当前位置:文档之家› 蓄电池性能测试检测系统的详细说明

蓄电池性能测试检测系统的详细说明

蓄电池性能测试检测系统的详细说明
蓄电池性能测试检测系统的详细说明

蓄电池性能测试检测系统

一,蓄电池性能测试检测系统概述

蓄电池使用寿命一般为5-6年,在这么长的使用过程中往往会出现:电池端电压不均匀、电池壳变形、电解液渗漏、容量不足等现象,为供电带来安全隐患。蓄电池容量,是蓄电池充足电后放出电能大小的数值,因此蓄电池的容量反映了蓄电池的健康状况。

蓄电池长期浮充,容易造成活性物质钝化,电解液固化;蓄电池均充频繁,造成电解液干涸、极板栅格腐蚀;

大电流充电或过放电,造成极板变形、硫化。以上原因,导致电池容量降低甚至失效,给系统启动、通讯造成安全隐患;

蓄电池由于长期频繁使用,电解液比重不断增加,浮充电流加大,因此电极腐蚀更为迅速,电极腐蚀也会消耗氧气从而使电解液变干,这是蓄电池特有的故障。

当电池的实际容量下降到其标称容量的90%以下时,电池便进入衰退期。

当电池容量下降到标称容量的80%以下时,便进入急剧的衰退状态,这时电池已存在安全隐患,当电池容量下降到标称的70%以下时,电池已达到报废状态。《电源维护规程》要求:

1)新安装的蓄电池验收应做100%容量实验;

2)蓄电池每年做一次放电深度为30%-40%实验;

3)超过三年后每年做一次放电深度为100%的容量试验;

4)蓄电池放电期间应每小时测量一次端电压和放电电流。

一、蓄电池性能测试检测系统

2.1.电池安装前检测、定期维护——电池容量寿命检测

充满电的蓄电池放置不用,逐渐失去电量的现象,称之自行放电。自行放电是不可避免的,在正常情况下,每天放电率不应超过0.35%~0.5%。自行放电的主要原因:

1)极板或电解液中含有杂质,杂质与极板间或不同杂质间产生了电位差,变成

一个局部电池,通过电解液构成回路,产生局部放电电流,使蓄电池放电。

2)隔板破裂,导致正负极板短路。

3)蓄电池壳表面上有电解液或水,在极桩间成为导体,导致蓄电池放电。

4)活性物质脱落过多,并沉积在电池底部,使极板短路造成放电。

因此安装备用蓄电池前,需要采用“电池容量寿命检测柜”进行100%的核对性实验,先对蓄电池进行补充电,再进行放电、放电完毕后再充电经检测确认蓄电池达到核定容量后,方可投入使用。

因蓄电池在运行过程中一直处于浮充状态,导致电解液固化,极柱硫化甚至断裂,因此蓄电池需定期采用蓄电池容量寿命检测设备对其做充放电实验,精确测试单体电池剩余容量,准确测试电池工作性能。

2.2.蓄电池性能测试检测系统日常维护——内阻测试单元

采用蓄电池内阻测试仪检测蓄电池单体电压、放电电流、电池内阻,通过蓄电池内阻对其容量进行分析,若容量低于标称值85%以下时,根据容量值,对其做放电实验,精确计算蓄电池容量,以判断蓄电池是否可以正常使用。

2.3.蓄电池性能测试检测系统活化诊治——活化诊治单元

由于单体电池落后或各单体电压不均衡,引起的蓄电池组容量不足,将影响使用。此时,需要采用活化仪对单体蓄电池进行活化诊治,若诊治后,蓄电池容量低于标称容量的80%,建议退出系统。

蓄电池性能测试检测系统

3.1.电池容量寿命检测柜 SBCT-3030TL (适用于各类型电池铅酸、铁锂、镍、锰电池等)

1)设备满足单体电压为2V、3.2V、6V、12V、24V等电池的型式试验。

2)设备同时具有电池容量分析、单体电池恒流放电、智能充电等多种的功能。

3)充电技术:具有智能充电三阶段功能:恒流充电、恒压充电、涓流浮充三阶

段自动转换。具有启动充电延时功能,能设定充电延时时间。

4)采用高频电源充电模块,先进的电源隔离技术,直流输出的纹波系数小于3%。

5)可做短时间放电:5-10分钟分析出单节电池的剩余容量。

6)恒流控制技术:先进的高频PWM控制及反馈技术,直流放电恒流精度为0.1A。

6)主机内存自动存储充放电数据,USB接口。

6)设备各功能模块化设计,按功能分类安装于电源柜里面。

6)可做完全放电后充电:精确的得出电池实际容量。

6)液晶屏显示,全中文菜单提示,操作简便,智能化程度高,可设定电压、电

流、时间、容量等参数,自动完成电池组各种参数的测试、监控。

6)外部接点功能:对放电完成,充电过高或其他警报均提供输出接点以方便充

其他设备作适当处理。

蓄电池内阻测试方法

为什么要对蓄电池进行内阻测试 蓄电池电压、电流、温度是蓄电池重要的运行参数,但是不能反映蓄电池内部状态。内阻作为目前国际公认的对蓄电池最有效的、测量最便捷的性能参数,能够反映蓄电池的劣化程度、容量状态等性能指标,而这些指标是电压、电流、温度等运行参数所无法反映的。 蓄电池的四种主要的失效模式:(失水、负极板硫化、正极板腐蚀和热失控的直接影响使蓄电池的容量下降,内阻升高)是造成蓄电池内阻升高的主要原因。 随着蓄电池的容量状态的下降,蓄电池的内阻会升高。容量越大的蓄电池其反映的内阻越小,同时随着蓄电池劣化程度的加大,蓄电池的内阻也会出现显著的增高。所以,蓄电池的内阻与其容量有着密切的关系:蓄电池内阻升高是蓄电池性能劣化的重要标志。 国际电信电源年会的研究成果显示,如果蓄电池的内阻超过正常值25%,该容量已降低到其标称容量的80%左右,如果蓄电池内阻超过正常值的50%,该蓄电池容量已降低到其标称容量的80%以下,需及时更换。 蓄电池在绝大部分现场是串联使用的,单体蓄电池的性能状态直接影响到蓄电池组的性能状态。同时,蓄电池组中的落后电池会加快与其串联的其他蓄电池的劣化速度。所以,对单体蓄电池的监测是保障蓄电池组的容量状态和使用寿命的必要条件。 通过对蓄电池组中的单体蓄电池进行内阻测试,能够准确地掌握蓄电池组中的每个单体蓄电池的性能状态。同时对于保证蓄电池供电稳定和延长蓄电池组的使用寿命具有重要意义。 蓄电池的容量状态会随着使用时间的增长而降低。根据国际电化学年会对25,000只通信用蓄电池的研究结果表明,蓄电池在使用2年后就会进入不稳定期。也就是说,蓄电池组在使用2年后就会出现容量状态大幅度下降的蓄电池单体。

