有何位置关系?请说明理由.21.如图,AP∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的延长线交AP于D.(1).求证:AB=AD+BC;(2).若BE=3,AE=4,求四边形ABCD的面积.22.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1).如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2).若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?23.如图,△ABC是等边三角形,点E、F分别在边AB和AC上,且AE=BF.(1).求证:△ABE≌△BCF;(2).若∠ABE=20°,求∠ACF的度数;(3).猜测∠BOC的度数并证明你的猜想.24.在△ABC中,AB=AC,点D是直线BC上一点(不与点B、点C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1).如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE= ;(2).如图2,当点D在线段BC上时,如果∠BAC=50°,请你求出∠BCE的度数.(写出求解过程);(3).探索发现,设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论:.②当点D在线段BC的延长线上时,则α,β之间有怎样的数量关系?请在图3中画出完整图形并请直接写出你的结论:.25.以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE.(1).试判断BD、CE的数量关系,并说明理由;(2).延长BD交CE于点F试求∠BFC的度数;(3).把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.26.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合),以AD为边做正方形ADEF,连接CF.(1).如图1,当点D在线段BC上时,求证CF+CD=BC.(2).如图2,当点D在线段BC得延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系.(3).如图3,当点D在线段BC得反向延长线上时,且点A,F分别在直线BC的两侧,若BC=17,CF=7,求DF的长.27.如图,四边形ABCD中,AD∥BC,CE⊥AB,△BDC为等腰直角三角形,∠BDC=90°,BD=CD;CE与BD交于F,连AF,M为BC中点,连接DM交CE于N.请说明:(1).△ABD≌△NCD;(2).CF=AB+AF.28.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1).说明BD=CE;(2).延长BD,交CE于点F,求∠BFC的度数;(3).若如图2放置,上面的结论还成立吗?请简单说明理由.29.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1).如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2).若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过后,点P与点Q第一次在△ABC的边上相遇?(在横线上直接写出答案,不必书写解题过程)30.如图1,已知长方形ABCD,AB=CD=4,BC=AD=6,∠A=∠B=∠C=∠D=90°,E为CD边的中点,P 为长方形ABCD边上的动点,动点P从A出发,沿着A→B→C→E运动到E点停止,设点P经过的路程为x,△APE的面积为y.(1).求当x=5时,对应y的值;(2).如图2、3、4,求出当点P分别在边AB、BC和CE上时,y与x之间的关系式;(3).如备用图,当P在线段BC上运动时,是否存在点P使得△APE的周长最小?若存在,求出此时∠PAD 的度数;若不存在,请说明理由.。
专题08探究三角形全等的判定方法压轴题六种模型全攻略【考点导航】目录【典型例题】 (1)【考点一用SAS 证明两三角形全等】 (1)【考点二用ASA 证明两三角形全等】 (6)【考点三用AAS 证明两三角形全等】 (9)【考点四用SSS 证明两三角形全等】 (11)【考点五用HL 证明两直角三角形全等】 (13)【考点六添一个条件使两三角形全等】 (16)【过关检测】 (18)【典型例题】【考点一用SAS 证明两三角形全等】例题:(2023秋·江苏·八年级专题练习)已知:如图,AB AD AC AE ==,,12∠=∠.求证:ABC ADE△△≌【答案】见解析【分析】先证明DAE BAC ∠=∠,从而可以利用SAS 来判定ABC ADE △≌△.【详解】证明:∵12∠=∠,∴12DAC DAC ∠+∠=∠+∠,即BAC DAE ∠=∠,在ABC 和ADE V 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)ABC ADE ≌.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL)是解题的关键.【变式训练】1.(2023春·福建福州·七年级福州华伦中学校考期末)已知:如图,点,F C 在线段BE 上,AB DE =,B E ∠=∠,BF EC =.求证:A D ∠=∠.【答案】见解析【分析】先根据线段的和差得出BC EF =,进而证明ABC DEF ≌△△,根据全等三角形的性质即可得证.【详解】证明:∵BF EC =,∴BF FC FC CE +=+,即BC EF =,在,ABC DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ABC DEF ≌△△,∴A D ∠=∠.【点睛】本题考查了全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.2.(2023秋·浙江杭州·八年级校考开学考试)如图所示,已知ABC 和DAE ,D 是AC 上一点,AD AB =,DE AB ∥,DE AC =,求证:AE BC =.【答案】见解析【分析】由平行线的性质可得ADE BAC ∠=∠,根据全等三角形的判定和性质即可找证明.【详解】∵DE AB ∥,∴ADE BAC ∠=∠,∵在△ADE 和BAC 中,AD BA ADE BAC DE AC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ADE BAC ≌ ,∴AE BC =.【点睛】本题考查了平行线的性质,全等三角形的判定和性质,由“SAS ”证得ADE BAC △△≌是解答本题的关键..3.(2023春·四川成都·七年级统考期末)如图在ABC 中,D 是BC 边上的一点,AB DB =,BE 平分ABC ∠,交AC 边于点E ,连接DE .(1)求证:ABE DBE △≌△;(2)若10040A C ∠=︒∠=︒,,求DEC ∠的度数.【答案】(1)证明见解析(2)60︒【分析】(1)根据BE 平分ABC ∠,可得ABE DBE ∠∠=,进而利用SAS 证明ABE DBE △≌△即可;(2)根据全等三角形的性质可得100BDE A ∠=∠=︒,再由三角形外角的性质即可求解.【详解】(1)解:∵BE 平分ABC ∠,∴ABE DBE ∠∠=.∵AB DB BE BE ==,,∴()SAS ABE DBE ≌△△;(2)解:∵ABE DBE △≌△,∴60DEC BDE C ∠=-∠=︒∠.【点睛】本题主要考查了全等三角形的判定和性质,三角形外角的性质,熟练掌握全等三角形的判定和性质定理是解题的关键.4.(2023春·山东济南·七年级统考阶段练习)如图,AB BD ⊥,BC BE ⊥,AB DB =,BC BE =,AC 与DE 交于点P ,BC 与DE 交于点O .(1)ABC 与DBE 全等吗?为什么?(2)试说明AC 与DE 的位置关系.【答案】(1)全等;理由见解析(2)AC DE ⊥;理由见解析【分析】(1)根据SAS 证明ABC DBE ≌即可;(2)根据全等三角形的性质得出C E ∠=∠,根据三角形内角和定理得出180C COP CPO E BOE OBE ∠+∠+∠=∠+∠+∠=︒,得出90CPO OBE ∠=∠=︒,即可证明结论.【详解】(1)解:全等;理由如下:∵AB BD ⊥,BC BE ⊥,∴90ABD CBE ∠=∠=︒,∴ABD CBD CBE CBD ∠+∠=∠+∠,∴ABC DBE ∠=∠,∵AB DB =,BC BE =,∴ABC DBE ≌.(2)解:AC DE ⊥;理由如下:∵ABC DBE ≌,∴C E ∠=∠,∵180C COP CPO E BOE OBE ∠+∠+∠=∠+∠+∠=︒,(1)求证:AEC DFB △△≌;(2)若6AEC S = ,求四边形BECF 的面积.【答案】(1)见解析(2)9【分析】(1)由AE DF ∥,得A ∠∴AEC S = 12EH AC ,12BCE S EH = ∵13AB CD BC ==,∴43AC BC =,∵6S =,【考点二用ASA 证明两三角形全等】例题:(2023春·广东惠州·八年级校考期中)如图,BC EF ∥,点C ,点F 在AD 上,AF DC =,A D ∠=∠.求证:ABC DEF ≌△△.【答案】见解析【分析】首先根据平行线的性质可得ACB DFE ∠=∠,利用等式的性质可得AC DF =,然后再利用ASA 判定ABC DEF ≌△△即可.【详解】证明:∵BC EF ∥,ACB DFE ∴∠=∠,AF DC =,AF CF DC CF ∴+=+,即AC DF =,在ABC 和DEF 中,A D AC DF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABC DEF ≌△△.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【变式训练】1.(2023·校联考一模)如图,点A 、D 、B 、E 在同一条直线上,若AD BE =,A EDF ∠=∠,.E ABC ∠=∠求证:AC DF =.【答案】见解析【分析】由AD BE =知AB ED =,结合A EDF ∠=∠,E ABC ∠=∠,依据“ASA ”可判定ABC ≌DEF ,依据两三角形全等对应边相等可得AC DF =.【详解】证明:AD BE = ,AD BD BE BD ∴+=+,即AB ED =,在ABC 和DEF 中,ABC E AB ED A EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ABC DEF ∴△≌△,AC DF =∴.【点睛】本题主要考查全等三角形的判定与性质,掌握全等三角形的判定与性质是解题的关键.2.(2023·浙江温州·温州市第八中学校考三模)如图,在ABC 和ECD 中,90ABC EDC ∠=∠=︒,点B 为CE 中点,BC CD =.(1)求证:ABC ECD ≌△△.(2)若2CD =,求AC 的长.【答案】(1)见解析(2)4,见解析【分析】(1)根据ASA 判定即可;(2)根据()ASA ABC ECD ≌△△和点B 为CE 中点即可求出.【详解】(1)证明:∵90ABC EDC ∠=∠=︒,BC CD =,C C ∠=∠,∴()ASA ABC ECD ≌△△(2)解:∵2CD =,()ASA ABC ECD ≌△△,∴2BC CD ==,AC CE =,∵点B 为CE 中点,∴2===BE BC CD ,∴4CE =,∴4AC =;【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定条件是解答本题的关键.【考点三用AAS 证明两三角形全等】例题:(2023·广东汕头·广东省汕头市聿怀初级中学校考三模)如图,点E 在ABC 边AC 上,AE BC =,BC AD ∥,CED BAD ∠=∠.求证:ABC DEA△△≌【答案】证明见解析【分析】根据平行线的性质,得到DAC C ∠=∠,再根据三角形外角的性质,得出D BAC ∠=∠,即可利用“AAS ”证明BC DEA A ≌ .【详解】证明:BC AD Q ∥,DAC C ∴∠=∠,CED BAD ∠=∠ ,CED D DAC ∠=∠+∠,BAD DAC BAC ∠=∠+∠,D BAC ∴∠=∠,在ABC 和DEA △中,BAC D C DAC BC AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS BC DEA ∴A ≌ .【点睛】本题考查了全等三角形的判定,平行线的性质,三角形外角的性质,熟练掌握全等三角形的判定定理是解题关键.【变式训练】1.(2023·浙江温州·统考二模)如图,AB BD =,DE AB ∥,C E ∠=∠.(1)求证:ABC BDE ≅ .(2)当80A ∠=︒,120ABE ∠=︒时,求EDB ∠的度数.【答案】(1)见解析(2)40°【分析】(1)根据平行线的性质,利用三角形全等的判定定理即可证明;(2)根据三角形全等的性质和平行线的性质即可求解【详解】(1)解:∵DE AB ∥,∴BDE ABC ∠=∠,又∵E C ∠=∠,BD AB =,∴ABC BDE ≅ .(2)解:∵80A ∠=︒,ABC BDE ≅ ,∴80A BDE ∠=∠=︒,∵120ABE ∠=︒,∴40ABD ∠=︒,∵DE AB ∥,∴40EDB ∠=︒.【点睛】本题考查了平行线的性质,三角形全等的判定和性质,熟练掌握各知识点,利用好数形结合的思想是解本题的关键.2.(2023秋·八年级课时练习)如图,已知点C 是线段AB 上一点,DCE A B ∠∠∠==,CD CE =.(1)求证:ACD BEC △≌△;(2)求证:AB AD BE =+.【答案】(1)见解析(2)见解析【分析】(1)由DCE A ∠=∠得D ACD ACD BCE ∠+∠=∠+∠,即D BCE ∠=∠,从而即可证得ACD BEC △≌△;(2)由ACD BEC △≌△可得AD BC =,AC BE =,即可得到AC BC AD BE +=+,从而即可得证.【详解】(1)证明:DCE A ∠∠= ,D ACD ACD BCE ∠∠∠∠∴+=+,D BCE ∴∠=∠,在ACD 和BEC 中,A B D BCE CD EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ACD BEC ∴△≌△;(2)解:ACD BEC △≌△,AD BC ∴=,AC BE =,AC BC AD BE ∴+=+,AB AD BE ∴=+.【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.【考点四用SSS 证明两三角形全等】例题:(2023·云南玉溪·统考三模)如图,点B E C F ,,,在一条直线上,AB DF AC DE BE CF ===,,,求证:ABC DFC △≌△.【答案】见解析【分析】根据题意,运用“边边边”的方法证明三角形全等.【详解】证明:∵BE CF =,∴BE CE CF CE +=+,即BC EF =,在ABC和DFE △中AB DF AC DE BC FE =⎧⎪=⎨⎪=⎩∴(SS )S ABC DFE △≌△.【点睛】本题主要考查三角形全等的判定,掌握全等三角形的判定方法解题的关键.【变式训练】1.(2023·云南·统考中考真题)如图,C 是BD 的中点,,AB ED AC EC ==.求证:ABC EDC △≌△.【答案】见解析【分析】根据C 是BD 的中点,得到BC CD =,再利用SSS 证明两个三角形全等.【详解】证明: C 是BD 的中点,BC CD ∴=,在ABC 和EDC △中,BC CD AB ED AC EC =⎧⎪=⎨⎪=⎩,()ABC EDC SSS ∴ ≌【点睛】本题考查了线段中点,三角形全等的判定,其中对三角形判定条件的确定是解决本题的关键.2.(2023春·全国·七年级专题练习)如图,已知90E F ∠=∠=︒,点B C ,分别在AE AF ,上,AB AC =,BD CD =.(1)求证:ABD ACD △≌△;(2)求证:DE DF =.【答案】(1)见解析(2)见解析【分析】(1)直接根据SSS 证明即可.(2)根据(1)得∠∠EAD FAD =,然后证明AED AFD ≌即可.【详解】(1)解:证明:在ABD △和ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩∴()ABD ACD SSS ≌△△.(2)解:由(1)知()ABD ACD SSS ≌△△,∴∠∠EAD FAD =,在AED △和AFD △中,E F EAD FAD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AED AFD AAS △≌△,∴DE DF =.【点睛】本题考查了全等三角形的性质与判定,熟记全等三角形的性质与判定是解题关键.【考点五用HL 证明两直角三角形全等】例题:(2023·全国·九年级专题练习)如图,在ABC 和DCB △中,BA CA ⊥于A ,CD BD ⊥于D ,AC BD =,AC 与BD 相交于点O .求证:ABC DCB △≌△.【答案】见解析【分析】由HL 即可证明Rt Rt ABC DCB ≌.【详解】证明:∵BA CA ⊥,CD BD ⊥,∴90A D ∠=∠=︒,在Rt ABC △△和Rt DCB △△中,AC DB BC CB =⎧⎨=⎩,∴()Rt Rt HL ABC DCB ≌△△.【点睛】本题考查了全等三角形的判定,熟练掌握直角三角形全等的判定是解题的关键.【变式训练】1.(2023春·广东河源·八年级统考期中)如图,点A ,D ,B ,E 在同一直线上,,,90AC EF AD BE C F ︒==∠=∠=.(1)求证:ABC EDF ≅ ;(2)57ABC ∠=︒,求ADF ∠的度数.【答案】(1)见解析(2)123︒【分析】(1)先说明AB DE =,再根据HL 即可证明结论;(2)由(1)可知57FDE ABC ∠=∠=︒,再利用平角的性质即可解答.【详解】(1)解:∵AD BE =,∴AD BD BE BD +=+,∴AB DE =,在Rt ABC △和Rt EDF 中,,,AC EF AB ED =⎧⎨=⎩∴()HL ABC EDF ≅ .(2)解:∵ABC EDF ≅ ,∴57FDE ABC ∠=∠=︒,∴180********ADF FDE ∠=︒-∠=︒-︒=︒.【点睛】本题主要考查了全等三角形的判定与性质、平角的性质等知识点,熟练掌握全等三角形的判断与性质是解题的关键.2.(2023春·七年级单元测试)如图,已知AD BC 、相交于点O ,AB CD =,AM BC ⊥于点M ,DN BC ⊥于点N ,BN CM =.(1)求证:ABM DCN △≌△;(2)试猜想OA 与OD 的大小关系,并说明理由.【答案】(1)见解析(2)OA OD =,理由见解析【分析】(1)根据HL 可证明ABM DCN △≌△;(2)根据AAS 证明AMO DNO ≌△△可得结论.【详解】(1)证明:∵BN CM =,∴BN MN MN CM +=+,即CN BM =,∵AM BC ⊥,DN BC ⊥,∴90AMB DNC ∠=∠=︒,在Rt ABM 和Rt DCN △中,AB CD BM CN =⎧⎨=⎩,∴()Rt Rt HL ABM DCN ≌△△;(2)解:OA OD =,理由如下:∵ABM DCN △≌△,∴AM DN =,在AMO 和DNO 中,AOM DNO AMO DNO AM DN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AMO DNO ≌△△,∴OA OD =.【点睛】本题考查了全等三角形的性质和判定,熟练掌握全等三角形的判定定理是解题的关键.【考点六添一个条件使两三角形全等】例题:(2023·浙江·八年级假期作业)如图,D 在AB 上,E 在AC 上,且B C ∠=∠,补充一个条件______后,可用“AAS ”判断ABE ACD ≌.【答案】BE CD =或AE AD=【分析】由于两个三角形已经具备B C ∠=∠,A A ∠=∠,故要找边的条件,只要不是这两对角的夹边即可.【详解】解:∵B C ∠=∠,A A ∠=∠,∴若用“AAS ”判断ABE ACD ≌,可补充的条件是BE CD =或AE AD =;故答案为:BE CD =或AE AD =.【点睛】本题考查了全等三角形的判定,熟知掌握判定三角形全等的条件是解题的关键.【变式训练】1.(2023·北京大兴·统考二模)如图,点B ,E ,C ,F 在一条直线上,AC DF ∥,BE CF =,只需添加一个条件即可证明ABC DEF ≌△△,这个条件可以是________(写出一个即可).【答案】AC DF =或A D ∠=∠或ABC DEF ∠=∠或AB DE (答案不唯一).【分析】根据SAS ,AAS 或ASA 添加条件即可求解.【详解】解:∵AC DF ,∴ACB DFE ∠=∠,∵BE CF =,∴BE EC CF EC +=+,即BC EF =,则有边角AS 两个条件,要添加一个条件分三种情况,(1)根据“SAS ”,则可添加:AC DF =,(2)根据“ASA ”,则可添加:ABC DEF ∠=∠或AB DE ,(3)根据“AAS ”,则可添加:A D ∠=∠,故答案为:AC DF =或ABC DEF ∠=∠或AB DE 或A D ∠=∠(答案不唯一).【点睛】本题考查了全等三角形的判定,解此题的关键是熟练掌握全等三角形的几种判断方法.2.(2023秋·八年级课时练习)如图,已知90A D ∠=∠=︒,要使用“HL ”证明ABC DCB △≌△,应添加条件:_______________;要使用“AAS ”证明ABC DCB △≌△,应添加条件:_______________________.【答案】AB DC =(或AC DB =)ACB DBC ∠=∠(或ABC DCB ∠=∠)【分析】根据:斜边与直角边对应相等的两个直角三角形全等,使ABC DCB △≌△,已知90A D ∠=∠=︒,BC BC =,添加的条件是直角边相等即可;要使用“AAS ”,需要添加角相等即可.【详解】解:已知90A D ∠=∠=︒,BC BC =,要使用“HL ”,添加的条件是直角边相等,故答案为:AB DC =(或AC DB =);要使用“AAS ”,需要添加角相等,添加的条件为:ACB DBC ∠=∠(或ABC DCB ∠=∠).故答案为:ACB DBC ∠=∠(或ABC DCB ∠=∠).【点睛】本题考查了全等三角形的判定.本题的关键是,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【过关检测】一、单选题1.(2023秋·全国·八年级专题练习)如图,DC AE ⊥,垂足为C ,且AC CD =,若用“HL ”证明ABC DEC ≌△△,则需添加的条件是()A .CE BC=B .AB DE =C .A D ∠=∠D .ABC E∠=∠【答案】B 【分析】根据“HL ”的判定方法进行判定即可.【详解】解:AB DE =,理由是:∵DC AE ⊥,∴90ACB DCE ∠=∠=︒,在Rt ABC △和Rt DEC △中,AB DE AC CD =⎧⎨=⎩,∴()Rt Rt HL ABC DEC ≌V V ,故选:B .【点睛】此题考查了根据“HL ”判定三角形全等,解题的关键是熟练掌握以上知识点.2.(2023春·四川雅安·七年级统考期末)如图,EF CF =,BF DF =,则下列结论错误的是()A .BEF DCF△≌△B .ABC ADE △≌△C .AB AD=D .DC AC=【答案】D 【分析】利用SAS 判断A 选项,利用AAS 判断B 选项,再利用全等三角形的性质逐一选项判断C 、D 即可.【详解】解:在BEF △和DCF 中,EF CF BFE DFC BF DF =⎧⎪∠=∠⎨⎪=⎩,()SAS BEF DCF \≌ ,故选项A 正确,不合题意;BEF DCF ≌ ,B D ∴∠=∠,BF DF = ,EF CF =,BF CF DF EF \+=+,BC DE ∴=,在ABC 和ADE V 中,A AB D BC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABC ADE ∴△≌△,故选项B 正确,不合题意;ABC ADE △≌△,AB AD ∴=,故选项C 正确,不合题意;BEF DCF ≌ ,DC BE ∴=,证不出DC AC =,∴选项D 错误,符合题意;故选:D .【点睛】本题考查了全等三角形的判定和性质,熟记三角形全等判定方法:SSS 、SAS 、ASA 、AAS 是解题的关键.3.