桥梁工程的结构组成及作用分析
- 格式:doc
- 大小:33.50 KB
- 文档页数:4
一、桥梁下部结构概述具体来说,桥梁一般是由四个基本组成部分组成:上部结构、下部结构、支座和附属设施,下部结构包括桥墩、桥台和基础。
桥墩和桥台是支承上部结构并和路堤相衔接的建筑物,作用是将其传来荷载传至基础。
桥台通常设置在桥两端,而桥墩通常设置在桥中间部分。
桥台与路堤相衔接,除了上述作用外,还可以抵御路堤土压力,防止路堤填土的塌落。
单孔桥只有两端的桥台,而没有中间桥墩。
桥墩和桥台底部的奠基部分就是基础。
基础承担了所有从桥墩和桥台传来的荷载,承压性和稳定性必须很高。
这些荷载包地震力、船舶撞击墩身等引起的水平荷载等等。
由于基础这部分往往深埋于水下地基中,因此在桥梁施工中是难度较大的一个部分,是确保桥梁安全的关键之一,也是桥梁建设研究的重中之重。
二、桥梁下部结构施工技术要点(一)承台施工1、测量放样基坑开挖前,测量人员应根据计算放样出开挖边线,应考虑边坡坡比、工作宽度、排水设施、开挖深度含超挖约15cm等。
基坑开挖完毕后应及时完善排水设施,同时应视具体情况采取相应措施,保持边坡稳定。
为方便施工,在承台位臵浇筑约15cm厚砼垫层,应严格控制垫层顶面高程。
垫层浇筑完成后,测量人员应用全站仪放出墩台基桩中心点,并边线确定方向。
两个方向确定后,根据承台设计尺寸放样出其底板边线,用墨线弹出,并在底板边线外侧用高标号水泥砂浆找平。
2、钢筋安装(1)钢筋的安装①根据弹好的线检查下层预留搭接钢筋的位置、数量、长度。
②钢筋绑扎顺序,一般情况下先长轴后短轴,由一端向另一端依次进行,操作时按图纸要求划线、铺钢筋、穿箍筋、绑扎、成型。
在多排钢筋之间,必要时可垫入短钢筋头或其他适当的钢垫,但短钢筋头或钢垫的端头不得伸入混凝土保护层。
③受力钢筋采用焊接搭接接头,接头位置相互错开,上层钢筋接头位置在跨中,下层钢筋接头位置尽量在桩顶处;主筋的搭接采用焊接搭接,其搭接长度应满足设计及规范的要求。
预埋墩身钢筋,在达到设计的要求后加以固定,以确保其墩身的预埋钢筋在浇筑完混凝土后位置不变。
桥梁的组成与分类一、桥梁的基本组成桥梁由五个“大部件”与五个“小部件”组成。
所谓五个大部件,是指桥梁承受汽车重量或起其他作用的桥跨上部结构与下部结构,它们是桥梁结构安全性的保证。
1.五个大部件(1)桥跨结构(或称桥孔结构、上部结构)。
桥跨结构是路线遇到障碍(如江河、山谷或其他路线等)中断时,跨越这类障碍的结构物。
(2)支座系统。
支座系统的作用是支承上部结构并传递荷载于桥梁墩台上,应保证上部结构具备在荷载、温度变化或其他因素作用下所预计的位移功能。
(3)桥墩。
桥墩是在河中或岸上支承两侧桥跨上部结构的建筑物。
(4)桥台。
桥台位于桥的两端,一侧与路堤相接,并防止路堤滑塌,为保护桥台和路堤填土,桥台两侧常做一些防护工程;另一侧则支承桥跨上部结构的端部。
(5)墩台基础。
墩台基础是保证墩台安全并将荷载传至地基的结构部分。
基础工程在整个桥梁工程施工中是比较困难的部分,而且常常需要在水中施工,因而遇到的问题也很复杂。
桥跨结构和支座系统是桥跨上部结构,桥墩、桥台和墩台基础为桥跨下部结构。
2.五个小部件五个小部件均为直接与桥梁服务功能有关的部件,过去总称为桥面构造,在桥梁设计中往往得不到足够的重视,因而使桥梁服务质量低下,外观粗糙。