基于单片机的蓄电池监测系统设计

河南科技大学 课程设计说明书 课程名称电气控制技术 题目基于单片机的蓄电池容量测试系统设计学院农业工程学院__班级__学生姓名 指导教师___日期 2015年4月3日

专业课程设计任务书 班级:农电112 姓名:唐聪杰学号: 111403010224 设计题目:基于单片机的蓄电池容量测试系统设计 一、设计目的 熟悉专业课程设计的相关规程、规定,了解电力系统,电网设计数学模型的基本建立方 法和相关算法的计算机模拟,熟悉相关电力计算的内容,巩固已学习的相关专业课程内 容,学习撰写工程设计说明书,对电力系统相关状态进行模拟,对电网设计相关参数计 算机计算设计有初步的认识。 二、设计要求 (1)通过对相应文献的收集、分析以及总结,给出相应项目分析,建立数学模型。 (2)通过课题设计,掌握电力系统计算机算法设计的方法和设计步骤。 (3)学习按要求编写课程设计报告书,能正确阐述设计方法和计算结果。 (4)学生应抱着严谨认真的态度积极投入到课程设计过程中,认真查阅相应文献以及 实现,给出个人分析、设计以及实现。 三、设计任务 (一)设计内容 1.了解蓄电池容量测试原理; 2.设计基于单片机的蓄电池容量测试系统,包括软件和硬件; 3.利用protues软件对所设计系统进行仿真; 4.相关论文在学校图书馆中文数据库“万方数字化期刊”中查找。 (二)设计任务 1.建立相关算法、模型。 2.设计说明书,包括全部设计内容,对电力系统相关状态进行模拟。 3.总体方案图,仿真软件模拟波形图,计算相关参数。 四、设计时间安排 查找相关资料(2天)、确定总体方案,进行必要的计算。(1天)、对电力系统相关 状态进行模拟,计算相关参数,(2天)、 使用(MATLAB)等相关软件进行电路图系统图设计与仿真。(2天)、撰写设计报告(2 天)和答辩(1天)。 五、主要参考文献 [1] 电力工程基础 [2] 工厂供电,电力系统分析 [3] 相关设计仿真软件手册,如(MATLAB)等。 [4] 数学建模算法分析等 [5] 电气工程设计手册等 [2] 图书馆中文数据库“万方数字化期刊”其他相关网络资料 指导教师签字:年月日 基于单片机的蓄电池容量测试系统设计

(整理)蓄电池性能检测装置详细资料

蓄电池性能检测系统锂电池充放电柜SBCT-3030TS 一、概述 蓄电池使用寿命一般为5-6年,在这么长的使用过程中往往会出现:电池端电压不均匀、电池壳变形、电解液渗漏、容量不足等现象,为供电带来安全隐患。蓄电池容量,是蓄电池充足电后放出电能大小的数值,因此蓄电池的容量反映了蓄电池的健康状况。 蓄电池长期浮充,容易造成活性物质钝化,电解液固化;蓄电池均充频繁,造成电解液干涸、极板栅格腐蚀; 大电流充电或过放电,造成极板变形、硫化。以上原因,导致电池容量降低甚至失效,给系统启动、通讯造成安全隐患; 蓄电池由于长期频繁使用,电解液比重不断增加,浮充电流加大,因此电极腐蚀更为迅速,电极腐蚀也会消耗氧气从而使电解液变干,这是蓄电池特有的故障。 当电池的实际容量下降到其标称容量的90%以下时,电池便进入衰退期。 当电池容量下降到标称容量的80%以下时,便进入急剧的衰退状态,这时电池已存在安全隐患,当电池容量下降到标称的70%以下时,电池已达到报废状态。 《电源维护规程》要求: 1)新安装的蓄电池验收应做100%容量实验; 2)蓄电池每年做一次放电深度为30%-40%实验; 3)超过三年后每年做一次放电深度为100%的容量试验; 4)蓄电池放电期间应每小时测量一次端电压和放电电流。 一、蓄电池检测方案 2.1.电池安装前检测、定期维护——电池容量寿命检测 充满电的蓄电池放置不用,逐渐失去电量的现象,称之自行放电。自行放电是不可避免的,在正常情况下,每天放电率不应超过0.35%~0.5%。自行放电的主要原因: 1)极板或电解液中含有杂质,杂质与极板间或不同杂质间产生了电位差,变成一个局部电池, 通过电解液构成回路,产生局部放电电流,使蓄电池放电。 2)隔板破裂,导致正负极板短路。 3)蓄电池壳表面上有电解液或水,在极桩间成为导体,导致蓄电池放电。 4)活性物质脱落过多,并沉积在电池底部,使极板短路造成放电。 因此安装备用蓄电池前,需要采用“电池容量寿命检测柜”进行100%的核对性实验,先对蓄电池进行补充电,再进行放电、放电完毕后再充电经检测确认蓄电池达到核定容量后,方可投入使用。

(完整word版)实验报告5燃料电池电堆测试

《燃料电池电堆测试与分析》实验报告 一.实验目的: 1.掌握PEMFC电堆测试台的基本结构和操作方法; 2.通过实测,掌握电堆极化曲线的测试方法,学会绘制极化曲线、功率曲线等图谱; 3.能将燃料电池电堆的实测性能应用于燃料电池系统的构建上;锻炼运用理论分析、解决实际问题的能力和方法。 二.实验原理: 将所需测量的PEMFC电堆与NBT燃料电池测试系统连接,通过控制平台调节燃料电池的氢气和空气流量,设置负载的电流值(也就是燃料电池电堆的电流值),观察记录电压值和功率值得变化,利用所记录的数据画出燃料电池的i-V和i-P曲线。 三.实验仪器设备和器材 四.测试平台开机顺序测试 1.打开气源,检查氢气、空气(外部供应时)的压力是否正常、去离子水的液位是否正常;室内氢气泄露报警系统是否正常;氢气、空气与水的排放口是否连接妥当,氢气管路的出口必须接于室外。注意测试时的人员与设备的安全。 2.给测试平台上电,380V AC。 3.开启电脑,与设备联机。 4.手动设置适当的氢、空、冷却水温度(注意不应超过80℃)、各流体最低流量、电堆片数、活性面积等参数。 5.设定数据保存路径和文件名,开始记录数据。