(2023春·河北保定·七年级校考阶段练习)如图是雨伞在开合过程中某时刻的截面图,伞骨AB AC =,点D ,E 分别是AB ,AC 的中点,DM ,EM 是连接弹簧和伞骨的支架,且=DM EM ,已知弹簧M 在向上滑动的过程中,总有ADM AEM △≌△,其判定依据是()A .ASAB .AASC .SSSD .SSA【答案】C 【分析】根据全等三角形判定的“SSS ”定理即可证得ADM AEM △≌△;【详解】∵AB AC =,点,D E 分别是,AB AC 的中点,,AD AE ∴=在ADM △和AEM △中.AD AE AM AM DM EM =⎧⎪=⎨⎪=⎩()ADM AEM SSS ∴ ≌故选:C【点睛】此题主要考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题关键4.(2023秋·陕西榆林·八年级校考开学考试)如图,点A E F D ,,,在同一直线上,若AB CD ,AB CD =,AE FD =,则图中的全等三角形共有()A .0对B .1对C .2对D .3对【答案】D 【分析】由AE FD =可得AF DE =,由平行线的性质可得A D ∠=∠,根据SAS 推出BAF CDE ≌,BAE CDF △≌△,得到BE CF AEB DFC =∠=∠,,从而推出BEF CFE ∠=∠,再根据SAS 推出BEF CFE ≌.【详解】解:AE DF = ,AE EF DF EF ∴+=+,AF DE ∴=,∥ AB CD ,A D ∴∠=∠,在BAF △和CDE 中,AB DC A D AF DE =⎧⎪∠=∠⎨⎪=⎩,()SAS BAF CDE ∴≌△△,在BAE 和CDF 中,AB DC A D AE DF =⎧⎪∠=∠⎨⎪=⎩,()SAS BAE CDF ∴ ≌,BE CF AEB DFC ∴=∠=∠,,180180AEB BEF DFC CFE ∠+=︒∠+∠=︒ ,,BEF CFE ∴∠=∠,在BEF △和CFE 中,BE CF BEF CFE EF FE =⎧⎪∠=∠⎨⎪=⎩,()SAS BEF CFE ∴ ≌,综上所述,全等三角形共有3对,故选:D .【点睛】本题主要考查了全等三角形的判定与性质、平行线的性质,熟练掌握三角形全等的判定与性质是解题的关键.二、填空题【答案】AF DE =或ABF DCE ∠=∠【分析】本题要判定ABF ≌DCE 条件即可.添边可以是AF DE =或添角可以是【详解】解:所添加条件为:AF =【答案】1290∠+∠=︒【分析】证明ABC ≌△△【详解】解:根据网格特点可知,∴ABC DEF ≌△△,∴2DEF ∠=∠,【点睛】本题主要考查了三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法.7.(2023秋·陕西榆林·八年级校考开学考试)如图,在∥交DE的延长线于点接DE,BF AC【答案】5【分析】由平行线的性质可得+=+=即可得到答案.BF CD AD CD AC∥,【详解】解:BF AC【答案】55【分析】先证明ABE ADG △△≌即可解答.【详解】解:∵180B ADC ∠+∠=【点睛】本题主要考查全等三角形的判定与性质,掌握运用SSS 和SAS 证明三角形全等是解答本题的关键.三、解答题9.(2023春·云南德宏·九年级统考期中)如图,点C ,E ,F ,A 在一条直线上,AF CE =,AD CB =,DE BF =.求证:A C ∠=∠.【答案】见解析【分析】首先根据AF CE =得到AE CF =,然后证明出()SSS ADE CBF ≌V V ,然后利用全等三角形的性质求解即可.【详解】证明:∵AF CE =,∴AF EF CE EF +=+,∴AE CF =,在ADE V 和CBF V 中,AD BC DE BF AE CF =⎧⎪=⎨⎪=⎩,∴()SSS ADE CBF ≌V V ,∴A C ∠=∠.【点睛】此题考查了全等三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定.10.(2023秋·陕西榆林·八年级校考开学考试)如图,在四边形ABCD 中,BC CD =,点E ,F 分别是BC ,CD 的中点,BAE DAF ∠=∠,B D ∠=∠.求证:AE AF =.【答案】见解析【点睛】本题考查了直角三角形全等的判定,熟练掌握直角三角形全等的判定定理是解题的关键.12.(2023秋·全国·八年级专题练习)如图,点B 、F 、C 、E 在直线l 上(F 、C 之间不能直接测量),点A 、D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△;(2)若10m BE =,3m BF =,求FC 的长度.【答案】(1)见解析(2)4m【分析】(1)由AB DE ∥,得ABC DEF ∠=∠,根据“ASA ”即可证明ABC DEF ≌△△;(2)根据全等三角形的性质得BC EF =,则3m BF CE ==,然后根据FC BE BF CE =--即可求解.【详解】(1)∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 与DEF 中,ABC DEF AB DE A D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABC DEF ≌△△;(2)∵ABC DEF ≌△△,∴BC EF =,∴BF CF CE CF +=+,∴BF EC =,∵10m BE =,3m BF =,∴10334m FC =--=.【点睛】此题重点考查全等三角形的判定与性质、平行线的性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.13.(2023·全国·八年级假期作业)如图,点A 、D 、C 、F 在同一条直线上,AD CF =,AB DE =,BC EF =.(1)求证:ABC DEF ≌△△;(2)若60A ∠=︒,88B ∠=︒,求F ∠的度数.【答案】(1)证明见解析(2)32︒【分析】(1)先证明AC DF =,再利用SSS 证明ABC DEF ≌△△即可;(2)先根据三角形内角和定理求出32ACB ∠=︒,再根据全等三角形对应角相等即可得到32F ACB ∠=∠=︒.【详解】(1)证明:∵AD CF =,∴AD CD CF CD +=+,即AC DF =,在ABC 和DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,∴()SSS ABC DEF △△≌;(2)解:∵60A ∠=︒,88B ∠=︒,∴18032ACB A B =︒--=︒∠∠∠,∵ABC DEF ≌△△,∴32F ACB ∠=∠=︒.【点睛】本题主要考查了全等三角形的性质与判定,三角形内角和定理,熟知全等三角形的性质与判定条件是解题的关键.14.(2023春·海南海口·七年级海师附中校考期末)如图,在ABC ∆和ADE ∆中,90BAC DAE ∠=∠=︒,,AB AC AD AE ==,点C D E 、、三点在同一直线上,连接BD 交AC 于点F .(1)求证:ΔΔBAD CAE ≌;(2)猜想,BD CE 有何特殊位置关系,并说明理由.【答案】(1)证明见解析;(2)BD CE ⊥,理由见解析.【分析】(1)由“SAS ”可证BAD CAE ≌;(2)由全等三角形的性质可得ACE ABD ∠=∠,由三角形内角和定理可求解.【详解】(1)∵90BAC DAE ︒∠=∠=,∴BAC CAD EAD CAD ∠+∠=∠+∠,∴BAD CAE ∠=∠,在BAD ∆和CAE ∆中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ΔΔSAS BAD CAE ≌(2)猜想:BD CE ⊥,理由如下:由(1)知ΔΔBAD CAE ≌,∴,BD CE ABD ACE =∠=∠,∵,90AB AC BAC =∠=︒,∴45ABC ACB ︒∠=∠=,∴45ABD DBC ABC ︒∠+∠=∠=,∵ABD ACE ∠=∠,∴45ACE DBC ︒∠+∠=,∴90DBC DCB DBC ACE ACB ︒∠+∠=∠+∠+∠=,∴1801809090BDC DBC DCB ︒︒︒︒∠=-∠-∠=-=,(1)求BO的长;=,动点P从点(2)F是射线BC上一点,且CF AO运动,同时动点Q从点A出发,沿射线AC以每秒点同时停止运动,设运动时间为t秒,当AOPBOD ACD Ð=ÐQ ,AOP ACF \Ð=Ð,AO CF =Q ,∴当OP CQ =时,AOP FCQ ≌V V BOD ACD Ð=ÐQ ,AOP FCQ \Ð=Ð,AO CF =Q ,∴当OP CQ =时,AOP V 46t t ∴=-,(1)若,BD AC CF AB ⊥⊥,如图1所示,直接写出BAC BEC ∠+∠(2)若BD 平分,ABC CF ∠平分ACB ∠,如图2所示,试说明此时(3)在(2)的条件下,若60BAC ∠= ,试说明:EF ED =.【答案】(1)180︒(2)1902BEC BAC ∠=︒+∠,说明见解析(3)说明见解析由(2)得1902BEC BAC ∠︒∠=+=180FEB DEC BEC ∴∠=∠=︒-∠=EM 平分BEC ∠,1602BEM CEM BEC ∴∠=∠=∠=︒BD Q 平分,ABC CF ∠平分ACB ∠,FBE MBE DCE MCE ∴∠=∠∠=∠。
全等三角形压轴题一.选择题(共9小题)1.(2013•邵阳)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC第1题第2题第3题2.(2012•巴中)如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.A B=AC B.∠BAC=90°C.B D=AC D.∠B=45°3.(2011•南昌)如图,在下列条件中,不能直接证明△ABD≌△ACD的是()A.B D=DC,AB=AC B.∠ADB=∠ADC,BD=DC C.∠B=∠C,BAD=∠CAD D.∠B=∠C,BD=DC 4.(2011•梧州)如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA第4题第5题第6题5.(2009•武汉)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:①△ACD≌△ACE;②△CDE为等边三角形;③=2;④.其中结论正确的是()A.只有①②B.只有①②④C.只有③④D.①②③④6.(2008•沈阳)如图所示,正方形ABCD中,点E是CD边上一点,连接AE,交对角线BD于点F,连接CF,则图中全等三角形共有()A.1对B.2对C.3对D.4对7.(2002•鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是()A.①②B.②③C.①③D.①②③8.(2001•湖州)根据下列已知条件,能唯一画出△ABC的是()A.A B=3,BC=4,AC=8 B.A B=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=69.如图,AB,CD相交于点E,且AB=CD,试添加一个条件使得△ADE≌△CBE.现给出如下五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB.其中符合要求有()A.2个B.3个C.4个D.5个第9题第10题第11题二.填空题(共7小题)10.(2013•柳州)如图,△ABC≌△DEF,请根据图中提供的信息,写出x=_________.11.(2011•郴州)如图,已知∠1=∠2=90°,AD=AE,那么图中有_________对全等三角形.12.(2010•钦州)如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,要使△ABC≌△BAD.你补充的条件是_________(只填一个).第12题第14题第15题13.(2009•遂宁)已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出_________个.14.(2009•湘潭)如图,△ABC中,D,E,F分别是AB,BC,AC上的点,已知DF∥BC,EF∥AB,请补充一个条件:_________,使△ADF≌△FEC.15.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有_________(填序号).16.如图:△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:_________,使△ABD≌△CBE.三.解答题(共8小题)17.(2012•河源)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.18.(2009•铁岭)△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.(1)如图(a)所示,当点D在线段BC上时.①求证:△AEB≌△ADC;②探究四边形BCGE是怎样特殊的四边形?并说明理由;(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.19.(2009•本溪)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=_________度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.20.(2009•青海)请阅读,完成证明和填空.九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:(1)如图1,正三角形ABC中,在AB、AC边上分别取点M、N,使BM=AN,连接BN、CM,发现BN=CM,且∠NOC=60度.请证明:∠NOC=60度.(2)如图2,正方形ABCD中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、DM,那么AN=_________,且∠DON=_________度.(3)如图3,正五边形ABCDE中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、EM,那么AN=_________,且∠EON=_________度.(4)在正n边形中,对相邻的三边实施同样的操作过程,也会有类似的结论.请大胆猜测,用一句话概括你的发现:_________.21.(2007•常州)已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF 为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.22.(2007•山西)如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连接DF.(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连接AE,试判断AE与DF的位置关系,并证明你的结论;(3)延长DF交BC于点M,试判断BM与MC的数量关系.(直接写出结论)23.(2006•绍兴)我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略).对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C l,∠C=∠C l.求证:△ABC≌△A1B1C1.(请你将下列证明过程补充完整.)证明:分别过点B,B1作BD⊥CA于D,B1D1⊥C1A1于D1.则∠BDC=∠B1D1C1=90°,∵BC=B1C1,∠C=∠C1,∴△BCD≌△B1C1D1,∴BD=B1D1.(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.24.如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,求证:△CDE≌△EAF.2014年11月27日wcjzhoulan的初中数学组卷参考答案与试题解析一.选择题(共9小题)1.(2013•邵阳)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC考点:全等三角形的判定;矩形的性质.专题:压轴题.分析:根据AD=DE,OD=OD,∠ADO=∠EDO=90°,可证明△AOD≌△EOD,OD为△ABE的中位线,OD=OC,然后根据矩形的性质和全等三角形的性质找出全等三角形即可.解答:解:∵AD=DE,DO∥AB,∴OD为△ABE的中位线,∴OD=OC,∵在△AOD和△EOD中,,∴△AOD≌△EOD(SAS);∵在△AOD和△BOC中,,∴△AOD≌△BOC(SAS);∵△AOD≌△EOD,∴△BOC≌△EOD;故B、C、D均正确.故选A.点评:本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.(2012•巴中)如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.A B=AC B.∠BAC=90°C.B D=AC D.∠B=45°考点:全等三角形的判定.专题:压轴题.分析:此题是开放型题型,根据题目现有条件,AD=AD,∠ADB=∠ADC=90°,可以用HL判断确定,也可以用SAS,AAS,SSS判断两个三角形全等.解答:解:添加AB=AC,符合判定定理HL;添加BD=DC,符合判定定理SAS;添加∠B=∠C,符合判定定理AAS;添加∠BAD=∠CAD,符合判定定理ASA;选其中任何一个均可.故选:A.点评:本题主要考查了学生对三角形全等判断的几种方法的应用能力,既可以用直角三角形全等的特殊方法,又可以用一般方法判定全等,关键是熟练掌握全等三角形的判定定理.3.(2011•南昌)如图,在下列条件中,不能直接证明△ABD≌△ACD的是()A.B D=DC,AB=AC B.∠ADB=∠ADC,BD=DC C.∠B=∠C,D.∠B=∠C,BD=DC∠BAD=∠CAD考点:全等三角形的判定.专题:压轴题.分析:两个三角形有公共边AD,可利用SSS,SAS,ASA,AAS的方法判断全等三角形.解答:解:∵AD=AD,A、当BD=DC,AB=AC时,利用SSS证明△ABD≌△ACD,故正确;B、当∠ADB=∠ADC,BD=DC时,利用SAS证明△ABD≌△ACD,故正确;C、当∠B=∠C,∠BAD=∠CAD时,利用AAS证明△ABD≌△ACD,故正确;D、当∠B=∠C,BD=DC时,符合SSA的位置关系,不能证明△ABD≌△ACD,故错误.故选:D.点评:本题考查了全等三角形的几种判定方法.关键是根据图形条件,角与边的位置关系是否符合判定的条件,逐一检验.4.(2011•梧州)如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA考点:全等三角形的判定;等边三角形的性质.专题:压轴题.分析:首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.解答:解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.点评:此题主要考查了三角形全等的判定以及等边三角形的性质,解决问题的关键是根据已知条件找到可证三角形全等的条件.5.(2009•武汉)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:①△ACD≌△ACE;②△CDE为等边三角形;③=2;④.A.只有①②B.只有①②④C.只有③④D.①②③④考点:全等三角形的判定;等边三角形的判定;直角梯形.专题:压轴题.分析:根据题意,对选项进行一一论证,排除错误答案.解答:解:由题意可知△ACD和△ACE全等,故①正确;又因为∠BCE=15°,所以∠ACE=45°﹣15°=30°,所以∠ECD=60°,所以△CDE是等边三角形,故②正确;∵AE=AE,△ACD≌△ACE,△CDE是等边三角形,∴∠EAH=∠ADH=45°,AD=AE,∴AH=EH=DH,AH⊥DE,假设AH=EH=DH=x,∴AE=x,CE=2x,∴CH=x,∴AC=(1+)x,∵AB=BC,∴AB2+BC2=[(1+)x]2,解得:AB=x,BE=x,∴==,故③错误;④∵Rt△EBC与Rt△EHC共斜边EC,∴S△EBC:S△EHC=(BE×BC):(HE×HC)=(EC×sin15°×EC×cos15°):(EC×sin30°×EC×cos30°)=(EC2×sin30°):(EC2×sin60°)=sin30°:sin60°=1:=EH:CH=AH:CH,故④正确.故其中结论正确的是①②④.故选B.点评:本题综合考查全等三角形、等边三角形和四边形的有关知识.注意对三角形全等,相似的综合应用.6.(2008•沈阳)如图所示,正方形ABCD中,点E是CD边上一点,连接AE,交对角线BD于点F,连接CF,A.1对B.2对C.3对D.4对考点:全等三角形的判定;正方形的性质.专题:压轴题.分析:根据正方形的性质可得出:正方形的一条对角线平分一组对角,而且四边相等,根据边角边公理可证出△ABD≌△CBD,△ABF≌△CBF,△AFD≌△CFD,有三对全等的三角形,解答:解:∵AD=CD,∠ADB=∠CDB=45°,DF=DF;∴△ADF≌△CDF;同理可得:△ABF≌△CBF;∵AD=CD,AB=BC,BD=BD∴△ABD≌△CBD.因此本题共有3对全等三角形,故选C.点评:本题主要考查正方形的性质和全等三角形的判定,是基础知识要熟练掌握.7.(2002•鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是()A.①②B.②③C.①③D.①②③考点:全等三角形的判定.专题:压轴题.分析:结合已知条件与全等三角形的判定方法进行思考,要综合运用判定方法求解.注意高的位置的讨论.解答:解:①正确.可以用AAS或者ASA判定两个三角形全等;②正确.可以用“倍长中线法”,用SAS定理,判断两个三角形全等;如图,分别延长AD,A′D′到E,E′,使得AD=DE,A′D′=D′E′,∴△ADC≌△EDB,∴BE=AC,同理:B′E′=A′C′,∴BE=B′E′,AE=A′E′,∴△ABE≌△A′B′E′,∴∠BAE=∠B′A′E′,∠E=∠E′,∴∠CAD=∠C′A′D′,∴∠BAC=∠B′A′C′,∴△BAC≌△B′A′C′.③不正确.因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等了.故选A.点评:本题考查了全等三角形的判定方法;要根据选项提供的已知条件逐个分析,分析时看是否符合全等三角形的判定方法,注意SSA是不能判得三角形全等的.8.(2001•湖州)根据下列已知条件,能唯一画出△ABC的是()A.A B=3,BC=4,AC=8 B.A B=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6考点:全等三角形的判定.专题:作图题;压轴题.分析:要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.解答:解:A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选C.点评:此题主要考查了全等三角形的判定及三角形的作图方法等知识点;能画出唯一三角形的条件一定要满足三角形全等的判定方法,不符合判定方法的画出的三角形不确定,当然不唯一.9.如图,AB,CD相交于点E,且AB=CD,试添加一个条件使得△ADE≌△CBE.现给出如下五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB.其中符合要求有()A.2个B.3个C.4个D.5个考点:全等三角形的判定.专题:压轴题.分析:根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.解答:解:延长DA、BC使它们相交于点F.∵∠DAB=∠BCD,∠AED=∠BEC,∴∠B=∠D,又∵∠F=∠F,AB=CD,∴△FAB≌△FCD∴AF=FC,FD=FB,∴AD=BC∴△ADE≌△CBE①对同理可得②对∵AE=CE,AB=CD∴DE=BE又∵∠AED=∠BEC∴△ADE≌△CBE(SAS)③对同理可得④对连接BD,∵AD=CB,AB=CD,BD=BD,∴△ADB≌△CBD,∴∠A=∠C,∴△ADE≌△CBE故选D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA.难点在于添加辅助线来构造三角形全等.关键在于应根据所给的条件判断应证明哪两个三角形全等.二.填空题(共7小题)10.(2013•柳州)如图,△ABC≌△DEF,请根据图中提供的信息,写出x=20.考点:全等三角形的性质.专题:压轴题.分析:先利用三角形的内角和定理求出∠A=70°,然后根据全等三角形对应边相等解答.解答:解:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20.故答案为:20.点评:本题考查了全等三角形的性质,根据角度确定出全等三角形的对应边是解题的关键.11.(2011•郴州)如图,已知∠1=∠2=90°,AD=AE,那么图中有3对全等三角形.考点:全等三角形的判定.专题:压轴题.分析:根据题意,结合图形,可得知△AEB≌△ADC,△BED≌△CDE,△BOD≌△COE.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.解答:解:①△AEB≌△ADC;∵AE=AD,∠1=∠2=90°,∠A=∠A,∴△AEC≌△ADC;∴AB=AC,∴BD=CE;②△BED≌△CDE;∵AD=AE,∴∠ADE=∠AED,∵∠ADC=∠AEB,∴∠CDE=∠BED,∴△BED≌△CDE.③∵BD=CE,∠DBO=∠ECO,∠BOD=∠COE,∴△BOD≌△COE.故答案为3.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目12.(2010•钦州)如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,要使△ABC≌△BAD.你补充的条件是AC=BD或∠CBA=∠DAB(只填一个).考点:全等三角形的判定.专题:压轴题;开放型.分析:根据已知条件在三角形中位置结合三角形全等的判定方法寻找条件.已知给出了一边对应相等,由一条公共边,还缺少角或边,于是答案可得.解答:解:欲证两三角形全等,已有条件:BC=AD,AB=AB,所以补充两边夹角∠CBA=∠DAB便可以根据SAS证明;补充AC=BD便可以根据SSS证明.故补充的条件是AC=BD或∠CBA=∠DAB.点评:本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.13.(2009•遂宁)已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出7个.考点:全等三角形的判定.专题:压轴题.分析:只要满足三边对应相等就能保证作出的三角形与原三角形全等,以腰为公共边时有6个,以底为公共边时有一个,答案可得.解答:解:以AB为公共边有三个,以CB为公共边有三个,以AC为公共边有一个,所以一共能作出7个.故答案为:7.点评:本题考查了全等三角形的作法;做三角形时要根据全等的判断方法的要求,正确对每种情况进行讨论是解决本题的关键.14.(2009•湘潭)如图,△ABC中,D,E,F分别是AB,BC,AC上的点,已知DF∥BC,EF∥AB,请补充一个条件:AF=FC或DF=EC或AD=FE或F为AC中点或DF为中位线或EF为中位线或DE∥AC,使△ADF≌△FEC.考点:全等三角形的判定.专题:压轴题;开放型.分析:要使△ADF≌△FEC,现有条件是两平行线,可得三角形中两角对应相等,根据全等三角形的判定方法还需边对应相等,于是答案可得.解答:解:若添加AF=FC,已知DF∥BC,EF∥AB,得出∠ADF=∠ABC=∠FEC,∠AFD=∠C,可以根据AAS 来判定其全等,同理添加DF=EC,或AD=FC,均可以利用AAS来判定其全等.点评:本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.15.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有①②③(填序号).考点:全等三角形的判定.专题:压轴题.分析:由已知条件,可直接得到三角形全等,得到结论,采用排除法,对各个选项进行验证从而确定正确的结论.解答:解:∵∠B+∠BAE=90°,∠C+∠CAF=90°,∠B=∠C∴∠1=∠2(①正确)∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF(ASA)∴AB=AC,BE=CF(②正确)∵∠CAN=∠BAM,∠B=∠C,AB=AC∴△ACN≌△ABM(③正确)∴CN=BM(④不正确).所以正确结论有①②③.故填①②③.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA.得到三角形全等是正确解决本题的关键.16.如图:△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:BD=BE 或AD=CE或BA=BC,使△ABD≌△CEB.考点:全等三角形的判定.专题:压轴题;开放型.分析:要使△ABD≌△CEB,现有一对直角相等,根据全等三角形的判定方法进行分析,还需要一边对应相等,观察图形可得到答案.解答:解:已知∠B=∠B,∠BDA=∠BEC=90°,则再添加一个边相等即可,所以可添加BD=BE或AD=CE或BA=BC,从而利用AAS或ASA来判定△ABD≌△CEB,故答案为:BD=BE或AD=CE或BA=BC.点评:本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.三.解答题(共8小题)17.(2012•河源)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.考点:全等三角形的判定.专题:证明题;压轴题.分析:(1)由已知可以利用AAS来判定其全等;(2)再根据等腰三角形三线合一的性质即可求得其为直角.解答:(1)证明:在△AOB和△COD中∵∴△AOB≌△COD(AAS)(2)解:∵△AOB≌△COD,∴AO=DO∵E是AD的中点∴OE⊥AD∴∠AEO=90°点评:此题考查了学生对全等三角形的判定及等腰三角形的性质的掌握,要熟练掌握这些性质并能灵活运用.18.(2009•铁岭)△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.(1)如图(a)所示,当点D在线段BC上时.①求证:△AEB≌△ADC;②探究四边形BCGE是怎样特殊的四边形?并说明理由;(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.考点:全等三角形的判定;平行四边形的判定;菱形的判定.专题:几何综合题;压轴题.分析:(1)根据等边三角形的性质可得AB=AC,AE=AD,∠BAC=∠EAD=60°,然后求出∠BAE=∠CAD,再利用“边角边”证明△AEB和△ADC全等;②四边形BCGE是平行四边形,因为△AEB≌△ADC,所以可得∠ABE=∠C=60°,进而证明∠ABE=∠BAC,则可得到EB∥GC又EG∥BC,所以四边形BCGE是平行四边形;(2)根据(1)的思路解答即可.(3)当CD=CB时,四边形BCGE是菱形,由(1)可知△AEB≌△ADC,可得BE=CD,再证明BE=CB,即邻边相等的平行四边形是菱形.解答:证明:(1)①∵△ABC和△ADE都是等边三角形,∴AE=AD,AB=AC,∠EAD=∠BAC=60°.又∵∠EAB=∠EAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠EAB=∠DAC,∴△AEB≌△ADC(SAS).②方法一:由①得△AEB≌△ADC,∴∠ABE=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABE=∠BAC,∴EB∥GC.又∵EG∥BC,∴四边形BCGE是平行四边形.方法二:证出△AEG≌△ADB,得EG=AB=BC.∵EG∥BC,∴四边形BCGE是平行四边形.(2)①②都成立.(3)当CD=CB (∠CAD=30°或∠BAD=90°或∠ADC=30°)时,四边形BCGE是菱形.理由:方法一:由①得△AEB≌△ADC,∴BE=CD又∵CD=CB,∴BE=CB.由②得四边形BCGE是平行四边形,∴四边形BCGE是菱形.方法二:由①得△AEB≌△ADC,∴BE=CD.又∵四边形BCGE是菱形,∴BE=CB∴CD=CB.方法三:∵四边形BCGE是平行四边形,∴BE∥CG,EG∥BC,∴∠FBE=∠BAC=60°,∠F=∠ABC=60°∴∠F=∠FBE=60°,∴△BEF是等边三角形.又∵AB=BC,四边形BCGE是菱形,∴AB=BE=BF,∴AE⊥FG∴∠EAG=30°,∵∠EAD=60°,∴∠CAD=30°.点评:本题主要考了平行线四边形的判定和性质、等边三角形的性质、全等三角形的判定和性质以及菱形的判定,解题关键在于根据题意画出图形,通过求证三角形全等,推出等量关系,即可推出结论.19.(2009•本溪)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=90度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.考点:全等三角形的判定;等腰三角形的性质.专题:压轴题.分析:(1)问要求∠BCE的度数,可将它转化成与已知角有关的联系,根据已知条件和全等三角形的判定定理,得出△ABD≌△ACE,再根据全等三角形中对应角相等,最后根据直角三角形的性质可得出结论;(2)问在第(1)问的基础上,将α+β转化成三角形的内角和;(3)问是第(1)问和第(2)问的拓展和延伸,要注意分析两种情况.解答:解:(1)90°.理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;②当点D在射线BC上时,α+β=180°;理由:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵在△ABD和△ACE中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;当点D在射线BC的反向延长线上时,α=β.理由:∵∠DAE=∠BAC,∴∠DAB=∠EAC,∵在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,∴∠BAC=∠BCE,即α=β.点评:本题考查三角形全等的判定,以及全等三角形的性质;两者综合运用,促进角与角相互转换,将未知角转化为已知角是关键.本题的亮点是由特例引出一般情况.20.(2009•青海)请阅读,完成证明和填空.九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:(1)如图1,正三角形ABC中,在AB、AC边上分别取点M、N,使BM=AN,连接BN、CM,发现BN=CM,且∠NOC=60度.请证明:∠NOC=60度.(2)如图2,正方形ABCD中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、DM,那么AN=,且∠DON=度.(3)如图3,正五边形ABCDE中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、EM,那么AN=,且∠EON=度.(4)在正n边形中,对相邻的三边实施同样的操作过程,也会有类似的结论.请大胆猜测,用一句话概括你的发现:.考点:全等三角形的判定;等边三角形的性质;正多边形和圆.专题:压轴题;阅读型.分析:(1)利用△ABC是正三角形,可得∠A=∠ABC=60°,AB=BC,又因BM=AN,所以△ABN≌△BCM,∠ABN=∠BCM,所以∠NOC=∠BCM+∠OBC=∠ABN+∠OBC=60°;(2)同(1)利用三角形全等,可知在正方形中,AN=DM,∠DON=90°;(3)同(1),利用三角形全等可知在正五边形中,AN=EM,∠EON=108°;(4)以上所求的角恰好等于正n边形的内角.(10分)解答:(1)证明:∵△ABC是正三角形,∴∠A=∠ABC=60°,AB=BC,在△ABN和△BCM中,,∴△ABN≌△BCM,(2分)∴∠ABN=∠BCM,又∵∠ABN+∠OBC=60°,∴∠BCM+∠OBC=60°,∴∠NOC=60°;(2)解:∵四边形ABCD是正方形,∴∠DAM=∠ABN=90°,AD=AB,又∵AM=BN,∴△ABN≌△DAM(SAS),∴AN=DM,∠ADM=∠BAN,又∵∠ADM+∠AMD=90°,∴∠BAN+∠AMD=90°∴∠AOM=90°;即∠DON=90°.(3)解:∵五边形ABCDE是正五边形,∴∠A=∠B,AB=AE,又∵AM=BN,∴△ABN≌△EAM,∴AN=ME,∴∠AEM=∠BAN,∴∠NOE=∠NAE+∠AEM=∠NAE+∠BAN=∠BAE=108°;(4)解:以上所求的角恰好等于正n边形的内角.(10分)注:学生的表述只要合理或有其它等价且正确的结论,均给分.本题结论着重强调角和角的度数.点评:本题需仔细分析图形,利用三角形全等即可解决问题,本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21.(2007•常州)已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF 为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.考点:全等三角形的判定;等边三角形的判定.专题:证明题;压轴题.分析:(1)关键是证出CE=AF,可由AE=AB,AC=BF,两两相加可得.再结合已知条件可证出△AEF≌△CDE.(2)有(1)中的全等关系,可得出∠AFE=∠CED,再结合△DEF是等边三角形,可知∠DEF=60°,从而得出∠BAC=60°,同理可得∠ACB=60°,那么∠ABC=60°.因而△ABC是等边三角形.解答:证明:(1)∵BF=AC,AB=AE(已知)∴FA=EC(等量加等量和相等).(1分)∵△DEF是等边三角形(已知),∴EF=DE(等边三角形的性质).(2分)又∵AE=CD(已知),∴△AEF≌△CDE(SSS).(4分)(2)由△AEF≌△CDE,得∠FEA=∠EDC(对应角相等),∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换),△DEF是等边三角形(已知),∴∠DEF=60°(等边三角形的性质),∴∠BCA=60°(等量代换),由△AEF≌△CDE,得∠EFA=∠DEC,∵∠DEC+∠FEC=60°,∴∠EFA+∠FEC=60°,又∠BAC是△AEF的外角,∴∠BAC=∠EFA+∠FEC=60°,∴△ABC中,AB=BC(等角对等边).(6分)∴△ABC是等边三角形(等边三角形的判定).(7分)点评:本题利用了等量加等量和相等,全等三角形的判定和性质,还有三角形的外角等不相邻的两个内角之和,等边三角形的判定(三个角都是60°,那么就是等边三角形).22.(2007•山西)如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连接DF.(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连接AE,试判断AE与DF的位置关系,并证明你的结论;(3)延长DF交BC于点M,试判断BM与MC的数量关系.(直接写出结论)考点:全等三角形的判定;正方形的性质.专题:压轴题;探究型.分析:根据正方形的性质得到相关的条件找出全等的三角形:△ADE≌△ABC,△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF;利用全等的关系求出∠AHD=90°,得到AE⊥DF;同时可判定BM=MC.解答:解:(1)△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF.(2)AE⊥DF.证明:设AE与DF相交于点H.。
全等三角形压轴题1.如图,已知BD⊥DE,CE⊥DE,垂足分别是D、E,AB=AC,∠BAC=90°,试探索DE、BD、CE长度之间的关系,并说明你的结论的正确性.2.已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;3.如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.4.已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE 的延长线上,CF=AB,求证:AF⊥AQ.5.阅读下题及证明过程:已知:如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.证明:在△AEB和△AEC中,∵EB=EC,∠ABE=∠ACE,AE=AE,∴△AEB≌△AEC…第一步∴∠BAE=∠CAE…第二步问上面证明过程是否正确?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.6.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为____,线段CF、BD的数量关系为____;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;7.一节数学课后,老师布置了一道课后练习题:如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB平分∠ABO,其余条件不变.求证:AP=CD.(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)8.探究问题1 已知:如图1,三角形ABC中,点D是AB边的中点,AE⊥BC,BF⊥AC,垂足分别为点E,F,AE,BF交于点M,连接DE,DF.若DE=kDF,则k的值为_____.拓展问题2 已知:如图2,三角形ABC中,CB=CA,点D是AB边的中点,点M 在三角形ABC的内部,且∠MAC=∠MBC,过点M分别作ME⊥BC,MF⊥AC,垂足分别为点E,F,连接DE,DF.求证:DE=DF.9.已知:直线a∥b,点A、B在直线a上,点C、D在直线b上,如图(1)若S△CBD=6cm2,则S△ADCcm2(2)若S△AOB=S△COD,那么△ACD≌△DBA吗?说明你的理由.10.(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE =90°.①当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;②将图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由.(2)当△ABC和△ADE满足下面甲、乙、丙中的哪个条件时,使线段BD、CE 在(1)中的位置关系仍然成立?不必说明理由.甲:AB:AC=AD:AE=1,∠BAC=∠DAE≠90°;乙:AB:AC=AD:AE≠1,∠BAC=∠DAE=90°;丙:AB:AC=AD:AE≠1,∠BAC=∠DAE≠90°.11.(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边1∠BAD.BC、CD上的点,且∠EAF=2求证:EF=BE+FD;(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、1∠BAD,(1)中的结论是否仍然成立?CD上的点,且∠EAF=2(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边1∠BAD,(1)中的结论是否仍然成立?BC、CD延长线上的点,且∠EAF=2若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.12.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 _____,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若________,则△ABC≌△DEF.13.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,1∠BAD,上述结论是否仍然成立,并说明理由;CD上的点,且∠EAF=2实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.14.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.15.已知:如图所示,直线MA∥NB,∠MAB与∠NBA的平分线交于点C,过点C作一条直线l与两条直线MA、NB分别相交于点D、E.(1)如图1所示,当直线l与直线MA垂直时,猜想线段AD、BE、AB之间的数量关系,请直接写出结论,不用证明;(2)如图2所示,当直线l与直线MA不垂直且交点D、E都在AB的同侧时,(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由;(3)当直线l与直线MA不垂直且交点D、E在AB的异侧时,(1)中的结论是否仍然成立?如果成立,请说明理由;如果不成立,那么线段AD、BE、AB 之间还存在某种数量关系吗?如果存在,请直接写出它们之间的数量关系.16.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.。