在现代化工业快速发展的基础上,人类的文明水平也极大提高,人们对桥梁行车的舒适性和结构物的观赏要求越来越高,因而桥梁设计中也越来越重视五个小部件。
五个小部件具体如下。
(1)桥面铺装(或称行车道铺装)。
桥面铺装的平整性好、耐磨性好、不翘曲、不渗水是保证行车平稳的关键,特别在钢箱梁上铺设沥青路面的技术要求很高。
(2)排水防水系统。
桥面的排水防水系统应迅速地排除桥面上的积水,并使渗水可能性降至最低限度。
此外,城市桥梁防水系统应保证桥下无滴水和结构上无漏水现象。
(3)栏杆(或称防撞栏杆)。
桥的栏杆既是保证安全的构造措施,又是有利于观赏的装饰件。
(4)伸缩缝。
伸缩缝位于桥跨上部结构之间,或在桥跨上部结构与桥台端墙之间,以满足结构在各种因素作用下的变位需求。
第一章绪论第一节概述1.桥梁组成: 上部结构、下部结构、支座、附属结构。
上部结构是跨越结构,是横越空间的部分(如梁桥指位于支座以上的部分) ,通常包括桥跨结构和桥面构造面构造两大部分。
上部结构的作用是跨越障碍并承受其上的桥面荷载和交通荷载。
桥面构造是指公路硷的行车道铺袋,铁路桥的道砟、枕木、轨道,以及伸缩缝、排水防水系统、人行道、安全带、路缘石、栏杆、照明系统等。
下部结构指桥梁支座以下的支承结构,它包括桥墩、桥台和桥墩台之下的基础,是将上部结构及其承受的交通荷载传入地基的结构物。
桥台设在桥跨结构的两端,它除了支承上部结构之外,还起到桥梁和路堤衔接并防止路堤下滑和坍塌的作用,其两侧做成填土或填石锥体并在表面加以铺砌,用来保证桥台和路堤的良好衔接,并保证桥头路堤的稳定。
桥跨结构与墩7台之间还设置支座,桥上还应设伸缩缝,通航河流还常设防止船只撞击墩台的防撞结构等。
二相关专业术语2.净孔径对于梁式桥是指设计洪水位上两个相邻桥墩台之间的净距。
对于拱式桥是每孔拱跨两个拱脚截面最低点之间的水平距离。
3.总孔径各孔净孔径的总和,它反映桥下宣泄洪水的能力4.计算跨径,轴心到轴心对于设有支座的梁桥,是指桥跨结构相邻两个支座中心之间的距离;对于拱式桥,是指桥跨两相邻拱脚截面重心之间的水平距离。
桥梁结构的力学计算,是以计算跨径为基础的。
5.标准跨径对于梁式桥,公路是指两相邻桥墩中线之间的距离,或桥墩中线与桥台背前缘之间的距离:铁路梁式桥特大桥:多孔跨径总长大于1000米,单孔跨径大于150米大桥:1000米大于多孔跨径总长大于100米 150米,大于等于单孔跨径,大于等于40米桥长梁桥系指桥台挡砟前墙之间的长度:供桥系指拱上侧墙与桥台侧墙之间两伸缩缝外端之间的长度,钢架桥系指钢架顺跨度方向外侧间的长度。
6.四按结构体系分类7.梁式桥:简支梁、连续梁、悬臂梁梁式桥在竖向荷载作用下,支座只产生竖向反力,梁部结构只受弯剪(有时也受扭),不承受轴向力。
精心整理第一篇桥梁的基本组成:1) 上部结构:在线路中断时跨越障碍的主要承重结构,是桥梁支座以上跨越桥孔的总称。
2) 下部结构:包括桥墩、桥台和基础。
3) 支座:设置在墩顶,用于支撑上部结构的传力装置。
4) 附属设施:包括桥面系、伸缩缝、桥梁与路堤衔接处的桥头搭板和锥形护坡。
桥梁的分类:1)2)3) 4)5) 1) 2) 3) 4) 经济5) 美观6) 1) 2) 础的埋置深度等。
3) 横断面设计:主要取决于桥面的宽度和不同桥跨结构横截面的形式。