6.测试极化曲线。根据电堆所需要氢空流量,手动设置电流,测试极化曲线。 7.实验结束。 五.提前制作电堆运行所需氢气和空气的流量表,如下表所示。 已知条件:电堆片数:19片,单电池活性面积250cm2; 阴/阳极化学计量比:3.5/1.5; 常压 六.绘制电堆的极化曲线和功率密度曲线,需要标明必要的测试条件。

七.绘制上述极化曲线上最大功率时的单片电池电压柱状图,并计算电压的 标准偏差。 学生(签名): 实验日期:2015.5.25

(整理)蓄电池性能测试检测系统的详细说明

蓄电池性能测试检测系统 一,蓄电池性能测试检测系统概述 蓄电池使用寿命一般为5-6年,在这么长的使用过程中往往会出现:电池端电压不均匀、电池壳变形、电解液渗漏、容量不足等现象,为供电带来安全隐患。蓄电池容量,是蓄电池充足电后放出电能大小的数值,因此蓄电池的容量反映了蓄电池的健康状况。 蓄电池长期浮充,容易造成活性物质钝化,电解液固化;蓄电池均充频繁,造成电解液干涸、极板栅格腐蚀; 大电流充电或过放电,造成极板变形、硫化。以上原因,导致电池容量降低甚至失效,给系统启动、通讯造成安全隐患; 蓄电池由于长期频繁使用,电解液比重不断增加,浮充电流加大,因此电极腐蚀更为迅速,电极腐蚀也会消耗氧气从而使电解液变干,这是蓄电池特有的故障。 当电池的实际容量下降到其标称容量的90%以下时,电池便进入衰退期。 当电池容量下降到标称容量的80%以下时,便进入急剧的衰退状态,这时电池已存在安全隐患,当电池容量下降到标称的70%以下时,电池已达到报废状态。《电源维护规程》要求: 1)新安装的蓄电池验收应做100%容量实验; 2)蓄电池每年做一次放电深度为30%-40%实验; 3)超过三年后每年做一次放电深度为100%的容量试验; 4)蓄电池放电期间应每小时测量一次端电压和放电电流。 一、蓄电池性能测试检测系统 2.1.电池安装前检测、定期维护——电池容量寿命检测 充满电的蓄电池放置不用,逐渐失去电量的现象,称之自行放电。自行放电是不可避免的,在正常情况下,每天放电率不应超过0.35%~0.5%。自行放电的主要原因: 1)极板或电解液中含有杂质,杂质与极板间或不同杂质间产生了电位差,变成 一个局部电池,通过电解液构成回路,产生局部放电电流,使蓄电池放电。 2)隔板破裂,导致正负极板短路。 3)蓄电池壳表面上有电解液或水,在极桩间成为导体,导致蓄电池放电。 4)活性物质脱落过多,并沉积在电池底部,使极板短路造成放电。

锂电池测试方法

锂电池性能测试方法 锂电池是一个要求高品质、高安全的产品、消费者在使用时往往不清楚电池的性能,导致在使用时电池的工作效率往往达不到理想目标,有时甚至盲目使用还会引起电池爆炸事件的发生,人生安全也会受到损伤,因此了解电池的性能也是至关重要的。 锂电池性能测试主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等 工具/原料 测试仪 硬质棒 钉子 方法/步骤 方法一、自放电测试 镍镉和镍氢电池的自放电测试为: 由于标准荷电保持测试时间太长,一般采用24小时自放电来快速测试其荷电保持能力,将电池以0.2C放电至 1.0V.1C充电80分钟,搁臵15分钟,以1C放电至10V,测其放电容量C1, 再将电池以1C充电80分钟,搁臵24小时后测1C容量C2,C2/C1×100%应小于15% 锂电池的自放电测试为:一般采用24小时自放电来快速测试其荷电保持能力,将电池以0.2C放电至 3.0V,恒流恒压1C充电至 4.2V,截止电流:10mA,搁臵15分钟后,以1C放电至3.0V测其放电容量C1,再将电池恒流恒压1C充电至 4.2V,截止电流100mA,搁臵24小时后测1C容量C2,C2/C1×100%应大于99%. 方法二、内阻测量 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极

容易极化,产生极化内阻,故无法测出其真实值;而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电压采样整流滤波等一系列处理从而精确地测量其阻值. 方法三、IEC标准循环寿命测试 IEC规定镍镉和镍氢电池标准循环寿命测试为: 电池以0.2C放至1.0V/支后 1.以0.1C充电16小时,再以0.2C放电2小时30分(一个循环). 2.0.25C充电3小时10分,以0.25C放电2小时20分(2-48个循环). 3.0.25C充电3小时10分,以0.25C放至1.0V(第49循环) 4.0.1C充电16小时,搁臵1小时,0.2C放电至1.0V(第50个循环),对镍 氢电池重复1-4共400个循环后,其0.2C放电时间应大于3小时;对镍隔电池重复1-4共500个循环,其0.2C放电时间应大于3小时. EC规定锂电池标准循环寿命测试 电池以0.2C放至3.0V/支后,1C恒流恒压充电到4.2V,截止电流20MA,搁臵1小时后,再以0.2C放电至3.0V(一个循环)反复循环500次后容量应在初容量的60%以上. 方法四、内压测试 镍镉和镍氢电池内压测试为: 将电池以0.2C放至1.0V后,以1C充电3小时,根据电池钢壳的轻微形变通过转换得到电池的内压情况,测试中电池不应彭底,漏液或爆炸. 锂电池内压测试为:(UL标准)

电池测试

二次电池性能主要包括哪些方面? 主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等。 手机电池块有哪些电性能指标怎么测量? 电池块的电性能指标很多这里只介绍最主要的几项电特性: A.电池块容量 该指标反映电池块所能储存的电能的多少是以毫安小时计,例如:1600mAH是意昧着电池以1600mA放电可以持续放电一小时. B.电池块寿命 该指标反映电池块反复充放电循环次数 C.电池块内阻 上面已提到电池块的内阻越小越好但不能是零 D.电池块充电上限保护性能 锂电池充电时,其电压上限有一额定值,在任何情况下,锂电池的电压不允许超过此额定值该额定值。由PCB板上所选用的IC来决定和保证。 E.电池块放电下限保护性能 锂电池块放电时,在任何情况下锂电池的电压不允许低于某一额定值该额定值,由PCB板上所选用的IC来决定和保证。 需要说明的是,在手机中一般锂电池块放电时,尚未到达下限保护值,手机就因电池电量不足而关机。 F.电池块短路保护特性 锂电池块外露的正负极片在被短路时,PCB板上的IC应立即加以判断,并作出反应关断MOSFET。当短路故障排除后,电池块又能立即输出电能,这些均有PCB上的IC来识别判断和执行。 电池的可靠性测试项目有哪些? 1. 循环寿命 2. 不同倍率放电特性 3. 不同温度放电特性 4. 充电特性 5. 自放电特性 6. 不同温度自放电特性 7. 存贮特性 8. 过放电特性 9. 不同温度内阻特性 10. 高温测试 11. 温度循环测试 12. 跌落测试 13. 振动测试 14. 容量分布测试 15. 内阻分布测试 16. 静态放电测试ESD 电池的安全性测试项目有哪些?