A .2B .4.如图, 中,分别为 、 上的动点,那么2m ABC V AC =BD BCA .B 7.如图,点P 为定角在绕点P 旋转的过程中,其两边分别与论:①恒成立;A .3B .28.如图,在中,于点.下列结论187∠MPN ∠PM PN =ABC V A ∠OF AB ⊥F9.已知:中,,线右侧作,且的值为 .10.如图,在直角三角形,过点作①;②11.如图,已知四边形,连接,则的面积等于ABC V 90ACB ∠=︒AC AE AD ⊥AE AD =ADB AEMS S △△O O OF AD ⊥45BOD ∠=︒::ACD ABD S S CD BD =△△ABCD 5AD =ABD △12.如图,在中,,延长线于点,若,则13.如图,在中,上一点,连接、,且满足为 .14.已知中,与交于点(1)如图,求证:(2)如图,连接,求证:(3)如图,若,ABC V 10.5BAC ∠=︒AD BC M BM BA AC =+ABC V AB AE CE ABC V BE CD 12OA 360BAC ∠=︒15.如图,在中,(1)如图1,若.①求的度数;②试探究线段与、(2)如图2,点,分别在.求证:.16.我们现给出如下结论:“直角三角形斜边上的中线等于斜边的一半如图1所示,在中,请结合上述结论解决如下问题:已知:P 是边上的一动点垂线,垂是分别为点E 点F ,ABC V 60A ∠=︒BDF ∠BC BF N M DN DE =CM MN CE =+Rt ABC △ABC V AB(1)如图2所示,当点P 与点Q 重合时,与的位置关系是____________,与的数量关系是____________.(2)如图3所示,当点P 在线段上不与点Q 重合时,试判断与的数量关系,并给与证明.(3)如图4所示,当点P 在线段的延长线上时,此时(2)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.17.某校八年级(1)班数学兴趣小组在一次活动中进行了试验探究活动,请你和他们一起活动吧.【探究与发现】(1)如图1,是的中线,延长至点E ,使,连接,写出图中全等的两个三角形:__________;【理解与运用】(2)如图2,是的中线,若,,设,求的取值范围;(3)如图3,是的中线,,点Q 在的延长线上,,求证:.18.如图,在中,,是的角平分线交于点,过作于点,点在上,且.(1)求证:;(2)求证:;AE BF QE QF AB QE QF BA AD ABC V AD ED AD =BE EP DEF V 5EF =3DE =EP x =x AD ABC V BAC ACB ∠=∠BC QC AB =2AQ AD =ABC ∆90C ∠=︒AD BAC ∠BC D D DE BA ⊥E F AC BD DF =AC AE =180BAC FDB ∠+∠=︒(3)若,,求线段的长.19.如图,在中,、的平分线交于点D ,延长交于E ,G 、F 分别在上,连接,其中,.(1)当时,求的度数;(2)求证:.20.(1)【初步探索】如图①,在四边形中,,.E 、F 分别是、上的点.且.探究图中、、之间的数量关系.小王同学探究此问题的方法:延长到点G ,使.连接.先证明,再证,可得出结论.他的结论应是_____.(2)【灵活运用】如图②,在四边形中,,,E 、F 分别是、上的点,且,上述结论是否仍然成立?请说明理由.(3)【延伸拓展】如图③,在四边形中,,.若点E 在的延长线上,点F 在的延长线上,仍然满足,请写出与的数量关系,并给出证明过程.21.问题引入:课外兴趣小组活动时,老师提出这样的问题:如图1,在中,,,求边上的中线的取值范围.小华在组内经过合作交流,得到了如下的解决方法:延长到,使得,再连接,把集中在中,利用三角形的三边关系可得,则.从中他总结出:解题时,条件中若出现“中线”“中点”等条件,可以考虑将中线加倍延长,构造全等三角形,把分散的条件和需求证的结论集中到同一个三角形中.9.5AB = 1.5AF =BE ABC V ABC ∠ACB ∠BD AC BD BC 、DF GF 、2A BDF ∠=∠GD DE =80A ∠=︒FDC ∠CF FG CE =+ABCD BA BC =90A C ∠=∠=︒AD CD EF AE CF =+CBF ∠EBF ∠ABE ∠EA AG CF =BG BCF BAG V V ≌BEF BEG ≌△△ABCD BA BC =180A C ∠+∠=︒AD CD EF AE CF =+ABCD 180BAD BCD ∠+∠=︒BA BC =DA DC EF AE CF =+EBF ∠ABC ∠ABC V 5AB =3AC =BC AD E DE AD =BE ,,2AB AC AD ABE V 28AE <<14AD <<参考答案:【分析】过点作于,如图,根据角平分线的性质得到,则可根据“”判断,所以,然后利用得到.【详解】解:过点作于,如图,是的角平分线,,,,在和中,,,,,.故选:A .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了直角三角形全等的判定与性质.利用角平分线性质构造全等三角形是解题关键.3.C【分析】根据题意和图形,作出合适的辅助线,然后根据直角三角形的面积和梯形的面积,可以计算出凸五边形ABCDE 的面积.【详解】解:作EG ⊥AC 于点G ,作BF ⊥AC 于点F ,作DH ⊥AC 于点H ,D DH AC ⊥H DF DH =HL Rt DFE Rt DHG ≅V V DEF DGH ∠=∠180AED DEF ∠+∠=︒180AED AGD ∠+∠=︒D DH AC ⊥H AD Q ABC V DF AB ⊥DH AC ⊥DF DH ∴=Rt DFE △Rt DHG V DE DG DF DH=⎧⎨=⎩(HL)Rt DFE Rt DHG ∴≅V V DEF DGH ∴∠=∠180AED DEF ∠+∠=︒Q 180AED AGD ∴∠+∠=︒则∠EGA=∠AFB=∠BFC ∴∠EAG+∠AEG=90°,∵AB⊥AE,BC⊥CD,∴∠EAB=∠BCD=90°,∴∠EAG+∠FAB=90°,【点睛】此题考查了角平分线的性质定理最短路线问题,解题的关键是找到使5.A∴,∵,∴,∴,∴,在和中,,∴,∴,∴.故选:A .【点睛】本题考查了全等三角形的性质和判定,坐标与图形性质,关键是推出AM =BN 和推出.6.B【分析】证明得出,证明得出,进而即可求解.【详解】解:如图,在上截取,连接平分,平分,4OM ON CN CM ====90ACB ∠=︒ACB MON ∠∠=9090MCA ACN BCN ACN ∠∠∠∠=︒-=︒-,ACM BCN ∠∠=ACM V BCN V ACM BCN CM CNCMA CNB ∠=∠⎧⎪=⎨⎪∠=∠⎩ACM BCN ASA V V ≌()AM BN =OA OB+OA ON BN=++OA ON AM=++ON OM=+44=+8=OA OB OM ON +=+BOE BOH V V ≌60EOH BOH ∠=∠=︒COD COH V V ≌CD CH =BC BH BE =OHBD Q ABC ∠CE ACB ∠【分析】作于E ,于F ,根据平分可知,结合即可证明.根据图中各角的数量关系可得,进而还可证明;利用全等三角形的性质可以得到多组相等的边,由此判断①的正误.根据全等三角形的性质得到,据此可得定值,还可判断③的正误;【详解】解:如图,作于E ,于F .∵,∴,∵,∴,∴,∵平分,于E ,于F ,∴.在和中,∴,∴.在和中,∴,∴,故①正确.∴定值,故③正确.∴定值,故②正确.PE OA ⊥PF OB ⊥OP AOB ∠PE PF =OP OP =POE POF V V ≌MPE NPF PEM PFN ∠∠∠∠==、PEM PFN V V ≌PEM PNF S S =V V PMON PEOF S S ==四边形四边形PE OA ⊥PF OB ⊥90PEO PFO ∠∠==︒180EPF AOB ∠∠+=︒180MPN AOB ∠∠+=︒EPF MPN ∠∠=EPM FPN ∠∠=OP AOB ∠PE OA ⊥PF OB ⊥PE PF =POE V POF V PE PF OP OP ==,()Rt Rt HL POE POF V V ≌OE OF =PEM V PFN V MPE NPF PE PF PEM PFN ∠∠∠∠===,,()ASA PEM PFN V V ≌PEM PNF EM NF PM PN S S ===V V ,,PMON PEOF S S ==四边形四边形2OM ON OE ME OF NF OE +=++-==∵平分,,∴,∴故结论①正确;∵,BD ABC ∠OF AB ⊥OG OF OG =11:2:2BOC BOE S S BC OG BE OF =⨯⨯V V 60A ∠=︒∴,∴,又∵,∴,故结论②错误;在上截取,连接,在和中,,∴,∴,,∵,,∴,∴在和中,,∴,∴,∴,故结论③正确;∵,,∴,,9050BOF OBA ∠=︒-∠=︒605010EOF BOE BOF ∠=∠-∠=︒-︒=︒806020ABC A ∠-∠=︒-︒=︒EOF ABC A ∠∠∠≠-BC BM BE =OM BOE △BOM V BE BM OBE OBM OB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)BOE BOM V V ≌OE OM =60BOM BOE ∠=∠=︒60OD B E C O ︒==∠∠18060COM BOE BOM ∠=︒-∠-∠=︒COD COM ∠=∠COD △COM V OCD OCM OC OCCOD COM ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)COD COM V V ≌CD CM =BE CD BM CM BC +=+=BOE BOM V V ≌COD COM V V ≌BOE BOM S S =V V COD COM S S =V V∴,∴,∵,∴,即:∴,90ACB AGE CGE ∠=∠=∠=︒90DAC ADC ∠+∠=°AE AD ⊥90DAE ∠=︒90DAC GAE ∠+∠=ADC GAE ∠=∠∴,∴,∵,∴,即:,∴,在和中,90ACB AHE ∠=∠=︒90DAC ADC ∠+∠=°AD AE ⊥90DAE ∠=︒90DAC HAE ∠+∠=︒ADC HAE ∠=∠ADC △EAH V∴,又∵,,∴,∴,,∴,∴,∴,∴,,∴,∵,,∴,故③正确;∵,,∴,∴,∴,∵,,∴,∴,又∵,,∴,∴,∴,故②错误;90AOG AOH ∠=∠=︒HAO GAO ∠=∠AO AO =(ASA)AOH AOG ≌V V AG AH =OG OH =18045BOH BOD DOF ∠=︒-∠-∠=︒45BOH BOD ∠=∠=︒(ASA)BOD BOH ≌V V BD BH =OH OD =AB AH BH AG BD =+=+3BD =8AG =11AB =135BOA BOH AOH ∠=∠+∠=︒135BOF BOD DOF ∠=∠+∠=︒BOA BOF ∠=∠(ASA)BOA BOF ≌V V AO OF =OH OD =OG OH =OD OG =AD AO OD OF OG =+=+90OGE F ∠=︒-∠90BEC EBC ∠=︒-∠OGE BEC ∠≠∠OE OG ≠AD OF OG OF OE =+≠+∴,,∴,∴,即∵,,,∴,∴,5AE AD ==EAD ADC ∠=∠CD AE ∥BAC CAD CAD EAD ∠+∠=∠+∠BAD ∠AB AC =BAD CAE ∠=∠AD AE =()SAS ABD ACE △≌△112555222ABD ACE S S AE AD ==⨯=⨯⨯=V V∵,∴.∴.∵,是∴BE BA AE =+BM BA =BE BM =AEM BME ∠=∠10.5BAC ∠=︒AD BAC ∠12DAC BAD BAC ∠=∠=∠=∵,∴∵,∴∴90ADB ∠=︒180ADO ∠=︒-AD AD =OD ≌ADO ADE V V OAD EAD ∠=∠平分,平分,,,点在的平分线上,,平分,BE Q ABC ∠CD ∠OM ON ∴=ON OK =OM OK ∴=∴O BAC ∠60BAC ∠=︒Q 1902BOC BAC ︒∴∠=+∠180BOD COE ︒∴∠=∠=-OF Q BOC ∠,∵,∴∴∵FBD GBD ∠=∠BD BD=()FBD GBD SAS ≌△△BDF BDG∠=∠60BDF ∠=︒120BDC ∠=︒∵平分,∴,在和中,∴,CD ACB ∠ACD BCD ∠=∠ECD V HCD V CH CE =()ECD HCD SAS ≌△△∵,∴,∴,∴.【点睛】本题考查了全等三角形的判定与性质,角平分线的定义,三角形内角和与外角的性质等,添加适当的辅助线是解题的关键.16.(1);(2),证明见解析(3)成立,证明见解析【分析】(1)根据得到,得到、,根据内错角相等两直线平行,得到;(2)延长交于,求出,根据全等三角形的性质得出,根据直角三角形斜边上中点性质得出即可;(3)延长交于,求出,根据全等三角形的性质得出,根据直角三角形斜边上中点性质得出即可【详解】(1)如图1,当点与点重合时,与的位置关系是,与的数量关系是,理由:为的中点,,,,DM DM =()NDM HDM SAS ≌△△MN MH =CM MN CE =+AE BF ∥QE QF=QE QF =AAS AEQ BFQ ≌△△AEQ BFQ ∠=∠QE QF =AE BF ∥EQ BF D AEQ BDQ ≌V V EQ QD =EQ FB D AEQ BDQ ≌V V EQ QD =P Q AE BF AE BF ∥QE QF AE BF =Q Q AB AQ BQ ∴=AE CQ ⊥Q BF CQ ⊥,,在和中,,,故答案为:;;(2)证明:延长交于,,(3)当点在线段延长线上时,此时()中结论成立证明:延长交的延长于∵,∴∴AE BF ∥90AEQ BFQ ∠=∠=︒AEQ △V BFQ AQE BQF AEQ BFQ AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AEQ BFQ ∴V V ≌QE QF ∴=AE BF ∥QE QF =QE QF=EQ BF D ,AE CP BF CP⊥⊥Q AE ∴BF∥AEQ BDQ∴∠=∠AQE BQD AEQ BDQ AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩AEQ BDQ∴V V ≌EQ DQ∴=90BFE ∠=︒Q QE QF∴=P BA 2EQ FB DAE BF ∥AEQ BDQ∠=∠【点睛】本题考查了三角形全等的判定方法:,平行线的性质,根据点位置不同,画出正确的图形,找到的条件是解决本题的关键.17.(1)≌(2)(3)证明见解析【分析】(1)≌,根据全等三角形的判定即可得到.(2)根据(1)中的辅助线作法,延长至点Q ,使,再证明≌,得到,再在中,利用三边关系进行计算即可.(3)根据(1)中辅助线作法,延长至点M ,使,证明≌,得到,,再证明≌,根据全等三角形的性质即可得证.【详解】(1)是的中线,,在和中,,≌.AQE BQD AEQ BDQAQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩Q AEQ BDQ∴V V ≌EQ QF∴=90BFE ∠=︒Q QE QF∴=AAS P AAS ADC △EDB△14x <<ADC △EDB △SAS EP PQ PE =PDE △PFQ △DE FQ =FQE △AD MD AD =BMD V CAD V BM CA =DBM DCA ∠=∠ACQ V MBA △AD Q ABC V BD DC ∴=ADC △EDB △DC BD ADC EDB AD ED =⎧⎪∠=∠⎨⎪=⎩∴ADC △EDB △()SAS(2)如图2,延长至点Q ,使,连接,是的中线,在和中,,≌,,,在中,即,∴.(3)如图3,延长至点M ,使,连接,∴,∵是的中线,∴,在和中,,EP PQ PE =FQ EP Q DEF V PD PF∴=PDE △PFQ △PD PF DPE FPQ PE PQ =⎧⎪∠=∠⎨⎪=⎩PDE ∴V PFQ △()SAS 3DE FQ ∴==PE PQ x ==FQE △EF FQ QE EF FQ-<<+53253x -<<+14x <<AD MD AD =BM 2AM AD =AD ABC V BD CD =BMD V CAD V MD AD BDM CDA BD CD =⎧⎪∠=∠⎨⎪=⎩∴≌,∴,,∵,,,∴,在和中,,∴≌,∴.【点睛】本题考查三角形全等的证明,三角形全等的证明方法以及倍长中线的辅助线作法是本题关键,准确的作出辅助线是本题难点.18.(1)见解析(2)见解析(3)4【分析】(1)证,即可得出结论;(2)设,在上截取,连接,证,得,,再证,得,然后证,即可得出结论;(3)求出,由全等三角形的性质得,即可求解.【详解】(1)证明:平分,,,,,,在和中,BMD V CAD V ()SAS BM CA =DBM DCA ∠=∠BAC ACB ∠=∠ACQ BAC ABC ∠=∠+∠MBA DBM ABC ∠=∠+∠ACQ MBA ∠=∠ACQ V MBA △CA BM ACQ MBA QC AB =⎧⎪∠=∠⎨⎪=⎩ACQ V MBA △()SAS 2AQ AM AD ==(AAS)ACD AED V V ≌DAC DAE α∠=∠=AB AM AF =MD (SAS)FAD MAD V V ≌FD MD =ADF ADM ∠=∠Rt Rt (HL)MDE BDE V V ≌DME B ∠=∠909021802FDB αα∠=︒+︒-=︒-8MB AB AM =-=ME BE =AD Q BAC ∠DAC DAE ∴∠=∠DE BA ⊥Q 90DEA DEB ∴∠=∠=︒90C ∠=︒Q 90C DEA ∴∠=∠=︒ACD V AED V,,;(2)证明:设,,,,则,在上截取,连接,如图所示:在和中,,,,,,,在和中,,,,C DEA DAC DAE AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)ACD AED ∴△≌△AC AE ∴=DAC DAE α∠=∠=90C DEA ∠=∠=︒Q 90ADC α∴∠=︒-90ADE α∠=︒-90FDB FCD DFC DFC ∠=∠+∠=︒+∠AB AM AF =MD FAD V MAD V AF AM DAF DAM AD AD =⎧⎪∠=∠⎨⎪=⎩(SAS)FAD MAD ∴V V ≌FD MD ∴=ADF ADM ∠=∠BD DF =Q BD MD ∴=Rt MDE △Rt BDE △MD BD DE DE=⎧⎨=⎩Rt Rt (HL)MDE BDE ∴V V ≌DME B ∴∠=∠DAC DAE α∠=∠=Q平分,,在和中,CD Q ACB ∠DCE DCH ∴∠=∠DCE △DCH V CE CH =⎧在和中,BCF △BAG △,∴,∴,又∵,在和中,,∴,∴,故答案为:;(2)仍成立,理由如下:延长到点G ,使,连接,∵,,∴,在和中,,∴,∴,又∵,90BC BA C BAG CF AG =⎧⎪∠=∠=︒⎨⎪=⎩()SAS BCF BAG V V ≌BF BG =GE GA AE AE CF EF =+=+=BEF △BEG V BF BG BE BE EF GE =⎧⎪=⎨⎪=⎩()SSS BEF BEG V V ≌EBF EBG ABE ABG ABE CBF ∠=∠=∠+∠=∠+∠EBF CBF ABE ∠=∠+∠EA AG CF =BG 180BAE C ∠+∠=︒180BAE BAG ∠+∠=︒C BAG ∠=∠BCF △BAG △BC BA C BAG CF AG =⎧⎪∠=∠⎨⎪=⎩()SAS BCF BAG V V ≌BF BG =GE GA AE AE CF EF =+=+=∵∴,在和中,,180BAD BCD ∠+∠=BAD BCF ∠=∠BCF △BAG △BC AB BAD BCF CF AG =⎧⎪∠=∠⎨⎪=⎩D BC∵是中点,∴,在和中,,∴,∴,在中,∴;即:,(2)如图,延长至点,使得,连接,则,∵是中点,∴,在和中,,∴,∴,,,∵,,,∴,在和中,BD DC =ACD V EBD △BD CD ADC EDB AD ED =⎧⎪∠=∠⎨⎪=⎩()SAS ACD EBD V V ≌AC EB =ABE V 2AB EB AE AD +>=2AB AC AD +>AE F EF AE =DF 2AF EF AE AE =+=E BD DE BE =EDF V EBA △DE BE DEF BEA EF EA =⎧⎪∠=∠⎨⎪=⎩()SAS EDF EBA V V ≌DF AB CD ==B EDF ∠=∠F EAB ∠=∠CDA B BAD ∠=∠+∠ADF BDA EDF ∠=∠+∠BDA BAD ∠=∠ADC ADF ∠=∠AFD △ACD V同(2)理可证:∴,,∵,∴∵,∴(SAS AMO DMH ≌V V OA DH OB ==H AOM ∠=∠∠90AOB COD ∠=∠=︒BOC AOB COD AOD ∠=∠+∠-∠=180HDO H HDO ∠=︒-∠-∠180180HDO AOM HDO ∠=︒-∠-∠=等三角形是解题的关键.。
“全等三角形”压轴题精选11道,含详细解答以微课堂学习资料群奥数国家级教练与四名特级教师联手执教。
八上全等三角形常考压轴题汇总一、如图所示,△ABC≌△ADE,BC的延长线过点E,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF的度数。
解:∵△ABC≌△AED∴∠D=∠B=50°∵∠ACB=105°∴∠ACE=75°∵∠CAD=10° ∠ACE= 75°∴∠EFA=∠CAD+∠ACE=85°(三角形的一个外角等于和它不相邻的两个内角的和)同理可得∠DEF=∠EFA-∠D=85°-50°=35°二、如图,△AOB中,∠B=30°,将△AOB绕点O顺时针旋转52°,得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为多少?解:∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,(关注公众号:初一数学语文英语)∵△AOB绕点O 顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.三、如图所示,在△ABC中,∠A=90°,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是多少?解:∵△ADB≌△EDB≌△EDC,∴∠A=∠DEB=∠DEC,∠ADB=∠BDE=∠EDC,∵∠DEB+∠DEC=180°,∠ADB+∠BDE+EDC=180°,∴∠DEC=90°,∠EDC=60°,∴∠C=180°-∠DEC-∠EDC,=180°-90°-60°=30°.四、如图所示,把△ABC绕点C顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A等于多少?解:∵三角形△ABC绕着点C时针旋转35°,(关注公众号:初一数学语文英语)得到△AB′C′∴∠ACA′=35°,∠A'DC=90°∴∠A′=55°,∵∠A的对应角是∠A′,即∠A=∠A′,∴∠A=55°;故答案为:55°.五、已知,如图所示,AB=AC,(关注公众号:初一数学语文英语)AD⊥BC于D,且AB+AC+BC=50cm,而AB+BD+AD=40cm,则AD 是多少?因为AB=AC 三角形ABC是等腰三角形所以AB+AC+BC=2AB+BC=50BC=50-2AB=2(25-AB)(关注公众号:初一数学语文英语)又因为AD垂直于BC于D,所以BC=2BD,BD=25-ABAB+BD+AD=AB+25-AB+AD=AD+25=40AD=40-25=15cm(关注公众号:初一数学语文英语)六、如图,Rt△ABC中,(关注公众号:初一数学语文英语)∠BAC=90°,AB=AC,分别过点B、C作过点A的垂线BC、CE,垂足分别为D、E,若BD=3,CE=2,则D是多少?解:∵BD⊥DE,CE⊥DE∴∠D=∠E∵∠BAD+∠BAC+∠CAE=180°又∵∠BAC=90°,∴∠BAD+∠CAE=90°∵在Rt△ABD中,∠ABD+∠BAD=90°∴∠ABD=∠CAE(关注公众号:初一数学语文英语)∵在△ABD与△CAE中∠ABD=∠CAE,∠D=∠E,AB=AC∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE∵DE=AD+AE∴DE=BD+CE∵BD=3,CE=2 ∴DE=5七、如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,连接EF,交AD于G,AD与EF垂直吗?证明你的结论。