桥面宽度决定于行车和行人的需要,为保证桥梁的服务水平,桥面宽度应当与所在路线的路基宽度一致。
桥梁设计的程序:1) 预可阶段2) 工可阶段3) 初步设计4) 技术设计5)施工图设计桥梁设计方案比选和确定的步骤:1)明确各种高程的要求2)桥梁分孔和初拟桥型方案草图3)方案初筛4)详绘桥形方案5)编制估算或概算6)方案选定和文件汇总桥梁上的作用1)2)这些1)2)1)2)3)桥面伸缩装置的类型:U形锌铁皮伸缩装置,跨搭钢板式伸缩装置,橡胶伸缩装置等,目前多用橡胶伸缩装置。
桥梁的变形量大小:主要考虑以伸缩装置安装时的温度为基准,由温度变化引起的伸缩量和混凝土徐变、干燥收缩所引起的伸缩量作为基本伸缩量。
第二篇:梁式桥常用的截面形式:1)板桥:是最简单的构造形式,施工方便2)肋梁桥:是在板桥截面的基础上,将梁下缘受拉区混凝土很大程度的挖空,从而显着减轻了结构自重,跨越能力得到提高3)箱型截面:提供了能承受正负弯矩的足够的混凝土受压区,抗弯、抗扭能力强,因而更适用于较大跨径的悬臂式梁桥和连续体系梁桥。
梁式桥按静力体系可分为:简支梁桥,连续梁桥,悬臂梁桥1)简支梁桥a)整体式简支板桥:L≤8m,桥面宽度一般大于跨径,桥面板呈双向受力状态,当桥面板宽较大时,除配置纵向受力钢筋外,还需计算配置板的横向受力钢筋,且自由边需加密。
b)装配式简支板桥:L≤20m,横截面形式主要有实心板和空心板。
1.桥是跨越河流,山谷,线路等障碍,使线路连续的构造物。
2.桥梁由上部结构,下部结构,支座和附属设施组成。
(1)上部结构是线路中断时跨越障碍的主要承重构件,是桥梁支座以上跨越桥孔的总称。
(2)下部结构包括桥墩,桥台和基础。
桥墩和桥台是支承上部结构并将其传来的恒载和车辆等活载再传至基础的结构物。
桥台还有与路基相衔接,并抵御路基土压力,防止路堤填土的坍落。
桥墩和桥台底部的奠基部分,称为基础。
基础承担了从桥墩和桥台传来的全部荷载。
(3)支座是设在墩台顶,用于支承上部结构的传力装置,她不仅要传递很大的荷载,并且要保证上部结构按设计要求能产生一定的变位。
(4)附属设施包括:桥面系,伸缩缝,桥梁与路堤衔接处得桥头搭板和锥形护坡。
3.设计水位:桥梁设计中按规定的设计洪水频率计算所得到的高水位。
通航水位:在各级航道中,能保证航舶正常航行的水位。
4.净跨径:对于设支座的桥梁位相邻两墩,台身顶内缘之间的水平净距,不设支座的桥梁位上下结构相交处内缘间的水平净距。
总跨径:多孔桥梁的各孔经跨距的总和,它反映了桥下宣泄洪水的能力。
计算跨径:对于设支座的桥梁,为相邻支座中心的水平距离,对于不设支座的桥梁,为上下部结构相交面之间的水平距离。
标准跨径:对于梁式桥,板式桥,以两桥墩中心之间桥中心线长度或桥墩中心线与桥台台背前缘线之间桥中心线长度为准。
拱式桥和涵洞以净跨径为准。
桥梁全长:简称桥长,对于有桥台的桥梁为两岸桥台翼墙尾端间的距离,对于无桥台的桥梁为桥面系行车道长度,L。
桥下净空:为满足通航(或行车,行人)的需要和保证桥梁安全而对上不结构底缘以下规定的空间界限。
桥梁建筑高度:上部结构底缘至桥面顶面的垂直距离。
容许建筑高度:线路定线中确定的桥面高程,与通航(或桥下通车,人)净空界限顶部高程只差。
桥面净空:桥梁行车道,人行道上方应保持一定的空间界限特大:L>1000;lk>150。