燃料电池测试系统购置

高功率燃料电池测试系统技术参数高功率燃料电池测试系统,用于25cm2或50cm2质子交换膜燃料电池单电池性能及耐久性研究。详细的技术文件如下: 一、测试系统的所有部件、数据采集与控制、电脑及显示器在一个主机箱中。 二、测试仪器可靠性要求 无故障运行10000小时 三、电子负载 1、最大功率:≥100W; 2、最大电流:≥120A,精度:±0.3% 所选量程,分辨率:1mA 3、电池电压测量范围:-5V~+5V,精度:±1mV;分辨率:1mV 4、最低保护电压:0.3V。 四、加载控制方式:即可电流控制,又可电压控制。 五、气体供应 1、质量流量控制器: 最大流量:H2≥2NLPM,精度:±1%;Air≥5NLPM,精度:±1%,可按过量系数控制流量。 2、带有干气旁通(Bypass)功能,带有氮气吹扫(Purge)功能 六、背压控制 1、程控自动化阴阳极进出口压力控制,电脑控制自动加背压。 2、压力控制范围:≥300KPa(表压),控制稳定性:±5KPa 3、可以监测(电脑显示)阴极和阳极的进出口压力。 七、温度控制 1、最高电池温度:≥110℃,控制精度:±1℃ 2、最高气体温度:≥90℃,控制精度:±1℃,从加湿器到测试电池间的胶管有加热和保温功能,避免水气凝结。 3、露点温度控制范围:室温—90℃,精度:±1℃ 八、热交换器:有 九、交流阻抗:要求带有交流阻抗测试模块,电压控制模式测EIS,频率扫描范围:高频大于10kHz,低频小于等于0.01mHz,电流最大量程:≥±5A

十、带有恒电位仪,N2和Air自动切换,测试CV、LSV。N2流量计量程越高越好,建议和Air共用流量计。 十一、安全:带有氢气报警器,设有氢气泄露报警和仪器错误报警,在报警情况下自动化关闭电子负载、启动氮气吹扫。带有过电压、电流等保护。 十二、电脑和软件: 1、电脑全自动控制 2、可编程进行程序控制测试, 3、语言:英语或中文 4、数据收集记录:至少可以电脑记录以下参数:运行时间、电池温度、阴阳极气体进出口的温度和湿度、阴阳极加湿温度、阴阳极进出口压力、阴阳极气体流量,电池电流、电压及其标准偏差,所有数据记录设定值和测量值。 十三、保修期 一年。

(整理)铅酸蓄电池的性能检测

铅酸蓄电池的性能检测 一、容量 电池容量是指在规定条件下测得的并由制造商宣称的电池容量值。实际上是在规定 温度下,以一定电流放电一定时间,当达到规定的终止电压时,所能给出的电量,用C 表示,以安时(Ah)为单位。 ⑴起动电池的容量 a. 额定储备容量,用Cr.n表示,其值应符合GB/T 5008.2-2008标准的规定。 b. 实际储备容量,用Cr.e表示,其值应在第3次或之前的储备容量试验时,达到额定储备容量用Cr.n。 c. 20h率额定容量,用C20表示,其值应符合GB/T 5008.2-2008标准的规定。 d. 实际容量,用Ce表示,其值应在第3次或之前的容量试验时,应不低于额定容量C20的95%。 ⑵牵引电池的容量 a. 额定容量,用C5表示,在30℃温度下放电5h,放电电流是C5/5(A),放电至单体电压1.70V,所给出的电量(Ah),其值应符合GB/T 7403.1-2008标准的规定。 b. 实际容量,用Ce表示,在规定条件下,电池所能放出的电量(Ah),其值应在第1次容量试验时应不低于额定容量C5的85%。实际容量在前10次容量试验内至少有1次 达到额定容量。 ⑶内燃机车用排气式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.1-2008标准的规定。 ⑷内燃机车用阀控密封式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.2-2008标准的规定。

⑸铁路客车用电池的容量 a. 额定容量,用C10、C5、C1表示,其容量值在进行容量试验时要达到额定值,在3次试验中有1次合格为合格,应符合GB/T 13281-2008标准的规定。 b. 实际容量,用Ce表示,即在规定条件下测得的电池实际放电容量。 c. 低温容量,用Cd表示,电池在零下40℃环境中静置8h,以I10(A)电流放电至单体电压1.60V,计算其容量,低温容量Cd与常温容量C10、C5、C1的比值不少于0.4(>40%)。 ⑹固定型防酸式电池的容量 C10容量在第1次循环不低于0.90C10,第5次循环应达到C10;C1和1.0C容量分别在第7次、第9次循环达到额定值,应符合GB/T 13337.1-2008标准的规定。 ⑺固定型阀控密封式电池的容量 C10容量在第1次循环不低于0.95C10,第3次循环应达到C10、C3、C1,应符合GB/T 19638.1-2008的规定。 ⑻小型阀控密封式电池的容量 C20容量应符合GB/T 19639.2-2008的规定。实际容量Ce在第5次充/放循环内应不低于C20。 ⑼电动道路车辆用电池的容量 a. 额定容量,用C3表示,第1次放电容量应不低于0.85C3,第10次放电容量或之前放电容量应达到C3,应符合GB/T 18332.1-2008的规定。 b. 低温容量,用Cd表示,电池在零下18℃环境中静置24h,以I3(A)电流放电至单体电压1.40V,其容量应不低于0.5C3。 ⑽电动助力车用密封式电池的容量 a. 额定容量,用C2表示,应在第3次循环内达到。 b. 实际容量,用Ca表示,应符合GB/T 22199-2008的规定。