重难专题05 全等三角形的压轴题(1)已知等腰ABE V 和,100,,ADC BAE DAC AB AE AD AC Ð=Ð=°==△,连接BD CE 、,若直线BD CE 、交于点O ,则BOC Ð= ;(2)如图所示,90,,BAE DAC AB AE AD AC Ð=Ð=°==,连接BC 和DE ,过点A 作AF D E ^交BC 于点G ,垂足为F ,若11,10AG GF ==,求ABC V 的面积.【分析】(1)根据SAS 证明BAD V 与EAC V 全等,进而利用全等三角形的性质解答即可;(2)作BM AF ^于M ,CN AF ^于N ,证明BAM AEF V V ≌,ACN DAF V V ≌,进而利用全等三角形的性质和三角形面积公式解答即可.【详解】解:如图:∵100,,BAE DAC AB AE AD AC Ð=Ð=°==,∴BAD EAC Ð=Ð,∴BAD EAC V V ≌,∴DBA CEA Ð=Ð,∵12Ð=Ð,∴100BOC BAE Ð=Ð=°;如图:∵100,,BAE DAC AB AE AD AC Ð=Ð=°==,∴BAD EAC Ð=Ð,∴ΔΔBAD EAC @,(2)作BM AF ^于M ,CN AF ^于N ∵AF D E ^,∴90BMA AFE Ð=Ð=°,∵90,BAE AB AE Ð=°=,∴90BAM FAE Ð+Ð=°,E FAE Ð+Ð=∴BAF E Ð=Ð,231ABC ABG ACG S S S =+=V V V .【点拨】本题考查了全等三角形的判定与性质,解题关键是恰当作辅助线,构建全等三角形,利用全等三角形的性质解决问题.如图1,BE 是ABC V 中AC 边上的高,点D 是AB 上一点,连接CD 交BE 于点F ,EFC A Ð=Ð.(1)求证:CD AB ^;(2)若2ACB ABE Ð=Ð,求证:AC BC =;(3)如图2,在(2)的条件下,延长BE 至点G ,连接AG ,CG ,若22ABCGBC S =四边形,16ABG S =△,求线段AB 的长.(注:不能应用等腰三角形的相关性质和判定)【分析】(1)首先根据ABC V 高的意义得出,90ACD EFC Ð+Ð=°,再结合已知条件可得到90ACD A Ð+Ð=°,据此得出结论;(2)首先根据ABC V 高的意义及(1)的结论可得出ACD ABE Ð=Ð,然后再结合已知条件可得出BCD ACD ABE Ð=Ð=Ð,据此可证明BCD D 和ACD D 全等,进而可得出结论;(3)首先根据四边形ABGC 的面积ABG =V 的面积BCG +V 面积可得出BG BC =,过点G 作GH BA ^交BA 的延长线于点H ,再证GBH V 和BCD V 全等,从而得GH BD =,由(2)可知AD BD =,据此可得2AB BD =,然后根据16ABG S =V 可求出BD 的长,进而可得出AB 的长.【详解】(1)证明:BE Q 是ABC V 中AC 边上的高,BE AC \^,则90H Ð=°,由(1)知:CD AB ^,90CDB \Ð=°,H CDB \Ð=Ð,由(2)知:ABE BCD =∠∠即:GBH BCD Ð=Ð,4BD \=,28AB BD \==.【点拨】此题主要考查了全等三角形的判定和性质,三角形的面积计算公式等,解答此题的关键是熟练掌握全等三角形的判定方法与技巧,理解全等三角形的性质,难点是在解答(3)时,过点G 作GH BA ^交BA 的延长线于点H ,从而构成全等三角形.如图,Rt ACB V 中,90ACB Ð=°,AC BC =,E 点为射线CB 上一动点,连接AE ,作AF AE ^且AF AE =.(1)如图1,过F 点作FD AC ^交AC 于D 点,求证:ADF ECA V V ≌,并写出EC CD 、和DF 的数量关系;(2)如图2,连接BF 交AC 于G 点,若3AG CG=,求证:E 点为BC 中点;(3)当E 点在射线CB 上,连接BF 与直线AC 交于G 点,若73BC BE =,求AG CG .∵ADF ECA V V ≌,∴FD AC BC ==,在FDG △和BCG V 中,90FGD CGB FDG C Ð=ÐìïÐ=Ð=°íï,∵73BC BE =,BC AC CE CB ==,∴710AC CE =,由(1)(2)知:ADF ECA V V ≌∴CG GD AD CE ==,,∴710AC AD =,∴73AC CD =,∵73BC BE =,BC AC CE CB BE ==-,∴74AC CE =,由(1)(2)知:ADF ECA V V V ≌,∴CG GD AD CE ==,,如图,直线AB ,CD 交于点O ,点E 是BOC Ð平分线的一点,点M ,N 分别是射线OA ,OC 上的点,且ME NE =.(1)求证:MEN AOC Ð=Ð;(2)点F 在线段NO 上,点G 在线段NO 延长线上,连接EF ,EG ,若EF EG =,依题意补全图形,用等式表示线段NF ,OG ,OM 之间的数量关系,并证明.【分析】(1)先根据角的平分线的性质,过点E 作EH CD ^,EK AB ^,垂足分别是H ,K ,得EH EK =,再根据三角形全等的判定,证明Rt EHN Rt EKM V V ≌即可得结论.(2)作辅助线,在线段OM 上截取1OG OG =,连接EG 1,先证明1EOG EOG V V ≌,得1EG EG =,1EG O EGF Ð=Ð,再证明1ENF EMG V V ≌,得1NF MG =,再推导得出结论.【详解】(1)(1)证明:作EH CD ^,EK AB ^,垂足分别是H ,K ,如图.∵OE 是BOC Ð的平分线,∴EH EK =.∵ME NE =,∴Rt EHN Rt EKM V V ≌.∴ENH EMK ÐÐ=.记ME 与OC 的交点为P ,∴EPN OPM ÐÐ=.∴MEN AOC ÐÐ=.(2)(2)OM NF OG =+.证明:在线段OM 上截取1OG OG =,连接EG 1,如图.∵OE 是BOC Ð的平分线,∴EON EOB ÐÐ=.∵MOF DOB ÐÐ=,∴EOM EOD ÐÐ=.∵OE OE =,∴1EOG EOG V V ≌.∴1EG EG =,1EG O EGF Ð=Ð. ∵EF EG =,∴1EF EG =,EFG EGF Ð=Ð.∴1EFG EG O Ð=Ð.∴1EFN EG M Ð=Ð.∵1ENF EMG Ð=Ð.∴1ENF EMG V V ≌.∴1NF MG =.∵11OM MG OG =+,∴OM NF OG =+.【点拨】此题考查了角平分线的性质、全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.如图,四边形ABCD 和四边形AEFG 是正方形,(正方形四条边都相等,四个内角都是直角)【感知】(1)某学习小组探究如下问题:如图1,连接DG ,BE ,直线AH DG ^于点H ,交BE 于点M ,则ADG △与ABE V 面积的大小关系是:ADG S V _________ABE S V .【探究】(2)该学习小组在探究(1)中面积问题时,发现M 为BE 中点,你认为是否成立?若成立,请证明;若不成立,请说明理由.【拓展】(3)经过以上探究,该学习小组也提出问题:若正方形ABCD 和正方形AEFG 的位置如图2所示,点M 为BE 中点,连接AM 交DG 于点H ,那么AM 与DG 有怎样的关系?试探究,并说明理由【分析】(1)过点E 作EQ AB ^于点Q ,延长DA ,过点G 作GP DA ⊥于点P ,证明()AAS AEQ AGP V V ≌,得出EQ GP =,根据AD AB =,得出ADG ABE S S =V V ;(2)过点E 作EP MH ⊥于点P ,过点B 作BQ MH ⊥于点Q ,证明()AAS AGH EAP V V ≌,得出AH EP =,同理得:AHD BQA V V ≌,证明AH BQ =,求出EP BQ =,证明()AAS EMP BMQ V V ≌,得出EM BM =;(3)延长AM ,在延长线上截取MN AM =,连接EN 、BN ,证明()SAS AMB NME V V ≌,得出EN AB =,ENM BAM =∠∠,证明()SAS ADG ENA V V ≌,得出2DG AN AM ==,AGD EAN =∠∠,证明90AGD NAG +=°∠∠,得出90AHG Ð=°,即AH DG ^.【详解】解:(1)过点E 作EQ AB ^于点Q ,延长DA ,过点G 作GP DA ⊥于点P ,如图所示:则90APG AQE ==°∠∠,∵90BAD Ð=°,∴90BAP Ð=°,∵90GAE Ð=°,∴90EAQ EAP EAP GAP +=+=°∠∠∠∠,∴EAQ GAP =∠∠,∵AG AE =,∴()AAS AEQ AGP V V ≌,∴EQ GP =,∵AD AB =,∴ADG ABE S S =V V .故答案为:=.(2)成立;理由如下:过点E 作EP MH ⊥于点P ,过点B 作BQ MH ⊥于点Q ,如图所示:∵AH DG ^,∴90AHG APE ==°∠∠,∵90GAE Ð=°,∴90GAH EAP EAP AEP +=+=°∠∠∠∠,∴GAH AEP =∠∠,∵AG AE =,∴()AAS AGH EAP V V ≌,∴AH EP =,同理得:AHD BQA V V ≌,∴AH BQ =,∴EP BQ =,∵90EPM BQM ==°∠∠,EMP BMQ Ð=Ð,∴()AAS EMP BMQ V V ≌,∴EM BM =,∴M 为BE 中点.(3)2DG AM =,AM DG ^.理由如下:延长AM ,在延长线上截取MN AM =,连接EN 、BN ,如图所示:∵M 为BE 的中点,∴BM EM =,∵NME AMB =∠∠,∴()SAS AMB NME V V ≌,∴EN AB =,ENM BAM =∠∠,∵AB AD =,∴EN AD =,∵ENM BAM =∠∠,∴EN AB ∥,∴180AEN EAB +=°∠∠,∵180DAB EAG Ð=Ð=°,EAG EAB BAG =+∠∠∠,∴180DAB EAB BAG ++=°∠∠∠,即180DAG EAB Ð+Ð=°,∴AEN DAG =∠∠,∵AE AG =,∴()SAS ADG ENA V V ≌,∴2DG AN AM ==,AGD EAN =∠∠,∵90EAN GAN +=°∠∠,∴90AGD NAG +=°∠∠,∴90AHG Ð=°,∴AH DG ^.【点拨】本题主要考查了全等三角形的判定和性质,余角的性质,平行线的判定和性质,垂线定义理解,解题的关键是作出辅助线,熟练掌握三角形全等的判定方法.【初步探索】(1)如图1,在四边形ABCD 中,AB AD =,90B ADC Ð=Ð=°,E 、F 分别是BC 、CD 上的点,且EF BE FD =+,探究图中BAE Ð、FAD Ð、EAF Ð之间的数量关系.小王同学探究此问题的方法是:延长FD 到点G ,使DG BE =.连接AG ,先证明ABE ADG △≌△,再证明AEF AGF V V ≌,可得出结论,他的结论应是 ;【灵活运用】(2)如图2,若在四边形ABCD 中,AB AD =,180B D Ð+Ð=°.E 、F 分别是BC 、CD 上的点,且EF BE FD =+,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD 中,180ABC ADC Ð+Ð=°,AB AD =,若点E 在CB 的延长线上,点F 在CD 的延长线上,如图3所示,仍然满足EF BE FD =+,请写出EAF Ð与DAB Ð的数量关系,并给出证明过程.【分析】(1)延长FD 到点G ,使DG BE =,连接AG ,可判定ABE ADG △≌△,进而得出BAE DAG Ð=Ð,AE AG =,再判定AEF AGF V V ≌,可得出EAF GAF DAG DAF BAE DAF Ð=Ð=Ð+Ð=Ð+Ð,据此得出结论;(2)延长FD 到点G ,使DG BE =,连接AG ,先判定ABE ADG △≌△,进而得出BAE DAG Ð=Ð,AE AG =,再判定AEF AGF V V ≌,可得出EAF GAF DAG DAF BAE DAF Ð=Ð=Ð+Ð=Ð+Ð;(3)在DC 延长线上取一点G ,使得DG BE =,连接AG ,先判定ABE ADG △≌△,再判定AEF AGF V V ≌,得出FAE FAG Ð=Ð,最后根据360FAE FAG GAE Ð+Ð+Ð=°,推导得到2360FAE DAB Ð+Ð=°,即可得出结论.【详解】(1)解:结论:BAE FAD EAF Ð+Ð=Ð.理由:如图1,延长FD 到点G ,使DG BE =,连接AG ,在ABE V 和ADG △中,90AB AD B ADG BE DG =ìïÐ=Ð=°íï=î,(SAS)ABE ADG \V V ≌,BAE DAG \Ð=Ð,AE AG =,EF BE DF =+Q ,EF DF DG FG \=+=,在AEF △和AGF V 中,1.阅读理解在通过构造全等三角形解决的问题中,有一种典型的方法是倍延中线法.如图1,AD 是ABC V 的中线,7AB =,5AC =,求AD 的取值范围.我们可以延长AD 到点M ,使DM AD =,连接BM ,易证ADC MDB ≌△△,所以BM AC =.接下来,在ABM V 中利用三角形的三边关系可求得AM 的取值范围,从而得到中线AD 的取值范围是______;类比应用如图2,在四边形ABCD 中,//AB DC ,点E 是BC 的中点.若AE 是BAD Ð的平分线,试判断AB ,AD ,DC 之间的等量关系,并说明理由;拓展创新如图3,在四边形ABCD 中,//AB CD ,AF 与DC 的延长线交于点F ,点E 是BC 的中点,若AE 是BAF Ð的平分线,试探究AB ,AF ,CF 之间的数量关系,请直接写出你的结论.2.如图,在ABC V 和ADE V 中,AB AC =,AD AE =,BAC DAE Ð=Ð,CE 的延长线交BD 于点F .(1)求证:CE BD =.(2)过点A 作AP DE ^于点P ,求证:AEP ADP Ð=Ð.(3)若30ACE Ð=°,15BAE Ð=°,6DAE AED Ð=Ð-°,求BDE Ð的度数.(4)过点A 作AH BD ^于点H ,试写出EF ,FH ,DH 之间的数量关系,并证明.3.问题提出,如图(1),在ABC V 和DEC V 中,60ACB DCE °Ð=Ð=,BC AC =,EC DC =,点E 在ABC V 内部,直线AD 与BE 交于点F ,线段,,AF BF CF 之间存在怎样的数量关系?问题探究(1)先将问题特殊化.如图(2),当点D ,F 重合时,直接写出一个等式,表示,,AF BF CF 之间的数量关系;(2)再探究一般情形.如图(1),当点D ,F 不重合时,证明(1)中的结论仍然成立.问题拓展(3)如图(3),在ABC V 和DEC V 中,60ACB DCE °Ð=Ð=,BC AC =,EC DC =,点E 在ABC V 内部,直线AD 与BE 交于点F ,直线AF 与BC 交于点G ,点H 为线段AB 上一点,BH CG =,BF 与CH 交于点I ,若AG m =,BF n =,则IF =___________(用含m ,n 的式子表示)4.已知O 是四边形ABCD 内一点,且OA OD =,OB OC =,E 是CD 的中点.(1)如图1,连接AC ,BD ,若AC BD =,求证:AOD BOC Ð=Ð;(2)如图2,连接OE ,若2AB OE =,求证:180AOD BOC Ð+Ð=°;(3)如图3,若90AOD BOC Ð=Ð=°,OF AB ^,垂足为F ,求证:点E ,O ,F 在同一条直线上.5.在直角三角形ABC 中,90ACB Ð=°,直线l 过点C .(1)当AC BC =时,①如图1,分别过点A 和B 作AD ^直线l 于点D ,BE ^直线l 于点E .求证:ACD CBE V V ≌;②如图2,过点A 作AD ^直线l 于点D ,点B 与点F 关于直线l 对称,连接BF 交直线l 于E ,连接CF .求证:DE AD EF =+.(2)当8AC =cm ,6BC =cm 时,如图3,点B 与点F 关于直线l 对称,连接BF 、CF .点M 从A 点出发,以每秒1cm 的速度沿A C ®路径运动,终点为C ,点N 以每秒3cm 的速度沿F C B C F ®®®®路径运动,终点为F ,分别过点M 、N 作MD ^直线l 于点D ,NE ^直线l 于点E ,点M 、N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒.当MDC △与CEN V 全等时,求t 的值.6.如图①,在ABC V 中,AB =12cm ,BC =20cm ,过点C 作射线CD AB ∥.点M 从点B 出发,以4cm /s 的速度沿BC 匀速移动;点N 从点C 出发,以acm /s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动,连接AM 、MN ,设移动时间为t (s ).(1)点M 、N 从移动开始到停止,所用时间为 s ;(2)当ABM V 与MCN △全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求t 的值;(3)如图②、当点M 、N 开始移动时,点P 同时从点A 出发,以3cm /s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM V 与MCN △全等的情形?若存在,求出t 的值,若不存在,说明理由.7.已知:ABC V 中,90ACB Ð=°,AC CB =,D 为直线BC 上一动点,连接AD ,在直线AC 右侧作AE AD ^,且AE AD =.(1)如图1,当点D 在线段BC 上时,过点E 作EH AC ^于H ,连接DE .求证:EH BC =;(2)如图2,当点D 在线段BC 的延长线上时,连接BE 交CA 的延长线于点M ,求证:BM EM =;(3)当点D 在直线CB 上时,连接BE 交直线AC 于M ,若27AC CM =,请求出ADB AEM S S △△的值.8.在ABC V 中,BD 平分ABC Ð,CE 平分ACB Ð,BD 和CE 交于点O ,其中令BAC x Ð=,BOC y Ð=.(1)【计算求值】如图1,①如果50x =°,则y =______;②如果130y =°,则x =______.(2)【猜想证明】如图2请你根据(1)中【计算求值】的心得猜想写出y 与x 的关系式为y =______,并请你说明你的猜想的正确性.(3)【解决问题】如图3,某校园内有一个如图2所示的三角形的小花园,花园中有两条小路,BD 和CE 为三角形的角平分线,交点为点O ,在O 处建有一个自动浇水器,需要在BC 边取一处接水口F ,经过测量得知120BAC Ð=°,12000OD OE ×=米2,170BC BE CD --=米,请你求出水管OF 至少要多长?(结果取整数)。
全等三角形中辅助线的添法(三大模型)【模型一:倍长中线模型】1.(23-24八年级上·江苏·期末)如图,在△ABC 中.AD 是BC 边上的中线,交BC 于点D.(1)如下图,延长AD 到点E ,使DE =AD ,连接BE .求证:△ACD ≌△EBD.(2)如下图,若∠BAC =90°,试探究AD 与BC 有何数量关系,并说明理由.(3)如下图,若CE 是边AB 上的中线,且CE 交AD 于点O .请你猜想线段AO 与OD 之间的数量关系,并说明理由.【思路点拨】(1)利用SAS 可得△ACD ≌△EBD ;(2)延长AD 到点E ,使DE =AD ,连接BE ,先根据△ACD ≌△EBD 证得∠C =∠CBE ,AC =BE ,进而得到AC ∥EB ,AD =12AE ;再证得△ABC ≌△BAE SAS 利用全等三角形全等的性质即可;(3)延长OE 到点M ,使EM =OE ,连接AM .延长OD 到点N ,使DN =OD ,连接BM ,BN ,BO ,证得△MOB ≌△NBO ASA 可得MB =NO ,进而得到AO =2OD ,本题考查了全等三角形的判定与性质,三角形的中线,熟练掌握全等三角形的判定方法是解题的关键.【解题过程】(1)证明:在△ACD 和△EBD 中,DA =DE∠ADC =∠EDBDC =DB∴△ACD ≌△EBD SAS ;(2)解:AD =12BC ,理由如下:延长AD 到点E ,使DE =AD ,连接BE ,如图由(1)得△ACD ≌△EBD ,∴∠C =∠CBE ,AC =BE∴AC ∥EB ,AD =12AE ∴∠BAC +∠ABE =180°,∵∠BAC =90°,∴∠ABE =90°,∴∠BAC =∠ABE在△ABC 和△BAE 中AC =BE∠BAC =∠ABEAB =AB∴△ABC ≌△BAE SAS ∴BC =AE ,∴AD =12BC ;(3)AO =2OD ,理由如下:延长OE 到点M ,使EM =OE ,连接AM .延长OD 到点N ,使DN =OD ,连接BM ,BN ,BO ,如图,由(1)得△AOE ≌△BME ,△ODC ≌△NDB ,∴∠AOE =∠BME ,∠OCD =∠NBD ,AO =BM ,∴AO ∥BM ,OC ∥NB ,∴∠MBO =∠BON ,∠MOB =∠NBO在△MOB 和△NBO 中,∠MBO =∠BONOB =OB ∠MOB =∠NBO,∴△MOB ≌△NBO ASA ∴MB =NO ,∴AO =2OD .2.(23-24八年级上·广西北海·期末)八年级数学课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC 中,若AB =9,AC =5,求BC 边上的中线AD 的取值范围.小红在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE =AD ,请根据小红的方法思考作答:(1)由已知和作图能得到△ADC ≌△EDB 的理由是;A.SSS B.SAS C.AASD.HL(2)求得AD的取值范围是;A.5<AD<9B.5≤AD≤9C.2<AD<7D.2≤AD≤7(3)归纳总结:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.完成上题之后,小红善于探究,她又提出了如下的问题,请你解答.如图2,在△ABC中,点E在BC上,且DE=DC,过E作EF∥AB,且EF=AC.求证:AD平分∠BAC.【思路点拨】本题是三角形综合题,考查了倍长中线法解题,全等三角形的判定和性质,等腰三角形的判定和性质,熟练掌握倍长中线法,灵活进行三角形全等的证明,是解题的关键.(1)根据三角形全等的判定定理去选择即可;(2)根据三角形全等的性质和三角形三边关系定理计算即可;(3)由“SAS”可证△EFD≌△CMD,可得EF=DM,∠EFD=∠M,由平行线的性质和等腰三角形的性质可证∠M=∠BAD=∠CAM,可得AD平分∠BAC.【解题过程】(1)解:延长AD到点E,使DE=AD,∵BD=CD,在△ADC和△EDB中,CD=BD∠ADC=∠BDEAD=DE,∴△ADC≌△EDB(SAS),故选:B.(2)解:∵△ADC≌△EDB,∴AC=EB,∵AB=9,AC=5,AB-BE<AE<AB+BE,∴4<2AD<14,∴2<AD<7,故选:C;(3)证明:如图,延长AD至M,使DM=DF,连接CM,∵DE=DC,∠EDF=∠CDM,DF=DM,∴△EFD≌△CMD(SAS),∴EF=DM,∠EFD=∠M,∴EF∥CM,∵EF∥AB,∴CM∥AB,∴∠BAD=∠M,∵EF=AC,∴EF=DM=AC,∴∠CAM=∠M,∴∠BAD=∠CAM,∴AD平分∠BAC.3.(23-24八年级上·安徽安庆·期末)(1)如图①,在△ABC中,若AB=6,AC=4,AD为BC边上的中线,求AD的取值范围;(2)如图②,在△ABC中,点D是BC的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,判断BE+CF与EF的大小关系并证明;(3)如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.【思路点拨】(1)由已知得出AB-BE<AE<AB+BE,即6-4<AE<6+4,AD为AE的一半,即可得出答案;(2)延长FD至点M,使DM=DF,连接BM,EM,可得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AE,DF交于点G,根据平行和角平分线可证AF=FG,也可证得△ABE≌△GCE,从而可得AB= CG,即可得到结论.【解题过程】解:(1)如图①,延长AD到点E,使DE=AD,连接BE,∵D是BC的中点,∴BD=CD,∵∠ADC=∠BDE,∴△ACD≌△EBD SAS,∴BE=AC=4,在△ABE中,AB-BE<AE<AB+BE,∴6-4<AE<6+4,,∴2<AE<10,∴1<AD<5,故答案为:1<AD<5;(2)BE+CF>EF,理由如下:延长FD至点M,使DM=DF,连接BM、EM,如图②所示.同(1)得:△BMD≌△CFD SAS,∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)AF +CF =AB ,理由如下:如图③,延长AE ,DF 交于点G ,∵AB ∥CD ,∴∠BAG =∠G ,在△ABE 和△GCE 中,CE =BE ,∠BAG =∠G ,∠AEB =∠GEC,∴△ABE ≌△GEC AAS ,∴CG =AB ,∵AE 是∠BAF 的平分线,∴∠BAG =∠GAF ,∴∠FAG =∠G ,∴AF =GF ,∵FG +CF =CG ,∴AF +CF =AB .4.(23-24八年级上·江苏南通·期中)课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC 中,若AB =6,AC =4,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图1所示,延长AD 到点E ,使DE =AD ,连接BE.请根据小明的思路继续思考:(1)由已知和作图能证得△ADC ≌△EDB ,得到BE =AC ,在△ABE 中求得2AD 的取值范围,从而求得AD 的取值范围是.方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系;(2)如图2,AD 是△ABC 的中线,AB =AE ,AC =AF ,∠BAE +∠CAF =180°,试判断线段AD 与EF 的数量关系,并加以证明;(3)如图3,在△ABC 中,D ,E 是BC 的三等分点.求证:AB +AC >AD +AE .【思路点拨】本题考查了三角形三边关系,三角形全等的性质与判定,利用倍长中线辅助线方法是解题的关键.(1)延长AD 到点E ,使DE =AD ,连接BE ,根据题意证明△MDB ≌△ADC ,可知BM =AC ,在△ABM 中,根据AB -BM <AM <AB +BM ,即可;(2)延长AD 到M ,使得DM =AD ,连接BM ,由(1)的结论以及已知条件证明△ABM ≌△EAF ,进而可得AM =2AD ,由AM =EF ,即可求得AD 与EF 的数量关系;(3),取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,通过“倍长中线”思想全等证明,进而得到AB =CQ ,AD =EQ ,然后结合三角形的三边关系建立不等式证明即可得出结论.【解题过程】(1)解:如图1所示,延长AD到点E,使DE=AD,连接BE.∵AD是△ABC的中线,∴BD=CD,在△MDB和△ADC中,BD=CD∠BDM=∠CDA DM=AD,∴△MDB≌△ADC(SAS),∴BM=AC=4,在△ABM中,AB-BM<AM<AB+BM,∴6-4<AM<6+4,即2<AM<10,∴1<AD<5,故答案为:1<AD<5.(2)EF=2AD,理由:如图2,延长AD到M,使得DM=AD,连接BM,由(1)知,△BDM≌△CDA(SAS),∴BM=AC,∠M=∠MAC∵AC=AF,∴BM=AF,∵∠MBA+∠M+∠BAM=180°,即∠MBA+∠BAC=180°,又∵∠BAE+∠CAF=180°,∴∠EAF+∠BAC=180°,∴∠EAF=∠MBA,又∵AB=EA,∴△ABM≌△EAF(SAS),∴AM=EF,∵AD=DM,∴AM=2AD,∵AM=EF,∴EF=2AD.