大:100《L《1000,40《lk《150。
桥梁工程的组成1、桥梁的分类(1)根据桥梁跨径总长L和单孔跨径LK的不同,桥梁可分为特大桥(L >1000m或LK>150m)、大桥(1000m≥L≥100m或150m≥LK≥40m)、中桥(100m>L>30m或40m>LK≥20m)、小桥(30m≥L≥8m或20m>LK≥5m)。
(2)根据桥面在桥跨结构中的位置,桥梁可分为上承式桥、中承式桥和下承式桥。
(3)根据桥梁的结构形式,桥梁可划分为梁式桥、拱式桥、刚架桥、悬索桥和组合式桥。
2、桥梁上部结构桥梁上部结构,也称桥跨结构,一般包括桥面构造、桥梁跨越部分的承载结构和桥梁支座。
(1)桥面构造①桥面铺装的形式有:水泥混凝土或沥青混凝土铺装。
装配式钢筋混凝土桥、预应力混凝土桥通常采用水泥混凝土或沥青混凝土铺装;其厚度为60~80mm,强度不低于行车道板混凝土的强度等级。
防水混凝土铺装。
为了延长桥面铺装层的使用年限,宜在上面铺筑厚20mm的沥青表面作磨耗层。
为使铺装层具有足够的强度和良好的整体性,一般宜在混凝土中铺设直径为4~6mm的钢筋网。
②桥面纵横坡。
桥上纵坡机动车道不宜大于4%,非机动车道不宜大于2.5%;桥头引道机动车道纵坡不宜大于5%。
高架桥桥面应设不小于0.3%的纵坡。
桥面的横坡,一般采用1.5%~3.0%。
③排水管道应采用坚固的、抗腐蚀性能良好的材料制成,管道直径不宜小于150mm。
排水管道的间距可根据桥梁汇水面积和桥面纵坡大小确定:当纵坡大于2%桥面设置排水管的截面积不宜小于60mm2/㎡;当纵坡小于1%桥面设置排水管的截面积不宜小于100mm2/㎡。
当中桥、小桥的桥面设有不小于3%纵坡时,桥上可不设排水口,但应在桥头引道两侧设置雨水口。
桥面防水层设置在桥面铺装层下面,它将透过铺装层渗下来的雨水汇集到排水设施排出。
圬工桥台台身背墙、拱桥拱圈顶面及侧墙背面应设置防水层。
④伸缩缝为满足桥面变形的要求,通常在两梁端之间、梁端与桥台之间或桥梁的铰接位置上设置伸缩缝。
1.桥跨结构是在线路中断时跨越障碍的主要承重结构。
2.桥墩和桥台是支承桥跨结构并将恒载和车辆等活载传至地基的建筑物。
3.支座:一座桥梁中在桥跨结构与桥墩或桥台的支承处所设置的传力装置,称为支座,它不仅要传递很大的荷载,并且要保证桥跨结构能产生一定的变位。
桥墩、桥台、支座传递方式:将上部结构的荷载传递到基础中去,挡住路堤的土,保证桥梁的温差伸缩。
4.净跨径:对于梁式桥是指设计洪水位上相邻两个桥墩(或桥台)之问的净距;对于拱式桥是指每孔拱跨两个拱脚截面最低点之间的水平距离。
5.计算跨径:对于具有支座的桥梁,是指桥跨结构相邻两个支座中心之间的距离;对于拱式桥,指两相邻拱脚截而形心点之间的水平距离。
6.桥梁全长:桥梁两端两个桥台的侧墙或八字墙后端点之间的距离7.桥梁高度:是指桥面与低水位之间的高差或为桥而lj桥下线路路面之间的距离。
8.总跨径:指多孔桥梁中各孔净跨径的总和,它反映了桥下宣泄洪水的能力。
9.桥下净空高度:是设计洪水位或计算通航水位至桥跨结构最下缘之间的距离。
10.建筑高度:是桥上行车路面(或轨顶)高程至桥跨结构最下缘之间的距离。
11.净矢高:是从拱顶截而下缘至相邻两拱脚截面下缘最低点之连线的垂直距离。
12.计算矢高:是从拱项截面形心至相邻两拱脚截面形心之连线的垂直距离。