IEC锂电池测试标准梳理

IEC锂电池测试标准梳理 评估测试项目 1(1)电性测试 测试项目充电状态电池条件温度评估测试方法标准 1.外部短路完全充电刚生产完的电池室温60℃通过电阻小于50mΩ的电线在两极短路6小时以上没有爆炸、没有着火的现象 2.强行放电完全充电刚生产完的电池正常室温按厂家推荐的电流强行深度放电计算容量的250%。*如果在测试过程中达到安全或保护功能,可以终止测试没有爆炸、没有着火的现象 3.连续充电完全放电刚生产完的电池正常室温按厂家推荐的方法充电,并在指定的电压持续28天没有爆炸、没有着火、没有裂开的现象的现象 过量充电完全放电刚生产完的电池正常室温按厂家推荐的电流充到计算容量的250%。*如果在测试过程中达到安全或保护功能,可以终止测试没有爆炸、没有着火的现象 5.大电流充电完全放电刚生产完的电池正常室温按厂家推荐的充电电流的3倍电流给电池充电至计算容量100%以上没有爆炸、没有着火的现象 1(2)Ⅰ机械性能测试 测试项目充电状态电池条件温度评估测试方法标准 1.振动完全充电或完全放电刚生产完的电池正常室温将电池在XYZ三个方向振动90至100分钟,振幅为0.8mm,频率为10HZ,频率的变化率为1HZ/min。测试后,完全放电电池将被充电到由厂家推荐的完全容量。没有爆炸、没有着火、没有变形的现象 2.加速度完全充电或完全放电刚生产完的电池正常室温以时间为单位加速在初始3毫秒里,平均加速度为75g(g为重力加速度单位),到达顶峰时为125-175g。在每一个XYZ互相垂直的方向振动。测试后,完全放电电池将被充电到厂家推荐的容量。没有爆炸、没有着火、没有变形的现象 3.掉落完全充电或完全放电刚生产完的电池正常室温从1.9m高的地方自由掉落10次到水泥地面上。测试后,完全放电电池将被充电到厂家推荐的容量。没有爆炸、没有着火的现象 1(2)Ⅱ 测试项目充电状态电池条件温度评估测试方法标准 钉子穿过电池完全充电刚生产完的电池正常室温用直径2.5至5mm的钉子穿过电池的纵心轴*将钉子放入电池内6h。没有爆炸、没有着火的现象 5.挤压完全充电刚生产完的电池正常室温将电池放在两块扁铁板间以使电池的纵轴心与扁铁板平行,再给电池施加13kN的压力没有爆炸、没有着火的现象 6.撞击完全充电刚生产完的电池正常室温将一个圆柱形木棒(直径为7.9mm)越过电池顶部,与电池纵心轴垂直。9.1kg相当重量从61cm高度掉落下来。没有爆炸、没有着火的现象 7.10m掉落完全充电刚生产完的电池正常室温从10m高的地方任意将电池掉落到水泥地面上。没有爆炸、没有着火的现象 1(3)Ⅰ环境性能测试 测试项目充电状态电池条件温度评估测试方法标准 1.高温储存完全充电刚生产完的电池(a)在温度100℃的烤箱中储存5小时后将电池放在温度为20℃的地方放置24h(b)在60℃的烤箱中储存30天后将电池放置在温度20℃的地方24小时没有爆炸、没有着火的现象

电池性能及测试

锂电池性能与测试 1. 二次电池性能主要包括哪些方面? 主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等。 2. 手机电池块有哪些电性能指标怎么测量? 电池块的电性能指标很多这里只介绍最主要的几项电特性: A.电池块容量 该指标反映电池块所能储存的电能的多少是以毫安小时计,例如:1600mAH是意昧着电池以1600mA放电可以持续放电一小时. B.电池块寿命 该指标反映电池块反复充放电循环次数 C.电池块内阻 上面已提到电池块的内阻越小越好但不能是零 D.电池块充电上限保护性能 锂电池充电时,其电压上限有一额定值,在任何情况下,锂电池的电压不允许超过此额定值该额定值。由PCB板上所选用的IC来决定和保证。 E.电池块放电下限保护性能 锂电池块放电时,在任何情况下锂电池的电压不允许低于某一额定值该额定值,由PCB板上所选用的IC来决定和保证。 需要说明的是,在手机中一般锂电池块放电时,尚未到达下限保护值,手机就因电池电量不足而关机。 F.电池块短路保护特性 锂电池块外露的正负极片在被短路时,PCB板上的IC应立即加以判断,并作出反应关断MOSFET。当短路故障排除后,电池块又能立即输出电能,这些均有PCB上的IC来识别判断和执行。 3. 电池的可靠性项目有哪些? 1. 循环寿命 2. 不同倍率放电特性 3. 不同温度放电特性 4. 充电特性 5. 自放电特性 6. 不同温度自放电特性 7. 存贮特性 8. 过放电特性 9. 不同温度内阻特性 10. 高温测试 11. 温度循环测试 12. 跌落测试 13. 振动测试 14. 容量分布测试 15. 内阻分布测试 16. 静态放电测试ESD 4. 电池的安全性测试项目有哪些? 1. 内部短路测试 2. 持续充电测试 3. 过充电 4. 大电流充电 5. 强迫放电 6. 坠落测试 7. 从高处坠落测试 8. 穿透实验 9. 平面压碎实验 10. 切割实验 11. 低气压内搁置测试 12. 热虐实验 13. 浸水实验 14. 灼烧实验 15. 高压实验 16. 烘烤实验 17. 电子炉实验 5. 什么是电池的额定容量? 指在一定放电条件下,电池放电至截止电压时放出的电量。IEC标准规定镍镉和镍氢电池在20+ 5。c环境下,以0.1C充电16小时后以0.2C放电至1.0V时所放出的电量为电池的额定容量,以C5表示而对于锂离子电池,则规定在常温,恒流(1C)恒压(4.2V)控制的充电条件下,充电3 h再以0.2C放电至2.75V时,所放出的电量为其额定容量电池容量,电池容量的单位有Ah,mAh(1Ah=1000mAh). 6. 什么是电池的放电残余容量? 对可充电电池用大电流(如1C或以上)放电时,由于电流过大使内部扩散速率存在的“瓶颈效应”,致使电池在容量未能完全放出时已到达终点电压,再用小电流如0.2C还能继续放电,直至1.0V/支时所放出的容量称为残余容量 7. 什么是电池的标称电压;开路电压;中点电压;终止电压? 电池的标称电压指的是在正常工作过程中表现出来的电压,二次镍镉镍氢电池标称电压为1.2V;二次锂电池标称电压为3.6V。 开路电压指在外电路断开时,电池两个极端间的电位差; 终点电压指电池放电实验中,规定的结束放电的截止电压; 中点电压指放到50%容量时,电池的电压主要用来衡量大电流放电系列电池高倍率放电能力,是电池的一个重要指标 8. 电池常见的充电方式有哪几种? 镍镉和镍氢电池的充电方式: 1. 恒流充电:整个充电过程个中充电电流为一定值,这种方法最常见。 2. 恒压充电:充电过程中充电电源两端保持一恒定值,电路中的电流随电池电压升高而逐渐减小。