(3)证明:如图所示,取DE中点H,连接AH并延长至Q点,使得AH=QH,连接QE和QC,∵H为DE中点,D、E为BC三等分点,∴DH=EH,BD=DE=CE,∴DH=CH,在△ABH和△QCH中,BH=CH∠BHA=∠CHQ AH=OH,∴△ABH≌△QCH(SAS),同理可得:△ADH≌△QEH,∴AB=CQ,AD=EQ,此时,延长AE交CQ于K点,∵AC+CQ=AC+CK+QK,AC+CK>AK,∴AC+CQ>AK+QK,∵AK+QK=AE+EK+QK>QE,EK+QK>QE,∴AK+QK>AE+QE,∴AC +CQ >AK +QK >AE +QE ,∵AB =CQ ,AD =EQ ,∴AB +AC >AD +AE .5.(23-24七年级下·广东佛山·期中)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图,△ABC 中,AB =8,AC =6,求BC 边上的中线AD 的取值范围,经过组内合作交流.小明得到了如下的解决方法:延长AD 到点E ,使DE =AD请根据小明的方法思考:(1)求得AD 的取值范围是;【问题解决】请利用上述方法(倍长中线)解决下列三个问题如图,已知∠BAC +∠CDE =180°,AB =AC ,DC =DE ,P 为BE 的中点.(2)如图1,若A ,C ,D 共线,求证:AP 平分∠BAC ;(3)如图2,若A ,C ,D 不共线,求证:AP ⊥DP ;(4)如图3,若点C 在BE 上,记锐角∠BAC =x ,且AB =AC =CD =DE ,则∠PDC 的度数是(用含x 的代数式表示).【思路点拨】(1)根据三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边,即可进行解答;(2)延长DP 交AB 延长线于点F ,证△APF ≌△APD 即可;(3)延长DP 至点F ,使得PF =PD ,连接BF 、AF 、AD ,证△APF ≌△APD 即可;(4)过点C 作CM ⊥BC 交AP 于点M ,由(3)可得∠APD =90°,证△ACM ≌△DCP ,用含x 的代数式表示出∠PDC 即可.【解题过程】(1)∵AD 为BC 边上的中线,∴BD =CD ,在△ADC 和△EDB 中,BD =CD∠ADC =∠EDBAD =ED∴△ADC ≌△EDB SAS ,∴BE =AC =6,∵AB =8,∴8-6<AE <8+6,即2<AE <14,∵DE =AD ,∴AD =12AE ,∴1<AD <7,故答案为:1<AD <7(2)如下图,DP 交AB 延长线于点F∠BAC +∠CDE =180°,∴AF ∥DE (同旁内角互补,两直线平行),∴∠PFB =∠PDE ,∠PBF =∠PED ,∵P 为BE 的中点∴BP =PE ,∴△BPF ≌△EPD AAS ,∴BF =DE =DC ,PD =PF ,又∵AB =AC ,∴AB +BF =AC +DC ,即AF =AD ,在△APF 和△APD 中PF =PDAP =APAF =AD∴△APF ≌△APD (SSS ),∴∠P AF =∠P AD (全等三角形的对应角相等),即AP 平分∠BAC(3)延长DP 至点F ,使得PF =PD ,连接BF 、AF 、AD由(1)同理易知△DPE ≌△FBP (SAS ),∴BF =DE =CD ,∠E =∠FBP ,∵∠BAC +∠CDE =180°,且∠BAC +∠CAD +∠ADC +∠CDE +∠E =360°,∠CAD +∠C +∠ADC =180°,∴∠ABF =∠ACD ,AB =AC ,∴△ABF ≌△ACD (SAS ),∴AF =AD ,∴△APF ≌△APD (SSS ),∴∠APD =∠APF =180°÷2=90°,∴AP ⊥DP(4)过点C 作CM ⊥BC 交AP 于点M ,由(3)可得∠APD =90°,∠BAC =x ,∠BAC+∠CDE =180°,AB =AC =CD =DE ,∴∠ACB =180°-x 2=90°-x 2,∴∠DCE =90°-∠CDE 2=90°-180°-x 2=x 2,∴∠ACB和∠DCE 互余,∠ACD =∠MCP =∠APD =90°,∴∠ACM =∠DCP =x 2,∠CAM =∠CDP ∴△ACM ≌△DCP (ASA ),∴MC =PC ,∴∠BP A =45°,又∵∠ACB =90°-x 2,∴∠PDC =∠P AC =∠ACB -∠APB =45°-x 2,故答案为:45°-x 2【模型二:旋转模型(截长补短)】6.(23-24八年级上·湖北武汉·期末)如图,在五边形ABCDE 中,∠B =∠E =90°,∠CAD =12∠BAE ,AB =AE ,且CD =3,AE =4,则五边形ABCDE 的面积为()A.6 B.8 C.10 D.12【思路点拨】本题考查了旋转的性质、全等三角形的判定与性质、三点共线,解题的关键是利用全等的性质将面积进行转化.将△ABC 绕点A 逆时针旋转至△AEF ,首先证明点D ,E ,F 三点共线,证明△ACD ≌△AFD (SAS ),得到CD =DF =3,S △ACD =S △AFD ,再将所求面积转化为2S △AFD 进行计算即可.【解题过程】解:如图,将△ABC 绕点A 逆时针旋转至△AEF ,∵AB =AE ,∠B =∠E =90°,则AF =AC ,∠B =∠AED =∠AEF =90°,∴∠DEF =180°,即点D ,E ,F 三点共线,∵∠CAD =12∠BAE ,∠BAC +∠DAE =∠DAE +∠EAF =∠CAD ,即∠FAD =∠CAD ,在△ACD 和△AFD 中,AC =AF∠CAD =∠FAD AD =AD,∴△ACD ≌△AFD (SAS )∴CD =DF ,S △ACD =S △AFD∵CD =3,∴DF =3,五边形ABCDE 的面积为:S 四边形ACDE +S △ABC =S 四边形ACDE +S △AEF=S △ACD +S △AFD =2S △AFD ,=2×12×DF ×AE ,=2×12×3×4=12.故选:D .7.(23-24八年级上·上海·期中)如图所示,已知AC 平分∠BAD ,∠B +∠D =180°,CE ⊥AB 于点E ,判断AB 、AD 与BE 之间有怎样的等量关系,并证明.【思路点拨】在AB 上截取EF ,使EF =BE ,联结CF .证明△BCE ≌△ECF (SAS ),得到∠B =∠BFC ,又证明△AFC ≌△ADC ,得到AF =AD ,最后结论可证了.【解题过程】证明:在AB 上截取EF ,使EF =BE ,联结CF .∵CE ⊥AB∴∠BEC =∠FEC =90°在△BCE 和△ECF{BE =EF∠BEC =∠FECCE =CE∴△BCE ≌△ECF (SAS )∴∠B =∠BFC∵∠B +∠D =180°又∵∠BFC +∠AFC =180°∴∠D =∠AFC∵AC 平分∠BAD∴∠FAC =∠DAC在△AFC 和△ADC 中{∠AFC =∠D∠FAC =∠DACAC =AC∴△AFC≌△ADC(AAS)∴AF=AD∵AB=AF+BE+EF∴AB=AD+2BE8.(23-24八年级上·山东临沂·期中)【基本模型】(1)如图1,ABCD是正方形,∠EAF=45°,当E在BC边上,F在CD边上时,请你探究BE、DF与EF之间的数量关系,并证明你的结论.【模型运用】(2)如图2,ABCD是正方形,∠EAF=45°,当E在BC的延长线上,F在CD的延长线上时,请你探究BE、DF与EF之间的数量关系,并证明你的结论.【思路点拨】本题主要考查全等三角形的判定和性质.本题蕴含半角模型,遇到半角经常要通过旋转构造全等三角形.(1)结论:EF=BE+DF.将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF ,然后求出∠EAF =∠EAF=45°,利用“边角边”证明△AEF和△AEF 全等,根据全等三角形对应边相等可得EF=EF ,从而得解;(2)结论:EF=BE-DF,证明方法同法(1).【解题过程】解:(1)结论:EF=BE+DF.理由:如图1,将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF ,则:∠F AB=∠DAF,∠ABF =∠D=90°,AF=AF ,BF =DF,∴∠ABF +∠ABC=180°,即:F ,B,E三点共线,∵∠EAF=45°,∴∠DAF+∠BAE=90°-∠EAF=45°,∴∠BAF +∠BAE=45°,∴∠EAF =∠EAF=45°,在△AEF 和△AEF 中,AF =AF∠EAF =∠EAF AE =AE,∴△AEF ≌△EAF (SAS ),∴EF =EF ,又EF =BE +BF ,∴EF =BE +DF .(2)结论:EF =BE -DF .理由:如图2,将△ADF 绕点A 顺时针旋转,使AD 与AB 重合,得到△ABF ,则:BF =DF ,AF =AF ,同法(1)可得:△AEF ≌△AEF (SAS ),∴EF =EF ,又EF =BE -BF =BE -DF ,∴EF =BE -DF .9.(23-24八年级上·湖北武汉·周测)(1)如图,在四边形ABCD 中,AB =AD,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD .求证:EF =BE +FD ;(2)如图,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =12∠BAD .(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【思路点拨】(1)延长CB 至M ,使BM =DF ,连接AM .先证明△ABM ≌△ADF ,得到AF =AM ,∠2=∠3,再证明△AME ≌△AFE ,得到EF =ME ,进行线段代换,问题得证;(2)在BE 上截取BG ,使BG =DF ,连接AG .先证明△ABG ≌△ADF ,得到AG =AF ,再证明△AEG ≌△AEF ,得到EG =EF ,进行线段代换即可证明EF =BE -FD .【解题过程】解:(1)证明:如图,延长CB 至M ,使BM =DF ,连接AM .∵∠ABC +∠D =180°,∠1+∠ABC =180°,∴∠1=∠D ,在△ABM 与△ADF 中,AB =AD∠1=∠D BM =DF,∴△ABM ≌△ADF (SAS ).∴AF =AM ,∠2=∠3.∵∠EAF =12∠BAD ,∴∠2+∠4=12∠BAD =∠EAF .∴∠3+∠4=∠EAF ,即∠MAE =∠EAF .在△AME 与△AFE 中,AM =AF∠MAE =∠EAF AE =AE,∴△AME ≌△AFE (SAS ).∴EF =ME ,即EF =BE +BM ,∴EF =BE +DF ;(2)结论EF =BE +FD 不成立,应当是EF =BE -FD .证明:如图,在BE 上截取BG ,使BG =DF ,连接AG .∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .∵在△ABG 与△ADF 中,AB =AD∠ABG =∠ADF BG =DF,∴△ABG ≌△ADF (SAS ),∴∠BAG =∠DAF ,AG =AF ,∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =12∠BAD ,∴∠GAE =∠EAF .在△AGE 与△AFE 中,AG =AF∠GAE =∠EAF AE =AE,∴△AEG ≌△AEF ,∴EG =EF ,∵EG =BE -BG ,∴EF =BE -FD .10.(23-24八年级上·贵州黔东南·期末)【初步探索】(1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠ADC =90°,∠BAD =120°,E 、F 分别是BC 、CD 上的点,且∠EAF =60°,探究图中BE 、EF、FD 之间的数量关系.小芮同学探究此问题的方法是:延长FD 到点G ,使DG =BE ,连接AG ,先证明:△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=∠180°,∠BAD=120°,E、F分别是BC、CD上的点,且∠EAF=60°,(1)中的结论是否仍然成立,说明理由.【拓展延伸】(3)如图3,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,满足EF=BE+FD,请判断∠EAF与∠DAB的数量关系.并证明你的结论.【思路点拨】本题属于四边形综合题,主要考查了全等三角形的判定以及全等三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等.(1)根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SAS判定△AEF≌△AGF,可得出EF=GF=DG+DF=BE+DF,据此得出结论;(2)延长FD到点G,使DG=BE,连接AG,先根据SAS判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SAS判定△AEF≌△AGF,可得出EF=GF=DG+DF=BE+DF;(3)在DC延长线上取一点G,使得DG=BE,连接AG,先根据SAS判定△ADG≌△ABE,再根据SAS判定△AEF≌△AGF,得出∠FAE=∠FAG,最后根据∠FAE+∠FAG+∠GAE=360°,推导得到2∠FAE+∠DAB=360°,即可得出结论.【解题过程】解:(1)BE+FD=EF.理由如下:如图1,延长FD到点G,使DG=BE,连接AG,∵∠ADC=90°,∴∠ADG=180°-∠ADC=90°,又∵∠B=90°,∴∠B=∠ADG,在△ABE与△ADG中,AB=AD∠B=∠ADG BE=DG,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵∠BAD=120°,∠EAF=60°,∴∠BAE+∠DAF=∠BAD-∠EAF=60°,∴∠DAG+∠DAF=60°,即∠GAF=60°,∴∠GAF=∠EAF;在△AEF与△AGF中,AE=AG∠EAF=∠GAF AF=AF,∴△AEF≌△AGF(SAS),∴EF=GF,∵GF=DG+DF,∴EF=BE+DF,故答案为:BE+FD=EF;(2)(1)中的结论仍成立,理由如下:如图2,延长FD到点G,使DG=BE,连接AG,∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵∠BAD=120°120°,∠EAF=60°,∴∠BAE+∠DAF=60°,∴∠DAG+∠DAF=60°,∴∠GAF=∠EAF=60°,又∵AF=AF,∴△AEF≌△AGF(SAS),∴EF=FG=DG+DF=BE+DF;(3)∠EAF=180°-12∠DAB.证明:如图3,延长DC到点G,使DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,在△ABE与△ADG中,AB=AD∠B=∠ADG BE=DG,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD,∴EF=DG+FD,∴EF=GF,在△AEF与△AGF中,AE=AG EF=GF AF=AF,∴△AEF≌△AGF(SSS),∴∠FAE=∠FAG,∵∠FAE+∠FAG+∠GAE=360°,∴2∠FAE+(∠GAB+∠BAE)=360°,∴2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∴∠EAF=180°-12∠DAB.【模型三:“K子”型(一线三垂直)】11.(23-24八年级上·广东江门·阶段练习)已知,△ABC中,∠BAC=90°,AB=AC,直线m过点A,且BD⊥m于D,CE⊥m于E,当直线m绕点A旋转至图1位置时,我们可以发现DE=BD+CE.(1)当直线m绕点A旋转至图2位置时,问:BD与DE、CE的关系如何?请予证明;(2)直线m在绕点A旋转一周的过程中,BD、DE、CE存在哪几种不同的数量关系?(直接写出,不必证明)【思路点拨】(1)利用条件证明△ABD≌△CAE,再结合线段的和差可得出结论;(2)根据图,可得BD、DE、CE存在3种不同的数量关系;【解题过程】(1)证明:如图2,∵BD⊥m,CE⊥m,∴∠BDA=∠CEA=90°,∴∠ABD+∠DAB=90°.∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠ABD=∠CAE.在△ABD和△CAE中,∠BDA=∠CBA ∠ABD=∠CAB AB=CA,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE∵DE=AE-AD,(2)直线m 在绕点A 旋转一周的过程中,BD 、DE 、CE 存在3种不同的数量关系:DE =BD +CE ,DE =BD -CE ,DE =CE -BD.如图1时,DE =BD +CE ,如图2时,DE =BD -CE ,如图3时,DE =CE -BD ,(证明同理)12.(23-24八年级上·贵州铜仁·阶段练习)(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E .求证:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D ,A ,E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC .请写出DE ,BD ,CE 三条线段的数量关系,并说明理由.【思路点拨】(1)利用已知得出∠CAE =∠ABD ,进而利用AAS 得出则△ABD ≌△CAE ,即可得出DE =BD +CE ;(2)根据∠BDA =∠AEC =∠BAC ,得出∠CAE =∠ABD ,在△ADB 和△CEA 中,根据AAS 证出△ADB ≌△CEA ,从而得出AE =BD ,AD =CE ,即可证出DE =BD +CE ;【解题过程】(1)DE =BD +CE .理由如下:∵BD ⊥m ,CE ⊥m ,∴∠BDA =∠AEC =90°又∵∠BAC =90°,∴∠BAD +∠CAE =90°,∠BAD +∠ABD =90°,∴∠CAE =∠ABD在△ABD 和△CAE 中,∠ABD =∠CAE∠ADB =∠CEA =90°AB =AC,∴△ABD ≌△CAE (AAS )∴BD =AE ,AD =CE ,∵DE =AD +AE ,(2)DE =BD +CE ,理由如下:∵∠BDA =∠AEC =∠BAC ,∴∠DBA +∠BAD =∠BAD +∠CAE ,∴∠CAE =∠ABD ,在△ADB 和△CEA 中,∠ABD =∠CAE∠ADB =∠CEA AB =AC,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴BD +CE =AE +AD =DE .13.(23-24八年级上·山西大同·阶段练习)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.(1)如图1.已知:在△ABC 中,∠BAC =90°,AB =AC ,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D 、E .证明:DE =BD +CE .(2)组员小明对图2进行了探究,若∠BAC =90°,AB =AC ,直线l 经过点A .BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D 、E .他发现线段DE 、BD 、CE 之间也存在着一定的数量关系,请你直接写出段DE 、BD 、CE 之间的数量关系,(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC 的边AB 、AC 向外作正方形ABDE 和正方形ACFG (正方形的4条边都相等,4个角都是直角),AH 是BC 边上的高,延长HA 交EG 于点I ,若BH =3,CH =7,求AI 的长.【思路点拨】(1)根据BD ⊥直线l ,CE ⊥直线l ,∠BAC =90°,可得∠CAE =∠ABD ,利用AAS 可证明△ADB ≌△CEA ,根据DE =AE +AD 即可得到DE =BD +CE ;(2)同(1)利用AAS 可证明△ADB ≌△CEA ,根据DE =AE -AD 即可得到DE =BD -CE ;(3)过E 作EM ⊥HI 于M ,GN ⊥HI 的延长线于N ,可构造两组一线三直角全等模型,即:△ABH ≌△EAM ,△AHC ≌△GNA ,从而可以得到EM =GN ,MN =4,再根据△EMI ≌△CNI 可得MI =NI =2,即可确定AI 的长度;【解题过程】(1)证明:∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,在△ADB和△CEA中,∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA AAS∴BD=AE,AD=CE,∴DE=AE+AD=BD+CE;(2)∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA AAS∴BD=AE,AD=CE,∴DE=AE-AD=BD-CE;(3)如图,过E作EM⊥HI于M,GN⊥HI的延长线于N,∴∠EMI=∠GNI=90°∵∠BAH+∠EAM=90°,∠BAH+∠ABH=90°,∴∠EAM=∠ABH在△ABH和△EAM中,∠AHB=∠EMA ∠ABH=∠EAM AB=AE,∴△ABH≌△EAM(AAS)∴BH=AM=3,AH=EM,同理可得:△AHC≌△GNA∴CH=AN=7,AH=GN,即:EM=GN,MN=AN-AM=7-3=4,在△EMI和△CNI中,∠EMI=∠CNI∠EIM=∠CINEM=CN,∴△EMI≌△CNI(AAS),∴MI=NI=12MN=2,∴AI=AM+MI=3+2=5.14.(23-24八年级上·河北石家庄·阶段练习)通过对如图数学模型的研究学习,解决下列问题:(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC=,BC=AE.我们把这个数学模型称为“K字”模型或“一线三等角”模型;(2)如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;(3)如图3,已知四边形ABCD和DEGF为正方形,△AFD的面积为S1,△DCE的面积为S2,S1+S2= 10.求出S1的值.【思路点拨】(1)由△ABC≌△DAE即可求解;(2)作DM⊥AF,EN⊥AF,利用“K字模型”的结论可得△ABF≌△DAM,△ACF≌△EAN,故可推出DM =EN,再证△DMG≌△ENG即可;(3)作PQ⊥CE,AM⊥PQ,FN⊥PQ,利用“K字模型”的结论可得△ADM≌△DCP,△DFN≌△EDP,进一步可证△AMQ≌△FNQ,即可求解.【解题过程】(1)解:∵△ABC≌△DAE∴AC=DE故答案为:DE;(2)证明:作DM⊥AF,EN⊥AF由“K字模型”可得:△ABF≌△DAM,△ACF≌△EAN∴AF=DM,AF=EN∴DM=EN∵∠DMG=∠ENG=90°,∠DGM=∠BGN∴△DMG≌△ENG∴GM=GN即:点G是DE的中点(3)解:作PQ⊥CE,AM⊥PQ,FN⊥PQ,如图:21∵四边形ABCD 和四边形DEGF 均为正方形∴∠ADC =∠EDF =90°,AD =CD ,DE =DF由“K 字模型”可得:△ADM ≌△DCP ,△DFN ≌△EDP∴S △ADM =S △DCP ,S △DFN =S △EDPAM =DP ,FN =DP∵∠AMQ =∠FNQ =90°,∠AQM =∠FQN∴△AMQ ≌△FNQ∴S △AMQ =S △FNQ∴S △ADQ +S △FNQ +S △DFN =S △ADQ +S △AMQ +S △DFN =S △ADM +S △DFN =S △DCP +S △EDP即:S 1=S 2∵S 1+S 2=10∴S 1=515.(23-24七年级下·广东深圳·期末)【材料阅读】小明在学习完全等三角形后,为了进一步探究,他尝试用三种不同方式摆放一副三角板(在△ABC 中,∠ABC =90°,AB =CB ;△DEF 中,∠DEF =90°,∠EDF =30°),并提出了相应的问题.【发现】(1)如图1,将两个三角板互不重叠地摆放在一起,当顶点B 摆放在线段DF 上时,过点A 作AM ⊥DF ,垂足为点M ,过点C 作CN ⊥DF ,垂足为点N ,①请在图1找出一对全等三角形,在横线上填出推理所得结论;∵∠ABC =90°,∴∠ABM +∠CBN =90°,∵AM ⊥DF ,CN ⊥DF ,∴∠AMB =90°,∠CNB =90°,∴∠ABM +∠BAM =90°,∴∠BAM =∠CBN ,∵∠BAM=∠CBN∠AMB=∠CNB=90°AB=BC,;②AM=2,CN=7,则MN=;【类比】(2)如图2,将两个三角板叠放在一起,当顶点B在线段DE上且顶点A在线段EF上时,过点C作CP⊥DE,垂足为点P,猜想AE,PE,CP的数量关系,并说明理由;【拓展】(3)如图3,将两个三角板叠放在一起,当顶点A在线段DE上且顶点B在线段EF上时,若AE= 5,BE=1,连接CE,则△ACE的面积为.【思路点拨】本题综合考查了全等三角形的判定与性质,熟记相关定理内容进行几何推理是解题关键.(1)①根据两个三角形全等的判定定理,结合已知求证即可得到答案;②由①中△ABM≌△BCN(AAS),利用两个三角形全等的性质,得到AM=BN=2,BM=CN=7,即可得到MN=MB+BN=CN+AM=9;(2)根据两个三角形全等的判定定理,得到△ABE≌△BCP,利用两个三角形全等的性质,得到AE=BP,BE=CP,由图中BE=BP+PE,即可得到三者的数量关系;(3)延长FE,过点C作CP⊥FE于P,如图所示,由两个三角形全等的判定定理得到△ABE≌△BCP,从而PC=BE=1,PB=AE=5,则可求得PE,延长AE,过点C作CF⊥AE于F,如图所示,由平行线间的平行线段相等可得CF=PE=4,代入面积公式得S△ACE,即可得到答案.【解题过程】解:(1)①∵∠ABC=90°,∴∠ABM+∠CBN=90°,∵AM⊥DF,CN⊥DF,∴∠AMB=90°,∠CNB=90°,∴∠ABM+∠BAM=90°,∴∠BAM=∠CBN,∵∠BAM=∠CBN,∠AMB=∠CNB=90°,AB=BC,∴△ABM≌△BCN(AAS);故答案为:△ABM≌△BCN(AAS)②由①知△ABM≌△BCN(AAS),∴AM=BN,BM=CN,∵AM=2,CN=7,∴MN=MB+BN=CN+AM=9;故答案为:9;(2)结论:PE=PC-AE.理由如下:∵∠ABC=90°,∴∠ABE+∠CBE=90°,∵CP⊥BE,∴∠CPB=90°,∴∠BCP+∠CBP=90°∴∠ABE=∠BCP,2223∵∠AEB =90°,∴∠AEB =∠CPB =90°,∵AB =BC ,∴△ABE ≌△BCP ,∴AE =BP ,BE =CP∵BE =BP +PE ,∴PE =BE -BP =PC -AE ;(3)延长FE ,过点C 作CP ⊥FE 于P ,如图所示:∵∠ABE +∠EBC =90°,∠ABE +∠BAE =90°,∴∠EBC =∠BAE ,∵∠AEB =∠CPB =90°,AB =BC ,∴△ABE ≌△BCP ,∴PC =BE =1,PB =AE =5,∴PE =PB -BE =5-1=4,延长AE ,过点C 作CF ⊥AE 于F ,如图所示:∵AF ⊥PE ,CP ⊥PE ,∴AF ∥CP ,∵AF ⊥PE ,CF ⊥AF ,∴PE ∥CF ,由平行线间的平行线段相等可得CF =PE =4,S △ACE =12×AE ×CF =12×5×4=10.故答案为:10.。