13.矢跨比:是拱桥中拱圈(或拱肋)的计算矢高f与计算跨径l之比(仂),也称拱矢度。
14.标准跨径:梁式桥,指两相邻桥墩中线之间的距离,或墩中线至桥台台背前缘之间的距离;对拱桥式为净跨径。
15.结构工程上的受力构件,总离不开拉、压和弯三种主要受力方式。
由基本构件所组成的各种结构物,在力学上也归结为梁式、拱式和悬吊式三种基本体系以及它们之间的各种组合。
16.1)按结构体系划分:梁式桥——主梁受弯;拱式桥——主拱受压;刚架桥——构件受弯压;悬索桥——缆索受拉;斜拉桥——缆索受拉;组合体系桥梁——几种受力的组合2)按桥梁用途来划分:公路桥、铁路桥、公路铁路两用桥、农桥、人行桥、运水桥(渡槽)、其它专用桥梁(如通过管路、电缆等)3)按材料来划分:木桥、钢桥、圬工桥(包括砖、石、混凝土桥)、钢筋混凝土桥、预应力钢筋混凝土桥、钢桥和木桥等4)按跨径大小分类:特大桥、大桥、中桥、小桥5)按跨越障碍的性质,可分为跨河桥、跨线桥(立体交叉)、高架桥和栈桥17.桥梁涵洞分类:特大桥、大桥、中桥、小桥、涵洞;按上部结构的行车道位置,分为上承式桥、下承式桥和中承式桥。
桥梁的结构组成及作用分析2013年10月20日王平洪一、桥梁结构组成1.1桥梁结构由下部结构和上部结构组成。
1.2桥梁下部结构包括基础、桥墩和桥台.1.3桥梁上部结构是跨越桥孔的结构,包括桥梁的桥面系、桥道结构、承重结构(主梁、桁架和拱圈)、连接系、支座等。
二、桥梁基础的形式及适用条件2.1桥梁基础形式桥梁基础的形式主要包括:扩大基础、桩基础、管柱、沉井、地下连续墙。
2.2受力作用特点及适用条件2.2.1扩大基础山地基反力承担全部上部荷载,将上部荷载通过基础分散至基础底面,使之满足地基承载力和变形的要求。
适用于地基承载力较好的各类土层,根据土质情况分别采用铁镐、十字镐、挖掘机、爆破等设备与方法开挖2.2.2桩基础将作用于桩顶以上的结构物传来的荷载传到较深的地基持力层中去。
当荷载较大或桩数量较多时需在桩顶设承台将所有基桩联接成一个整体共同承担上部结构的荷载。
桩基础包括:沉桩、钻孔灌注桩、挖孔灌注桩。
2.2.2.1 沉桩1)锤击沉桩法一般适用于松散、中密砂土、黏性土。
2)振动沉桩法一般适用于砂土,硬塑及软塑的黏性土和中密及较松的碎石土。
3)射水沉桩法适用在密实砂土,碎石土的土层中。
4)适用于在黏性土、砂土、碎石土中埋置大量的大直径圆桩。
2.2.2.2钻孔灌注桩适用于黏性土、砂土、砾卵石、碎石、岩石等各类土层。
2.2.2.3挖孔灌注桩适用于无地下水或少量地下水,且较密实的土层或风化岩层。
如空气污染物超标,必须采取通风措施2.2.3管柱它是一种深基础,埋入土层一定深度,柱底尽可能落在坚实土层或锚固于岩层中,作用在承台的全部荷载,通过管柱传递到深层的密实土或岩层上。
适用于岩层、紧密黏土等各类紧密土质的基底,并能穿过洛洞、孤石支承在紧密的土层或新鲜岩层上,不适用于有严重地质缺陷的地区,如断层挤压破碎带或严重的松散区域2.2.4沉井沉井是桥梁墩台常用的一种深基础型式,有较大的承载面积,可以穿过不同深度覆盖层,将基底放置在承载力较大的土层或岩面上,能承受较大的上部荷载。
桥梁的结构组成及作用分析
2013年10月20日王平洪
一、桥梁结构组成
1.1 桥梁结构由下部结构和上部结构组成。
1.2 桥梁下部结构包括基础、桥墩和桥台.