燃料电池测试方案

燃料电池测试方案 燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。根据燃料和氧化剂种类的不同燃料电池分为多种类型,比如碱性燃料电池,质子交换膜燃料电池,甲醇燃料电池,磷酸燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池等,具有环境污染小,比能量高,噪音低,燃料范围广,可靠性高,易于建设等优点,因此其可广泛应用于电动汽车、航天飞机、潜艇、通讯系统、中小规模电站、家用电源,以及其他需要移动电源的场所。中国致力于燃料电池的相关研究数十年,当前国家也将燃料电池行业的发展写入了多个地区的战略规划。 神州技测工程师表示,对于燃料电池的测试,功率不同,测试方法也不同。总体说来,硬件仪器一般包括:气体供给系统、液体供给系统、气体液体混合供给系统、液体供给液压系统、加湿器系统、气体加热线、温度控制监测系统、压力控制监测系统、电子负载系统、辅助输入输出系统、架构模块式系统以及第三方设备等。软件一般包括:对所有接入仪器的设定、控制、安全报警以及数据收

燃料电池的主要应用是在汽车行业中,大概可占到行业应用的70%左右。因此我们可以以汽车中燃料电池为例,简述燃料电池的测试。 燃料电池堆栈的测试中,会使用多种气体相关装置,电力相关装置,监测系统等。

神州技测提供的AMETEK SG系列直流电源可以作为辅助电源,功率范 围:4KW-150KW,电压范围5-1000V,电流范围5–6000 A;提供恒压、恒流和恒功率输出模式;提供独特的“序列”功能,易于生成变化的直流波形;可定义电压斜率;可闻噪音低。 AMETEK PLW系列水冷电子负载产品可以作为电力测试设备使用,检测燃料电池的电力特性。PLW系列产品成熟稳定,可靠性高,有众多典型案例,型号齐全:功率覆盖6kW、9kW、12kW、18kW、24kW、36kW,也可提供36kW - 250kW的其他标准型号;标准额定电压:60V、120V、400V、600V、800V和1000V;外形紧凑,功率密度高(2U,18kW)。 水冷电子负载应用在燃料电池堆栈测试中有众多的优势,比如功率密度高,体积小巧;冷水在电子负载内部流动,对系统的温度环境影响较小,适于实验人员工作,同时也减少了环境温度对测试的影响;噪声小,适于实验人员工作;无需额外建空调房,因此降低成本,减少线损对系统测试的影响;能量被消耗,无需考虑馈电对实验室的影响;故障率低;易于程控。同时,目前的权威燃料电池检测产品,Greenlight系统中,大多使用了此系列产品,有众多的成功案例。 关于升压变压器测试,动力控制单元,驱动电机单元的测试,AMETEK也可以提供相应的电源和电子负载进行测试,如SG系列产品和PLA系列产品等。

通信蓄电池核对性放电试验作业指导书

目次 通信蓄电池核对性放电试验作业指导书 1 总则 为规范通信-48V蓄电池组管理,及时准确掌握蓄电池容量及性能,提高设备管理水平,保证蓄电池稳定运行,特编制该作业指导书。

2 范围 …… 3 术语和定义 3.1阀控式密封铅酸蓄电池 阀控式密封铅酸蓄电池正常使用时保持气密和液密状态,当内部气压超过预定值时,安全阀自动打开释放气体。当内部气压降低时,安全阀自动闭合密封,防止外部空气进入电池内部。阀控式密封铅酸蓄电池在使用寿命期间,正常使用情况下无需补加电解液。 3.2完全充电 按照生产厂家推荐的充电方法对蓄电池进行充电,蓄电池内部的储电容量达到最大值时,即为完全充电状态。 3.3恒流充电 在充电电压范围内,充电电流维持在恒定值的充电。 3.4均衡充电 为补偿蓄电池在使用过程中产生的电压不均衡现象,使其恢复到规定范围内而进行的充电。3.5浮充电 在充电装置的直流输出端始终并接着蓄电池组和负载,以恒压充电方式工作。正常运行时充电装置在承担经常性负荷的同时向电池组补充充电,以补偿电池组的自放电,使电池组以满容量状态处于备用。 3.6核对性放电 为检验正常运行中的蓄电池组容量,将蓄电池组脱离运行,以规定的放电电流进行恒流放电,只要其中一节电池放到了规定的终止电压,应停止放电。蓄电池组的实际容量按条计算。 4 作业准备 准备工作安排

作业人员要求 仪表、工器具、材料 4.4资料

4.5危险点分析及安全控制措施 4.6人员作业分工 5 工作程序 作业流程图 参见“附录D 蓄电池核对性放电作业流程图” 作业程序 5.2.1蓄电池放电前的检查工作 5.2.1.1检查并确认蓄电池组处于浮充运行状态。 5.2.1.2查看开关电源监控模块有关蓄电池运行数据,并做好相关记录。蓄电池组总电压应在 52V~54V之间。 5.2.1.3检查蓄电池连接处有无松动、腐蚀现象。松动处用扳手拧紧,腐蚀处除出腐蚀物后抹上 凡士林。 5.2.1.4检查蓄电池壳体有无渗漏和变形。对有渗漏和变形电池应及时记录并向通信高级专责或 系统部主任汇报等待处理意见。 5.2.1.5检查蓄电池极柱、安全阀周围是否有酸雾酸液逸出。对有酸雾酸液逸出的电池应及时记 录并向通信高级专责或系统部主任汇报等待处理意见。 5.2.1.6测量并记录蓄电池房的温度和湿度。 5.2.1.7将蓄电池房门打开。 5.2.1.8对只有一套开关电源的系统,必须检查确认开关电源及另一组蓄电池(对双蓄电池组配 置系统)运行正常。