全等三角形压轴题1.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.【分析】(1)求出∠ABC的度数,即可求出答案;(2)连接AD,CD,ED,根据旋转性质得出BC=BD,∠DBC=60°,求出∠ABD=∠EBC=30°﹣α,且△BCD为等边三角形,证△ABD≌△ACD,推出∠BAD=∠CAD=∠BAC=α,求出∠BEC=α=∠BAD,证△ABD≌△EBC,推出AB=BE即可;(3)求出∠DCE=90°,△DEC为等腰直角三角形,推出DC=CE=BC,求出∠EBC=15°,得出方程30°﹣α=15°,求出即可.【解答】(1)解:∵AB=AC,∠A=α,∴∠ABC=∠ACB=(180°﹣∠A)=90°﹣α,∵∠ABD=∠ABC﹣∠DBC,∠DBC=60°,即∠ABD=30°﹣α;(2)△ABE是等边三角形,证明:连接AD,CD,ED,∵线段BC绕B逆时针旋转60°得到线段BD,则BC=BD,∠DBC=60°,∵∠ABE=60°,∴∠ABD=60°﹣∠DBE=∠EBC=30°﹣α,且△BCD为等边三角形,在△ABD与△ACD中∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD=∠BAC=α,∵∠BCE=150°,∴∠BEC=180°﹣(30°﹣α)﹣150°=α=∠BAD,在△ABD和△EBC中∴△ABD≌△EBC(AAS),∴AB=BE,∴△ABE是等边三角形;(3)解:∵∠BCD=60°,∠BCE=150°,∴∠DCE=150°﹣60°=90°,∵∠DEC=45°,∴△DEC为等腰直角三角形,∴DC=CE=BC,∵∠BCE=150°,∴∠EBC=(180°﹣150°)=15°,∵∠EBC=30°﹣α=15°,∴α=30°.【点评】本题考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰直角三角形的判定和性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等.2.已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向三角形外作等边△ABD和等边△ACE.(1)如图1,连接线段BE、CD.求证:BE=CD;(2)如图2,连接DE交AB于点F.求证:F为DE中点.【解答】证明:(1)∵△ABD和△ACE是等边三角形,∴AB=AD,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴DC=BE;(2)如图,作DG∥AE,交AB于点G,由∠EAC=60°,∠CAB=30°得:∠FAE=∠EAC+∠CAB=90°,∴∠DGF=∠FAE=90°,又∵∠ACB=90°,∠CAB=30°,∴∠ABC=60°,又∵△ABD为等边三角形,∠DBG=60°,DB=AB,∴∠DBG=∠ABC=60°,在△DGB和△ACB中,,∴△DGB≌△ACB(AAS),∴DG=AC,又∵△AEC为等边三角形,∴AE=AC,∴DG=AE,在△DGF和△EAF中,,∴△DGF≌△EAF(AAS),∴DF=EF,即F为DE中点.3.在课外小组活动时,小慧拿来一道题(原问题)和小东、小明交流.原问题:如图1,已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F.探究线段DF与EF的数量关系.小慧同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.小东同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60度.小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:(1)写出原问题中DF与EF的数量关系;(2)如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;(3)如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.【分析】本题的解题思路是通过构建全等三角形来求解.先根据直角三角形的性质,等边三角形的性质得到一些隐含的条件,然后根据所得的条件来证明所构建的三角形的全等;再根据全等三角形的对应边相等得出DF=EF的猜想.【解答】解:(1)DF=EF.(2)猜想:DF=FE.证明:过点D作DG⊥AB于G,则∠DGB=90度.∵DA=DB,∠ADB=60度.∴AG=BG,△DBA是等边三角形.∴DB=BA.∵∠ACB=90°,∠ABC=30°,∴AC=AB=BG.在Rt△DBG和Rt△BAC中∴Rt△DBG≌Rt△BAC(HL).∴DG=BC.∵BE=EC,∠BEC=60°,∴△EBC是等边三角形.∴BC=BE,∠CBE=60度.∴DG=BE,∠ABE=∠ABC+∠CBE=90°.∵∠DFG=∠EFB,∠DGF=∠EBF,在△DFG和△EFB中∴△DFG≌△EFB(AAS).∴DF=EF.(3)猜想:DF=FE.证法一:过点D作DH⊥AB于H,连接HC,HE,HE交CB于K,则∠DHB=90度.∵DA=DB,∴AH=BH,∠1=∠HDB.∵∠ACB=90°,∴HC=HB.在△HBE和△HCE中∴△HBE≌△HCE(SSS).∴∠2=∠3,∠4=∠BEH.∴HK⊥BC.∴∠BKE=90°.∴∠3+∠ABC=90°∵∠ADB=∠BEC=2∠ABC,∴∠HDB=∠BEH=∠ABC.∴∠DBC=∠DBH+∠ABC=∠DBH+∠HDB=90°,∴∠3=∠DBH∠EBH=∠EBK+∠ABC=∠EBK+∠BEK=90°=∠DHB又∵HB是公共边,所以△DBH≌△EHB∴DH=BE同理可以证明△DHF≌△EBF∴DF=EF.4.已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B向直线CP作垂线,垂足分别为E、F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系是QE=QF;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.【分析】(1)根据AAS推出△AEQ≌△BFQ,推出AE=BF即可;(2)延长EQ交BF于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EQ=QD,根据直角三角形斜边上中点性质得出即可;(3)延长EQ交FB于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EQ=QD,根据直角三角形斜边上中点性质得出即可.【解答】解:(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系是AE=BF,理由是:∵Q为AB的中点,∴AQ=BQ,∵AE⊥CQ,BF⊥CQ,∴AE∥BF,∠AEQ=∠BFQ=90°,在△AEQ和△BFQ中∴△AEQ≌△BFQ,∴QE=QF,故答案为:AE∥BF,QE=QF;(2)QE=QF,证明:延长EQ交BF于D,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF;,(3)当点P在线段BA(或AB)的延长线上时,此时(2)中的结论成立,证明:延长EQ交FB于D,如图3,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF.5.在△ABC中,AB=AC,∠BAC=60°,点E为直线AC上一点,D为直线BC上的一点,且DA=DE.当点D在线段BC上时,如图①,易证:BD+AB=AE;当点D在线段CB的延长线上时,如图②、图③,猜想线段BD,AB和AE之间又有怎样的数量关系?写出你的猜想,并选择一种情况给予证明.【分析】图②中,论:BD+AE=AB,作EM∥AB交BC于M,先证明△EMC是等边三角形得CE=CM,AE=BM,再证明△ABD≌△DEM,得DB=EM=MC由此可以对称结论.图③中,结论:BD﹣AE=AB,证明方法类似.【解答】解;如图②中,结论:BD+AE=AB.理由:作EM∥AB交BC于M,∵△ABC是等边三角形,∴∠ABC=∠C=∠BAC=60°,AB=BC=AC,∴∠CEM=∠CAB=60°,∠CME=∠CBA=60°,∴△CME是等边三角形,∴CE=CM=EM,∠EMC=60°,∴AE=BM,∵DA=DE,∴∠DAE=∠DEA,∴∠BAC+∠DAB=∠C+∠EDM,∴∠DAB=∠EDM,∵∠ABD=180°﹣∠ABC=120°,∠EMD=180°﹣∠EMC=120°,∴∠ABD=∠DME,在△ABD和△DEM中,,∴△ABD≌△DEM,∴DB=EM=CM,∴DB+AE=CM+BM=BC=AB.如图③中,结论:BD﹣AE=AB.理由:作EM∥AB交BC于M,∵△ABC是等边三角形,∴∠ABC=∠C=∠BAC=60°,AB=BC=AC,∴∠CEM=∠CAB=60°,∠CME=∠CBA=60°,∴△CME是等边三角形,∴CE=CM=EM,∠EMC=∠MEC=60°,∴AE=BM,∵DA=DE,∴∠DAE=∠DEA,∴∠C+∠ADC=∠MEC+∠EDDEM,∴∠ADB=∠DEM,∵∠ABD=180°﹣∠ABC=120°,∠EMD=180°﹣∠EMC=120°,∴∠ABD=∠DME,在△ABD和△DEM中,,∴△ABD≌△DME,∴DB=EM=CM,∴DB﹣AE=CM﹣BM=BC=AB.【点评】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是添加辅助线构造全等三角形,注意形变证明方法基本不变,属于中考常考题型.6.如图1,我们定义:在四边形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,则把四边形ABCD叫做互补等对边四边形.(1)如图2,在等腰△ABE中,AE=BE,四边形ABCD是互补等对边四边形,求证:∠ABD=∠BAC=∠AEB.(2)如图3,在非等腰△ABE中,若四边形ABCD仍是互补等对边四边形,试问∠ABD=∠BAC=∠AEB是否仍然成立?若成立,请加以证明;若不成立,请说明理由.【分析】(1)根据等边对等角可得∠EAB=∠EBA,根据四边形ABCD是互补等对边四边形,可得AD=BC,根据SAS可证△ABD≌△BAC,根据全等三角形的性质可得∠ABD=∠BAC,再根据等腰三角形的性质即可证明;(2)仍然成立;理由如下:如图所示:过点A、B分别作BD的延长线与AC的垂线,垂足分别为G、F,证明△AGD≌△BFC,得到AG=BF,又AB=BA,所以△ABC≌△BAF,得到∠ABD=∠BAC,根据∠ADB+∠BCA=180°,得到∠EDB+∠ECA=180°,进而得到∠AEB+∠DHC=180°,由∠DHC+∠BHC=180°,所以∠AEB=∠BHC.因为∠BHC=∠BAC+∠ABD,∠ABD=∠BAC,所以∠ABD=∠BAC=∠AEB.【解答】解:(1)∵AE=BE,∴∠EAB=∠EBA,∵四边形ABCD是互补等对边四边形,∴AD=BC,在△ABD和△BAC中,,∴△ABD≌△BAC(SAS),∴∠ADB=∠BCA,又∵∠ADB+∠BCA=180°,∴∠ADB=∠BCA=90°,在△ABE中,∵∠EAB=∠EBA==90°﹣∠AEB,∴∠ABD=90°﹣∠EAB=90°﹣(90°﹣∠AEB)=∠AEB,同理:∠BAC=∠AEB,∴∠ABD=∠BAC=∠AEB;(2)仍然成立;理由如下:如图③所示:过点A、B分别作BD的延长线与AC的垂线,垂足分别为G、F,∵四边形ABCD是互补等对边四边形,∴AD=BC,∠ADB+∠BCA=180°,又∠ADB+ADG=180°,∴∠BCA=∠ADC,又∵AG⊥BD,BF⊥AC,∴∠AGD=∠BFC=90°,在△AGD和△BFC中,∴△AGD≌△BFC,∴AG=BF,在△ABG和△BAF中,∴△ABG≌△BAF,∴∠ABD=∠BAC,∵∠ADB+∠BCA=180°,∴∠EDB+∠ECA=180°,∴∠AEB+∠DHC=180°,∵∠DHC+∠BHC=180°,∴∠AEB=∠BHC.∵∠BHC=∠BAC+∠ABD,∠ABD=∠BAC,∴∠ABD=∠BAC=∠AEB.【点评】本题考查了等腰三角形的性质、全等三角形的判定与性质,解决本题的关键是根据SAS证明△ABD≌△BAC.7.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.【分析】(1)根据等边三角形的性质及等式的性质就可以得出△ABD≌△ACE,从而得出结论;(2)根据等边三角形的性质及等式的性质就可以得出△ABD≌△ACE,就可以得出BD=CE,就可以得出AC=CE﹣CD;(3)先根据条件画出图形,根据等边三角形的性质及等式的性质就可以得出△ABD≌△ACE,就可以得出BD=CE,就可以得出AC=CD﹣CE.【解答】解:(1)∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE.∵BC=BD+CD,AC=BC,∴AC=CE+CD;(2)AC=CE+CD不成立,AC、CE、CD之间存在的数量关系是:AC=CE﹣CD.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴BD=CE∴CE﹣CD=BD﹣CD=BC=AC,∴AC=CE﹣CD;(3)补全图形(如图)AC、CE、CD之间存在的数量关系是:AC=CD﹣CE.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠BAD=∠CAE在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴BD=CE.∵BC=CD﹣BD,∴BC=CD﹣CE,∴AC=CD﹣CE.【点评】本题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.8.如图,已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE.G、F分别是DC与BE的中点.(1)求证:DC=BE;(2)当∠DAB=80°,求∠AFG的度数;(3)若∠DAB=α,则∠AFG与α的数量关系是.【分析】(1)根据等式的性质就可以得出∠DAC=∠BAE.就可以得出△ADC≌△ABE就可以得出DC=BE;(2)连接AG,根据条件就可以得出△ADG≌△ABF,就可以求出AG=AF,∠GAF=∠DAB,由等腰三角形的性质就可以求出∠AFG的值,(3)连接AG,根据条件就可以得出△ADG≌△ABF,就可以求出AG=AF,∠GAF=∠DAB,由等腰三角形的性质就可以表示∠AFG与a的关系.【解答】解:(1)∵∠DAB=∠CAE,∴∠DAB+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE.在△ADC和△ABE中,∴△ADC≌△ABE(SAS),∴DC=BE;(2)连接AG.∵△ADC≌△ABE,∴∠ADC=∠ABE.AD=AB.∵G、F分别是DC与BE的中点,∴DG=DC,BF=BE,∴DG=BF.在△ADG和△ABF中,∴△ADG≌△ABF(SAS),∴AG=AF,∠DAG=∠BAF,∴∠AGF=∠AFG,∠DAG﹣∠BAG=∠BAF﹣∠BAG,∴∠DAB=∠GAF.∵∠DAB=80°,∴∠GAF=80°.∵∠GAF+∠AFG+∠AGF=180°,∴∠AFG=50°.答:∠AFG=50°;(3)∵∠DAB=α,∴∠GAF=α.∵∠GAF+∠AFG+∠AGF=180°,∴α+2∠AFG=180°,∴∠AFG=90°﹣α.故答案为:∠AFG=50°,90°﹣α.【点评】本题考查了全等三角形的判定及性质的运用,等式的性质的运用,等腰三角形的性质的运用,三角形内角和定理的运用,解答时证明三角形全等是关键.9.△ABC是等边三角形,点D、E分别在边AB、BC上,CD、AE交于点F,∠AFD=60°.(1)如图1,求证:BD=CE;(2)如图2,FG为△AFC的角平分线,点H在FG的延长线上,HG=CD,连接HA、HC,求证:∠AHC=60°;(3)在(2)的条件下,若AD=2BD,FH=9,求AF长.【分析】(1)根据等边三角形的性质得出AB=BC,∠BAC=∠C=∠ABE=60°,根据SAS推出△ABE≌△BCD,即可证得结论;(2)根据角平分线的性质定理证得CM=CN,利用∠CEM=∠ACE+∠CAE=60°+∠CAE,∠CGN=∠AFH+∠CAE=60°+∠CAE,得出∠CEM=∠CGN,然后根据AAS证得△ECM≌△GCN,得出CG=CE,EM=GN,∠ECM=∠GCN,进而证得△AMC≌△HNC,得出∠ACM=∠HCN,AC=HC,从而证得△ACH是等边三角形,证得∠AHC=60°;(3)在FH上截取FK=FC,得出△FCK是等边三角形,进一步得出FC=KC=FK,∠ACF=∠HCK,证得△AFC≌△HKC得出AF=HK,从而得到HF=AF+FC=9,由AD=2BD 可知AG=2CG,再由=,根据等高三角形面积比等于底的比得出===2,再由AF+FC=9求得.【解答】解:(1)如图1,∵△ABC是等边三角形,∴∠B=∠ACE=60°BC=AC,∵∠AFD=∠CAE+∠ACD=60°∠BCD+∠ACD=∠ACB=60°,∴∠BCD=∠CAE,在△ABE和△BCD中,∴△ABE≌△BCD(ASA),∴BD=CE;(2)如图2,作CM⊥AE交AE的延长线于M,作CN⊥HF于N,∵∠EFC=∠AFD=60°∴∠AFC=120°,∵FG为△AFC的角平分线,∴∠CFH=∠AFH=60°,∴∠CFH=∠CFE=60°,∵CM⊥AE,CN⊥HF,∴CM=CN,∵∠CEM=∠ACE+∠CAE=60°+∠CAE,∠CGN=∠AFH+∠CAE=60°+∠CAE,∴∠CEM=∠CGN,在△ECM和△GCN中∴△ECM≌△GCN(AAS),∴CE=CG,EM=GN,∠ECM=∠GCN,∴∠MCN=∠ECG=60°,∵△ABE≌△BCD,∵AE=CD,∵HG=CD,∴AE=HG,∴AE+EM=HG+GN,即AM=HN,在△AMC和△HNC中∴△AMC≌△HNC(SAS),∴∠ACM=∠HCN,AC=HC,∴∠ACM﹣∠ECM=∠HCN﹣∠GCN,即∠ACE=∠HCG=60°,∴△ACH是等边三角形,∴∠AHC=60°;(3)如图3,在FH上截取FK=FC,∵∠HFC=60°,∴△FCK是等边三角形,∴∠FKC=60°,FC=KC=FK,∵∠ACH=60°,∴∠ACF=∠HCK,在△AFC和△HKC中∴△AFC≌△HKC(SAS),∴AF=HK,∴HF=AF+FC=9,∵AD=2BD,BD=CE=CG,AB=AC,∴AG=2CG,∴==,作GW⊥AE于W,GQ⊥DC于Q,∵FG为△AFC的角平分线,∴GW=GQ,∵===,∴AF=2CF,∴AF=6.【点评】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,角平分线的性质,找出辅助线根据全等三角形和等边三角形是解题的关键.10.如图1,△ABE是等腰三角形,AB=AE,∠BAE=45°,过点B作BC⊥AE于点C,在BC上截取CD=CE,连接AD、DE并延长AD交BE于点P;(1)求证:AD=BE;(2)试说明AD平分∠BAE;(3)如图2,将△CDE绕着点C旋转一定的角度,那么AD与BE的位置关系是否发生变化,说明理由.【分析】(1)利用SAS证明△BCE≌△ACD,根据全等三角形的对应边相等得到AD=BE.(2)根据△BCE≌△ACD,得到∠EBC=∠DAC,由∠BDP=∠ADC,得到∠BPD=∠DCA=90°,利用等腰三角形的三线合一,即可得到AD平分∠BAE;(3)AD⊥BE不发生变化.由△BCE≌△ACD,得到∠EBC=∠DAC,由对顶角相等得到∠BFP=∠ACF,根据三角形内角和为180°,所以∠BPF=∠ACF=90°,即AD⊥BE.【解答】解:(1)∵BC⊥AE,∠BAE=45°,∴∠CBA=∠CAB,∴BC=CA,在△BCE和△ACD中,∴△BCE≌△ACD,∴AD=BE.(2)∵△BCE≌△ACD,∴∠EBC=∠DAC,∵∠BDP=∠ADC,∴∠BPD=∠DCA=90°,∵AB=AE,∴AD平分∠BAE.(3)AD⊥BE不发生变化.如图2,∵△BCE≌△ACD,∴∠EBC=∠DAC,∵∠BFP=∠ACF,∴∠BPF=∠ACF=90°,∴AD⊥BE.【点评】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明△BCE≌△ACD.11.情境观察:如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.①写出图1中所有的全等三角形△ABE≌△ACE,△ADF≌△CDB;②线段AF与线段CE问题探究:如图2,△ABC中,∠BAC=45°,BAC,AD⊥CD,垂足为D,AD与BC交于点E.求证:AE=2CD.拓展延伸:如图3,△ABC中,∠BAC=45°,AB=BC,点D在AC上,∠EDC=∠BAC,DE⊥CE,垂足为E,DE与BC交于点F.求证:DF=2CE.要求:请你写出辅助线的作法,并在图3中画出辅助线,不需要证明.【分析】情境观察:①由全等三角形的判定方法容易得出结果;②由全等三角形的性质即可得出结论;问题探究:延长AB、CD交于点G,由ASA证明△ADC≌△ADG,得出对应边相等CD=GD,即CG=2CD,证出∠BAE=∠BCG,由ASA证明△ADC≌△CBG,得出AE=CG=2CD即可.拓展延伸:作DG⊥BC交CE的延长线于G,同上证明三角形全等,得出DF=CG即可.