蓄电池在线监测系统的设计与实现

蓄电池在线监测系统的设计与实现 李立伟 邹积岩 (大连理工大学电气系 116024) 摘 要 对直流系统传统的蓄电池监测方法进行了比较分析,提出了一种直流系统蓄电池在线监测系统,通过实时测量蓄电池组的单体电池电压、温度、内阻及充放电电流,实现了蓄电池组运行参数的实时监测,着重介绍了该系统的设计原理以及软、硬件设计。 关键词 在线监测 单体电池电压 单体电池温度 单体电池内阻 1 概述 直流操作电源系统是电力系统中继电保护装置、信号装置、照明装置等重要负载的供电电源,其供电的可靠性直接影响变电站的安全运行。直流操作电源的后备电源一般采用蓄电池组,正常运行时由充电机浮充充电,当系统停电时,由蓄电池组提供后备电源。为保证直流操作电源供电的可靠性,必须对蓄电池组运行参数进行全面的在线监测。 目前,电力系统中蓄电池的常用检测方法就是平时测量单体电池的端电压及每年进行的容量核对性放电,但平时浮充状态下的电池端电压测量本身并不能真实反映电池的性能状况,即使性能变差的电池在浮充时也能测得合格的端电压;而一旦供电系统停电、蓄电池放电时,就可能无法保证事故状态下的放电要求,从而扩大事故范围。由于蓄电池的容量与电池内阻存在很强的相关性,一般而言,电池的容量越大,内阻就越小,因此可以通过对蓄电池内阻的测量,对电池的容量进行在线评估。 在我们研制的蓄电池在线监测系统中,通过实时测量蓄电池组的单体电池电压、温度、内阻及充放电电流,实现对蓄电池组运行参数的实时监测,并可通过通信网络将蓄电池组全部信息远传至监控中心机房,实现变电站直流操作电源系统的无人值守。 2 电池运行参数测量原理 211 单体电池电压测量 在大容量的直流操作电源系统中,蓄电池一般采用108节左右电压为2V的单体电池串联而成,单体电池两端存在较高的共模电压,如接在直流母线正端的蓄电池两端对母线负端的共模电压分别为216V、214V,大大超过一般电子模拟开关如CD4051、MAX358等的共模电压输入范围。为消除共模电压的影响,一般采用电磁继电器进行轮流切换,来实现单体电池电压的测量。但电磁继电器的寿命一般为105次,动作时间为10ms,不适合快速、长时间的测量,而Photo MOS继电器为无触点开关,但由于目前成本较高,也不适合大面积推广。 在本系统中,采用了BURR-BROWN公司推出的低价格、高精度的差分放大器INA148,在±15V电源供电时,其最大共模峰值输入电压为±500V,单体电池电压测量原理框图如图1所示。   图1 单体电池电压测量原理框图 212 单体电池温度测量 除了电化学反应的吸热和放热外,在充放电过程中,由于电池内阻的存在,电池内部产生的热量也会引起电池的温度发生变化。在同样电流的条件下,电池内阻不同,电池内部产生的热量不同,电 — 7 — ?研究与开发? 《电工技术杂志》2002年第11期

锂离子电池性能测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:锂离子电池性能测试 实验类型:验证设计综合实验时间:2014年5月5日-17日 实验指导老师:马国正组员:黄日权郭金海 一、实验目的 1.熟悉、掌握锂离子电池的结构及充放电原理。 2.熟悉、掌握锂离子正极材料的制备过程及工艺。 3.熟悉、掌握锂离子电池的封装工艺及模拟电池测试方法。 二、实验原理 锂离子电池是指正负极为Li+嵌入化合物的二次电池。正极通常采用锂过渡金属氧化物 Li x CoO2,Li x NiO2或Li x Mn2O4,负极采用锂-碳层间化合物Li x C6。电解质为溶有锂盐LiPF6,LiAsF6,LiClO4等的有机溶液。溶剂主要有碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)和氯碳酸酯(CIMC)等。在充放电过程中,Li+在两极间往返嵌入和脱出,被形象的称之为“摇椅电池”。 锂离子电池充放电原理和结构示意图如下。 锂离子电池的化学表达式为: -)Cn|LiPF6-EC+DMC|LiM x O y(+ 其电池反应为: LiM x O y+nC Li1-x M x O y+Li x C n 本实验以高温固相法制备的尖晶石型LiMn2O4为正极材料,纯锂片为负极,制备扣式锂离子模拟电池,并对制备的扣式半电池进行充放电测试。 三、仪器与试剂 电化学工作站,蓝点测试系统、手套箱、电子天平、真空干燥箱、切片机、对辊机、鼓风干燥机 LiMn2O4、乙炔黑、PVDF、无水乙醇、电解液(1M LiPF6溶与体积比EC:DEC:EMC=1:1:1

蓄电池性能检测电路设计设计

基于单片机的蓄电池性能测试电路的设计 电气工程及其自动化专业] [摘要] 阀控铅酸蓄电池作为后备电源已经广泛应用于工业生产,交通、通信和军事领域。如何高效率管理这些蓄电池,提高后备电源系统的可靠性是一个很现实的重要课题。因此,本课题设计一基于单片机的船舶蓄电池性能检测系统。该系统采用精密电阻和电池构成串联电路,用交流注入法对蓄电池注入微弱正弦波信号,通过对输出响应进行一系列的放大、幅相检测、AD转换和采集,然后根据测量到的电压比来推算电池内阻。试验结果表明:该方法能够被有效地用于铅酸电池内阻测量,测量结果稳定有效。 [关键词]幅相检测;AD转换;单片机;电池内阻

目录 1引言 (1) 1.1研究背景 (1) 1.2蓄电池研究现状 (1) 1.3蓄电池的性能指标 (2) 1.4蓄电池性能的判断因素 (3) 2测试方法研究 (4) 2.1内阻参数的相对性与绝对性 (4) 2.2蓄电池内阻与容量的关系 (5) 2.3蓄电池等效电路 (5) 2.4方案的探讨 (6) 2.5交流法 (7) 3硬件电路的设计 (8) 3.1总体框架 (8) 3.2主处理器模块 (10) 3.3探测电路 (12) 3.4差分放大电路 (13) 3.4.1INA321芯片简化图 (13) 3.4.2INA2321电路图 (14) 3.5幅相检测电路 (14) 3.5.1AD8302介绍 (14)

3.5.2AD8302电路图 (15) 3.6模数转换模块设计 (16) 3.6.1模数转换芯片AD0809 (16) 3.6.2ADC0809与单片机的接口电路 (17) 3.7液晶显示 (18) 3.7.1LCD1602介绍 (18) 3.7.2LCD1602与单片机的接口电路 (20) 4软件部分 (21) 4.1主程序 (21) 4.2A/D转换子程序 (22) 4.3LCD1602初始化部分 (23) 结束语 (25) 参考文献 (26) 致谢 (27)