【解答】情境观察:解:①图1中所有的全等三角形为△ABE≌△ACE,△ADF≌△CDB;故答案为:△ABE≌△ACE,△ADF≌△CDB②线段AF与线段CE的数量关系是:AF=2CE;故答案为:AF=2CE.问题探究:证明:延长AB、CD交于点G,如图2所示:∵AD平分∠BAC,∴∠CAD=∠GAD,∵AD⊥CD,∴∠ADC=∠ADG=90°,在△ADC和△ADG中,,∴△ADC≌△ADG(ASA),∴CD=GD,即CG=2CD,∵∠BAC=45°,AB=BC,∴∠ABC=90°,∴∠CBG=90°,∴∠G+∠BCG=90°,∵∠G+∠BAE=90°,∴∠BAE=∠BCG,在△ABE和△CBG中,,∴△ADC≌△CBG中(ASA),∴AE=CG=2CD.拓展延伸:解:作DG⊥BC交CE的延长线于G,如图3所示.【点评】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握等腰三角形的性质,证明三角形全等是解决问题的关键.12.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)如图1,当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说理由;若不变,求出它的度数.(3)如图2,若点P、Q在分别运动到点B和点C后,继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC=120度.(直接填写度数)【分析】(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;(2)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;(3)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.【解答】(1)证明:∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS);(2)解:点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠QMC=∠BAQ+∠MAC=∠BAC=60°;(3)解:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°.故答案为:120°.【点评】本题考查了等边三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定是解题的关键.13.如图,在等腰Rt△ABC中,∠C=90°,D是斜边上AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H点,交AE于G.(1)试说明AH=BH(2)求证:BD=CG.(3)探索AE与EF、BF之间的数量关系.【分析】(1)根据等腰三角形的三线合一证明;(2)证明△ACG≌△CBD,根据全等三角形的性质证明;(3)证明△ACE≌△CBF即可.【解答】证明:(1)∵AC=BC,CH⊥AB,∴AH=BH;(2)∵ABC为等腰直角三角形,CH⊥AB,∴∠ACG=45°,∵∠CAG+∠ACE=90°,∠BCF+∠ACE=90°,∴∠CAG=∠BCF,在△ACG和△CBD中,,∴△ACG≌△CBD(ASA),∴BD=CG;(3)AE=EF+BF,理由如下:在△ACE和△CBF中,,∴△ACE≌△CBF,∴AE=CF,CE=BF,∴AE=CF=CE+EF=BF+EF.【点评】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.14.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠FAC的平分线交BC于点G,连接FG.(1)求∠DFG的度数;(2)设∠BAD=θ,①当θ为何值时,△DFG为等腰三角形;②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.【分析】(1)由轴对称可以得出△ADB≌△ADF,就可以得出∠B=∠AFD,AB=AF,在证明△AGF≌△AGC就可以得出∠AFG=∠C,就可以求出∠DFG的值;(2)①当GD=GF时,就可以得出∠GDF═80°,根据∠ADG=40+θ,就有40°+80°+40°+θ+θ=180°就可以求出结论;当DF=GF时,就可以得出∠GDF=50°,就有40°+50°+40°+2θ=180°,当DF=DG时,∠GDF=20°,就有40°+20°+40°+2θ=180°,从而求出结论;②有条件可以得出∠DFG=80°,当∠GDF=90°时,就有40°+90°+40°+2θ=180°就可以求出结论,当∠DGF=90°时,就有∠GDF=10°,得出40°+10°+40°+2θ=180°求出结论.【解答】解:(1)∵AB=AC,∠BAC=100°,∴∠B=∠C=40°.∵△ABD和△AFD关于直线AD对称,∴△ADB≌△ADF,∴∠B=∠AFD=40°,AB=AF∠BAD=∠FAD=θ,∴AF=AC.∵AG平分∠FAC,∴∠FAG=∠CAG.在△AGF和△AGC中,,∴△AGF≌△AGC(SAS),∴∠AFG=∠C.∵∠DFG=∠AFD+∠AFG,∴∠DFG=∠B+∠C=40°+40°=80°.答:∠DFG的度数为80°;(2)①当GD=GF时,∴∠GDF=∠GFD=80°.∵∠ADG=40°+θ,∴40°+80°+40°+θ+θ=180°,∴θ=10°.当DF=GF时,∴∠FDG=∠FGD.∵∠DFG=80°,∴∠FDG=∠FGD=50°.∴40°+50°+40°+2θ=180°,∴θ=25°.当DF=DG时,∴∠DFG=∠DGF=80°,∴∠GDF=20°,∴40°+20°+40°+2θ=180°,∴θ=40°.∴当θ=10°,25°或40°时,△DFG为等腰三角形;②当∠GDF=90°时,∵∠DFG=80°,∴40°+90°+40°+2θ=180°,∴θ=5°.当∠DGF=90°时,∵∠DFG=80°,∴∠GDF=10°,∴40°+10°+40°+2θ=180°,∴θ=45°∴当θ=5°或45°时,△DFG为直角三角形.【点评】本题考查了轴对称的性质的运用,全等三角形的判定及性质的运用,等腰三角形的判定及性质的运用,直角三角形的判定及性质的运用,解答时证明三角形的全等是关键.15.如图,在△ABC中,∠BAC=90°,AB=AC,点D是AB的中点,连接CD,过B 作BE⊥CD交CD的延长线于点E,连接AE,过A作AF⊥AE交CD于点F.(1)求证:AE=AF;(2)求证:CD=2BE+DE.【分析】(1)通过证△AEB≌△AFC(SAS),得到AE=AF;(2)如图,过点A作AG⊥EC,垂足为G,通过证△BED≌△AGD(AAS),得到ED=GD,BE=AG,易证CF=BE=AG=GF.因为CD=DG+GF+FC,所以CD=DE+BE+BE,故CD=2BE+DE.【解答】证明:(1)如图,∵∠BAC=90°,AF⊥AE,∴∠EAB+∠BAF=∠BAF+∠FAC=90°,∴∠EAB=∠FAC,∵BE⊥CD,∴∠BEC=90°,∴∠EBD+∠EDB=∠ADC+∠ACD=90°,∵∠EDB=∠ADC,∴∠EBA=∠ACF,∴在△AEB与△AFC中,,∴△AEB≌△AFC(ASA),∴AE=AF;(2)如图,过点A作AG⊥EC,垂足为G.∵AG⊥EC,BE⊥CE,∴∠BED=∠AGD=90°,∵点D是AB的中点,∴BD=AD.∴在△BED与△AGD中,,∴△BED≌△AGD(AAS),∴ED=GD,BE=AG,∵AE=AF∴∠AEF=∠AFE=45°∴∠FAG=45°∴∠GAF=∠GFA,∴GA=GF,∴CF=BE=AG=GF,∵CD=DG+GF+FC,∴CD=DE+BE+BE,∴CD=2BE+DE.【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.16.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②CM平分∠ACE.【分析】(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”证明△ABE和△ACF全等,根据全等三角形对应边相等证明即可;(2)①过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可;②求出∠CAE=∠CEA=67.5°,根据等角对等边可得AC=CE,再利用“HL”证明Rt△ACM和Rt△ECM全等即可得到结论.【解答】证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM,∴CM平分∠ACE.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出等腰直角三角形和全等三角形是解题的关键,难点在于最后一问根据角的度数得到相等的角.17.如图,在△ABC中,已知∠ABC=45°,过点C作CD⊥AB于点D,过点B作BM ⊥AC于点M,CD与BM相交于点E,且点E是CD的中点,连接MD,过点D作DN⊥MD,交BM于点N.(1)求证:△DBN≌△DCM;(2)请探究线段NE、ME、CM之间的数量关系,并证明你的结论.【分析】(1)根据两角夹边相等的两个三角形全等即可证明.(2)结论:NE﹣ME=CM.作DF⊥MN于点F,由(1)△DBN≌△DCM 可得DM=DN,由△DEF≌△CEM,推出ME=EF,CM=DF,由此即可证明.【解答】(1)证明:∵∠ABC=45°,CD⊥AB,∴∠ABC=∠DCB=45°,∴BD=DC,∵∠BDC=∠MDN=90°,∴∠BDN=∠CDM,∵CD⊥AB,BM⊥AC,∴∠ABM=90°﹣∠A=∠ACD,在△DBN和△DCM中,,∴△DBN≌△DCM.(2)结论:NE﹣ME=CM.证明:由(1)△DBN≌△DCM 可得DM=DN.作DF⊥MN于点F,又ND⊥MD,∴DF=FN,在△DEF和△CEM中,,∴△DEF≌△CEM,∴ME=EF,CM=DF,∴CM=DF=FN=NE﹣FE=NE﹣ME.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.18.问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.【分析】特例探究:利用等边三角形的三条边都相等、三个内角都是60°的性质推知AB=AC,∠DBA=∠EAC=60°,然后结合已知条件BD=AE,利用全等三角形的判定定理SAS证得△ABD≌△CAE.归纳证明:△ABD与△CAE全等.利用等边三角形的三条边都相等、三个内角都是60°的性质以及三角形外角定理推知AB=AC,∠DBA=∠EAC=120°,然后结合已知条件BD=AE,利用全等三角形的判定定理SAS证得△ABD≌△CAE;拓展应用:利用全等三角形(△ABD≌△CAE)的对应角∠BDA=∠AEC=32°,然后由三角形的外角定理求得∠BAD的度数.【解答】特例探究:证明:∵△ABC是等边三角形,∴AB=AC,∠DBA=∠EAC=60°,在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);解:归纳证明:△ABD与△CAE全等.理由如下:∵在等边△ABC中,AB=AC,∠ABC=∠BAC=60°,∴∠DBA=∠EAC=120°.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);拓展应用:∵点O在AB的垂直平分线上,∴OA=OB,∴∠OBA=∠BAC=50°,∴∠EAC=∠DBC.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS),∴∠BDA=∠AEC=32°,∴∠BAD=∠OBA﹣∠BDA=18°.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,线段垂直平分线的性质等知识点.在证明两个三角形全等时,一定要找准对应角和对应边.19.情境创设:如图1,两块全等的直角三角板,△ABC≌△DEF,且∠C=∠F=90°,现如图放置,则∠ABE=90°.问题探究:如图2,△ABC中,AH⊥BC于H,以A为直角顶点,分别以AB、AC为直角边,向△ABC形外作等腰直角△ABE和等腰直角△ACF,过点E、F作射线HA的垂线,垂足分别为M、N,试探究线段EM和FN之间的数量关系,并说明理由.拓展延伸:如图3,△ABC中,AH⊥BC于H,以A为直角顶点,分别以AB、AC为一边,向△ABC形外作正方形ABME和正方形ACNF,连接E、F交射线HA于G点,试探究线段EG和FG之间的数量关系,并说明理由.【分析】(1)求出∠A=∠EDF,∠A+∠ABC=90°,推出∠EDF+∠ADC=90°,求出∠ADE的度数即可;(2)根据全等三角形的判定得出△EAM≌△ABH,进而求出EM=AH.同理AH=FN,因而EM=FN.(3)与(2)证法类似求出EG=FG,求出△EPG≌△FQG即可.【解答】解:(1)∵△ABC≌△DEF,∴∠A=∠EDF,∵∠C=90°,∴∠A+∠ABC=90°,∴∠EDF+∠ADC=90°,∴∠ADE=180°﹣90°=90°,故答案为:90;(2)解:EM=FN,如图2,理由如下:∵Rt△ABE是等腰三角形,∴EA=BA,∠BAE=90°,∴∠BAH+∠MAE=90°,∵AH⊥BC,EM⊥AH,∴∠AME=∠AHB=90°,∴∠ABH+∠BAH=90°,∴∠ABH=∠MAE,在△EAM与△ABH中∴△EAM≌△ABH(AAS),∴EM=AH.同理AH=FN.∴EM=FN;(3)解:EG=FG,如图3,作EP⊥HG,FQ⊥HG,垂足分别为P、Q,由(2)可得EP=FQ,∵EP⊥HG,FQ⊥HG,∴∠EPG=∠FQG=90°,在△EPG和△FQG中∵,∴△EPG≌△FQG,∴EG=FG.【点评】本题考查了全等三角形的性质和判定,注意:①全等三角形的对应角相等,对应边相等,②全等三角形的判定定理有SAS,ASA,AAS,SSS.。
《全等三角形》压轴题训练(1)1.如图,在ABC ∆中,,AD BC CE AB ⊥⊥,垂足分别为,,,D E AD CE 交于点,H EH 、3,4EB AE ===,则CH 的长是( )A. 4B. 5C. 1D. 22.如图,在Rt ABC ∆中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交边,AC AB 于点,M N ,再分别以,M N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4,25CD AB ==,则ABD ∆的面积为( )A. 15B. 30C. 45D. 603.如图,在Rt ABC ∆中,90,12,6C AC BC ∠=︒==,一条线段,,PQ AB P Q =两点分别在线段AC 和以点A 为端点且垂直于AC 的射线AX 上运动,要使ABC ∆和QPA ∆全等,则AP 的长为 .4.如图,//,,,,2,3AD BC AB BC CD DE CD ED AD BC ⊥⊥===,则ADE ∆的面积为 .5. (1)观察推理:如图①,在ABC ∆中,90,ACB AC BC ∠=︒=,直线l 过点C ,点,A B 在直线l 的同侧,,BD l AE l ⊥⊥,垂足分别为,D E .求证:AEC CDB ∆≅∆.(2)类比探究:如图②,在Rt ABC ∆中,90,4ACB AC ∠=︒=,将斜边AB 绕点A 逆时针旋转90°至AB ',连接B C ',求AB C '∆的面积.(3)拓展提升:如图③,在EBC ∆中,60,3E ECB EC BC ∠=∠=︒==,点O 在BC 上,且2OC =,动点P 从点E 沿射线EC 以每秒1个单位长度的速度运动,连接OP ,将线段OP 绕点O 逆时针旋转120°得到线段OF .要使点F 恰好落在射线EB 上,求点P 运动的时间t .6.【初步探索】(1)如图①,在四边形ABCD 中,,90AB AD B ADC =∠=∠=︒. ,E F 分别是,BC CD 上的点,且EF BE FD =+.探究图中,,BAE FAD EAF ∠∠∠之间的数量关系.小王同学探究此问题的方法:延长FD 到点G ,使DG BE =.连接AG .先证明ABE ADG ∆≅∆,再证AEF AGF ∆≅∆,可得出结论,他的结论应是 .【灵活运用】(2)如图②,在四边形ABCD 中,,180AB AD B D =∠+∠=︒. ,E F 分别是,BC CD 上的点,且EF BE FD =+,上述结论是否仍然成立?请说明理由.【延伸拓展】(3)如图③,在四边形ABCD 中,180,ABC ADC AB AD ∠+∠=︒=.若点E 在CB 的延长线上,点F 在CD 的延长线上,仍然满足EF BE FD =+,请写出EAF ∠与DAB ∠的数量关系,并给出证明过程.(2)1.如图,在ABC ∆中,12,8,AB BC BD ==是AC 边上的中线,则BD 的取值范围是( )A. 28BD <<B. 310BD <<C. 210BD <<D. 420BD <<2.如图,在锐角三角形ABC 中,AH 是BC 边上的高,分别以,AB AC 为一边,向外作正方形ABDE 和ACFG ,连接,CE BG 和,EG EG 与HA 的延长线交于点M ,下列结论:①BG CE =;②BG CE ⊥;③AM 是AEG ∆的中线;④EAM ABC ∠=∠.其中正确结论的个数是( )A. 4B. 3C. 2D. 13.如图,//,AB CD O 是ACD ∠和BAC ∠的平分线的交点,且OE AC ⊥,垂足为E , OE =2. 5 cm ,则AB 与CD 间的距离为 cm.4.如图,在ABC ∆中,90,45C BAC ∠=︒∠=︒,点M 在线段AB 上,12GMB A ∠=∠,BG MG ⊥,垂足为,G MG 与BC 相交于点H .若MH = 8 cm ,则BG = cm.5.如图,在ABC ∆中10AB AC ==cm, BC =8 cm, D 为AB 的中点,点P 在线段BC 上以3 cm/s 的速度由点B 向点C 运动,同时,点Q 在线段CA 上由点C 向点A 以a cm/s 的速度运动.设运动的时间为t s.(1)求CP 的长;(用含t 的代数式表示)(2)若以,,C P Q 为顶点的三角形和以,,B D P 为顶点的三角形全等,且B ∠和C ∠是对应角,求a 的值.6.【问题提出】学习了三角形全等的判定方法(即“SAS ”“ASA ”“AAS ”“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示:在ABC ∆和DEF ∆中, ,AC DF BC EF ==,B E ∠=∠,然后对B ∠进行分类,可以分为“B ∠是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当B ∠为直角时,ABC DEF ∆≅∆.(1)如图①,在ABC ∆和DEF ∆中,AC DF BC EF ==,90B E ∠=∠=︒,根据 ,可以知道Rt ABC Rt DEF ∆≅∆.第二种情况:当B ∠为钝角时,ABC DEF ∆≅∆.(2)如图②,在ABC ∆和DEF ∆中,AC DF BC EF == ,B E ∠=∠,且,B E ∠∠都是钝角.求证: ABC DEF ∆≅∆.第三种情况:当B ∠为锐角时,ABC ∆和DEF ∆不一定全等.(3)在ABC ∆和DEF ∆中,,AC DF BC EF ==,B E ∠=∠,且,B E ∠∠都是锐角,请你用尺规在图③中作出DEF ∆,使DEF ∆和ABC ∆不全等.(不写作法,保留作图痕迹)(4) B ∠还要满足什,,,AC DF BC EF B E ==∠=∠,且,B E ∠∠都是锐角.若 ,则ABC DEF ∆≅∆.参考答案(1)1.C2. B3.6或124. 15. (1),BD l AE l ⊥⊥∴90BDC AEC ∠=∠=︒∴Rt AEC ∆中90EAC ACE ∠+∠=︒∵90ACB ∠=︒,180ECD ∠=︒∴90DCB ACE ∠+∠=︒∴EAC DCB ∠=∠在AEC ∆和CDB ∆中AEC CDB EAC DCB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEC CDB ∆≅∆(2)如图①,作'B D AC ⊥于点D ,则'90ADB BCA ∠=∠=︒∵斜边AB 绕点A 逆时针旋转90°至'AB ,∴'AB AB =,'90B AB ∠=︒即'90B AC BAC ∠+∠=︒∵在ACB ∆中,90B CAB ∠+∠=︒∴'B B AC ∠=∠在'B AD ∆和ABC ∆中,'''ADB BCA B AD B AB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴'B AD ABC ∆≅∆∴'4B D AC == ∴'11'44822AB C S AC B D ∆=⨯⨯=⨯⨯= (3)如图②根据题意,画出图形.∵3,2BC OC ==∴1OB BC OC =-=∵线段OP 绕点O 逆时针旋转120°得到线段OF .∴120FOP ∠=︒,OP OF =∴1260∠+∠=︒∵在BCE ∆中,60E ECB ∠=∠=︒∴120OBF PCO ∠=∠=︒∴在PCO ∆中,2360∠+∠=︒∴13∠=∠在BOF ∆和CPO ∆中13OBF PCO OF PO ∠=∠⎧⎪∠=∠⎨⎪=⎩∴BOF CPO ∆≅∆∴1PC OB ==∴314EP EC PC =+=+=∴点P 运动的时间44()1t s ==6.(1) BAE FAD EAF ∠+∠=∠(2)成立.理由:延长FD 倒点G ,使得DG BE =,连接AG∵180ADG ADC ∠+∠=︒,180B ADC ∠+∠=︒∴ADG B ∠=∠在ABE ∆和ADG ∆中AB AD B ADG BE DG =⎧⎪∠=∠⎨⎪=⎩∴ABE ADG ∆≅∆∴BAE DAG ∠=∠,AE AG =∵EF BE FD =+∴EF DG FD GF =+=在AEF ∆和AGF ∆中AE AG AF AF EF GF =⎧⎪=⎨⎪=⎩∴AEF AGF ∆≅∆∴EAF GAF ∠=∠∵GAF FAD DAG FAD BAE ∠=∠+∠=∠+∠∴BAE FAD EAF ∠+∠=∠ (3) 11802EAF DAB ∠=︒-∠. 证明:在DC 的延长线上取一点G ,使得DG BE =,连接AG∵180ABC ADC ∠+∠=︒,180ABC ABE ∠+∠=︒∴ADC ABE ∠=∠在ADG ∆和ABE ∆中AD AB ADG ABE DG BE =⎧⎪∠=∠⎨⎪=⎩∴ADG ABE ∆≅∆∴AG AE =,DAG BAE ∠=∠∵EF BE FD =+∴EF DG FD =+∵GF DG FD =+∴EF GF =在AEF ∆和AGF ∆中EF GF AE AG AF AF =⎧⎪=⎨⎪=⎩∴AEF AGF ∆≅∆∴EAF GAF ∠=∠∵360EAF GAF GAE ∠+∠+∠=︒∴2()360EAF GAB BAE ∠+∠+∠=︒∴2()360EAF GAB DAG ∠+∠+∠=︒即2360EAF DAB ∠+∠=︒ ∴11802EAF DAB ∠=︒-∠ (2)1.C2.A3.54. 45. (1)由题意,得3BP t =cm ,8BC =cm.∴(83)CP BC BP t =-=-cm.(2)分两种情况讨论:①当BD CP =时,BDP CPQ ∆≅∆∵ 10AB =cm ,D 为AB 的中点 ∴152BD AB == cm. ∴583t =-解得1t = ∵BDP CPQ ∆≅∆∴BP CQ =即311a ⨯=⨯ 1.解得3a =②当BP CP =时,BDP CQP ∆≅∆∴383t t =-,解得43t =∵BDP CQP ∆≅∆∴BD CQ =即453a =⨯,解得。
154a = 综上所述,a 的值为3或154. 6. (1)HL.(2)如图①,过点C 作CG AB ⊥的延长线于点G ,过点F 作FH DE ⊥的延长线于点H ∵,CG AG FH DH ⊥⊥∴90CGA FHD ∠=∠=︒∵180CBG ABC ∠=︒-∠,180CBG ABC ∠=︒-∠,ABC DEF ∠=∠∴CBG FEH ∠=∠∵BC EF =∴BCG EFH ∆≅∆∴CG FH =又∵AC DF =Rt ACG Rt DFH ∆≅∆∴A D ∠=∠在ABC ∆和DEF ∆中∵ABC DEF ∠=∠,A D ∠=∠,AC DF =∴ABC DEF ∆≅∆(3)如图②,DEF ∆即为所求(4)答案不唯一,如由(3)知以点C 为圆心,AC 的长为半径画弧时,当弧与边AB 的交点在点A 、B 之间时,DEF ∆和ABC ∆不全等;当弧与边AB 交于点B 或没有交点时, ABC DEF ∆≅∆,故AC BC ≥,即当B A ∠≥∠时,ABC DEF ∆≅∆.因此可以填B A ∠≥∠.。