燃料电池测试系统的基本理论

燃料电池测试系统的基本理论 随着全球对能源需求的增长及人类对环境要求的提高。各个国家对燃料电池的研究和开发H益增多。燃料电池测试系统不仅存燃料电池系统的研发阶段十分重要,即使是在其投入使用之后对于维持电池的正常工作也是不可或缺的。强大的测试能力能够提供对燃料电池可靠的监控。提供灵活的结构,具备了这种能力,科学界能够很方便地设计他们的系统,以跟踪燃料电池技术进步。以下是对燃料电池测试系统的相关介绍。 1、测试目的 虽然研究、开发、制造和应用部分的总目标各有不同。它们对于燃料电池的检测和躲视项目要求却是相似的。对丁研发部门,测试要求足确定输出能量、使用寿命和电池组的耐用性。在设计验收阶段,主要任务是优化设计以备大规模生产.以及在不降低效率的情况下降低电堆总成本。对丁生产应用.要求燃料电池符合规范要求。而在实际使用中,监测电池的寿命和工作状态是非常重要的。好在这些不同的任务对电池测试系统的要求都差不多。 2、测试系统的主要特点 ①隔离。燃料电池测试系统先要进行各种需要信号调理的测鼍。然后原始信号才能有数据采集系统数字化。大容最电堆具有数百个单电池。从而电压测量要求数白.伏的共模抑制。因此.测试不仅必须具有多个每个通道都能读取l—10V的通道.而

且必须保持电堆的每一个和最后一个电池之间高达数百伏的隔离。 ②数据采集系统必须能够扩展。由于燃料电池测试系统的通道数目可以从100个到1000多个.所以数据采集系统必须能够扩展。并且这些系统也要求可以进行信号的衰减和放大。 ③模块化。对于今天的测试系统,模块化也是必需的。因为测试系统必须能够随着生产及验证技术的变革而变革。 ④标定。任何测试系统都应该进行标定以确保测量有效和准确。 3、测试的主要性能参数 燃料电池测试系统需要精确的监测和控制成百上千次测量.范同从燃料和氧化剂的流量、温度、压力和湿度到燃料电池组的输出电压和电流。测试燃料电池的性能是很重要的,而监测影响性能的变量更为重要,但最重要的足控制这些变量参数,安全运行也是至关重要的。所以监测控制的主要参数有: (1)电压。在有负载的情况下,单电池的输出电压会从开路电压的1V左右降到O.6V左右.知道了每个单电池的电压就可以更近的了解电堆的健康情况。如果哪个单电池显示出不同电压,就表明此电池有问题,或者温度不正常,或者电极被淹。测试单电池或电堆的电压就可以正确操作、测试和设计燃料电池。

电动汽车用动力蓄电池技术要求及试验方法-新能源

《电动客车安全要求》 征求意见稿编制说明 一、工作简况 1、任务来源 为引导和规范我国电动客车产业健康可持续发展,提高电动客车安全技术水平,落实工业和信息化部建设符合电动客车特点的整车、电池、电机、高压线束等系统的安全条件及测试评价标准体系的要求,全国汽车标准化技术委员会于2016年8月启动了本强标的立项和编制工作。 2、主要工作过程 根据有关部门对电动客车安全标准制定工作的要求,全国汽车标准化技术委员会电动车辆分技术委员会组织成立“电动客车安全要求工作组”(以下简称工作组),系统开展电动客车安全要求标准的制定工作。 (1)GB《电动客车安全要求》于2016年底完成立项(计划号20160968-Q-339),2016年12月29日在南充电动汽车整车标准工作组会议上组建了标准制定的核心工作组,启动了强标制定工作,并由起草组代表介绍了标准的背景、编制思路、以及与相关标准的协调性关系。 (2) 2017年2月-3月,基于已开始执行的《电动客车安全技术条件》(工信部装[2016]377号,以下简称《条件》)的工作基础,工作组向电动客车行业主要企业、检测机构等16家单位征求《条件》的实施情况反馈与强制性国标制定建议。 (3) 2017年4月18日,工作组在重庆组织召开标准制定讨论会,会议对《条件》制定情况进行了回顾,对收集到的《条件》执行情况进行了分析讨论。根据讨论结果,针对共性问题形成了专项征求意见表。 (4) 2017年5月-6月,工作组根据重庆会议讨论结果向行业进行强标制定专项意见征求意见。 (5) 2017年6月6日,在株洲召开工作组会议,会议对专项征求意见期间收集的反馈意见进行研究讨论。 (6)2017年6月-10月,工作组依据意见反馈情况和会议讨论结果进行标

基于单片机的蓄电池监测系统设计(互联网+)

1 引言 蓄电池作为一种供电方便、安全可靠的直流电源广泛应用于电力、石化、通讯等领域,为获得较高的电压,常用多节蓄电池串联工作方式。由于单体蓄电池特性的差异,在运行一段时间后,电池组中个别电池性能变差,进而失效,造成电池组整体性能下降,导致整个系统的可靠性降低,且蓄电池是一种化学反映装置,内部的化学反映不易及时发现,因此有必要对蓄电池的运行状态进行实时在线监测。 1.1 本课题研究的意义 铅酸蓄电池(Lead Acid Battery,LAB)作为一种化学电源,自1860年普兰特(Plante)首次发明了实用的蓄电池以来,尤其是近年来随着阀控式铅酸蓄电池(Valve Regulated LAB,VRLAB)的出现,蓄电池以其价格低廉、易于浮充使用、电能效率高、电源独立性好、可移动等优点被广泛应用于发电厂、变电站、邮电通讯系统、汽车、船舶、铁路客车等各个领域。在UPS系统中,蓄电池组作为储能元件,是系统极其重要的组成部分,它的优劣直接关系到整个UPS系统的可靠性,然而蓄电池却是整个UPS系统中平均无故障时间最短的器件。 现在随着国民经济的迅速发展,电力系统和通信系统发挥着越来越重要的作用,由蓄电池组、充电浮充电装置以及馈电支路开关和熔断器等组成的直流系统是发电厂、变电站和通信基站中的一个重要组成部分,其工作状况的好坏直接影响到电力系统和通信系统的安全、可靠和高效运行。而蓄电池组作为直流系统向外供电的唯一设备,为电力系统和通信系统中的信号装置、继电保护装置和控制装置等重要负载提供工作电源,其性能的好坏直接关系到电力系统和通信系统的安全可靠性。因此为了确保用电设备即使在交流电源全部中断的情况下也能正常安全连续运行,必须保证蓄电池组的运行状态性能良好,在发生火电中断时能够有足够的放电容量,所以重视和加强对蓄电池的维护工作,特别是对蓄电池实施实时在线监测意义重大。[1] 1.2 国内外发展状况 随着科学技术的发展,特别是单片机和计算机在智能化控制方面的应用,以及在变电站综合自动化系统等方面研究的深入,关于蓄电池的自动化监测问题也提到日程上来。近几年以来,很多人开始研究蓄电池的自动化监测。蓄电池监测系统中,主要内容

相关主题
文本预览
相关文档 最新文档