1.3 桥梁上部结构是跨越桥孔的结构,包括桥梁的桥面系、桥道结构、承重结构(主梁、桁架和拱圈)、连接系、支座等。
二、桥梁基础的形式及适用条件
2.1 桥梁基础形式
桥梁基础的形式主要包括:扩大基础、桩基础、管柱、沉井、地下连续墙。
2.2 受力作用特点及适用条件
2.2.1 扩大基础
由地基反力承担全部上部荷载,将上部荷载通过基础分散至基础底面,使之满足地基承载力和变形的要求。
适用于地基承载力较好的各类土层,根据土质情况分别采用铁镐、十字镐、挖掘机、爆破等设备与方法开挖
2.2.2 桩基础
将作用于桩顶以上的结构物传来的荷载传到较深的地基持力层中去。
当荷载较大或桩数量较多时需在桩顶设承台将所有基桩联接成一个整体共同承担上部结构的荷载。
桩基础包括:沉桩、钻孔灌注桩、挖孔灌注桩。
2.2.2.1沉桩
1)锤击沉桩法一般适用于松散、中密砂土、黏性土。
2)振动沉桩法一般适用于砂土,硬塑及软塑的黏性土和中密及较松的碎石土。
3)射水沉桩法适用在密实砂土,碎石土的土层中。
4)适用于在黏性土、砂土、碎石土中埋置大量的大直径圆桩。
2.2.2.2钻孔灌注桩
适用于黏性土、砂土、砾卵石、碎石、岩石等各类土层。
2.2.2.3挖孔灌注桩
适用于无地下水或少量地下水,且较密实的土层或风化岩层。
如空气污染物超标,必须采取通风措施
2.2.3 管柱
它是一种深基础,埋入土层一定深度,柱底尽可能落在坚实土层或锚固于岩层中,作用在承台的全部荷载,通过管柱传递到深层的密实土或岩层上。
适用于岩层、紧密黏土等各类紧密土质的基底,并能穿过溶洞、孤石支承在紧密的土层或新鲜岩层上,不适用于有严重地质缺陷的地区,如断层挤压破碎带或严重的松散区域
2.2.4 沉井
沉井是桥梁墩台常用的一种深基础型式,有较大的承载面积,可以穿过不同深度覆盖层,将基底放置在承载力较大的土层或岩面上,能承受较大的上部荷载。
适用于竖向和横向承载力大的深基础
2.2.5 地下连续墙
地下挡土墙墙体刚度大,主要承受竖向和侧向荷载,通常既要作为永久性结构的一部分,又要作为地下工程施工过程中的防护结构。
适用于各种用途,通常可作为基坑开挖时防渗、挡土,或挡水围堰,或邻近建筑物基础的支护,或直接作为承受上部荷载的基础结构。
及适用于除岩溶和地下承压水很高处的其他各类土层中施工
三、桥梁墩、台结构的受力特点分析
桥梁墩台承担着桥梁上部结构所产生的荷载,并将荷载有效地传递给地基基础,起着“承上启下”的作用。
桥墩为多跨桥梁中的中间支承结构物,除承受上部结构产生竖向力、水平力和弯矩外,还承受风力、流水压力及可能发生的地震力、冰压力、船只和漂流物的撞击力。
桥台设置在桥梁两端,除了支承桥跨结构外,又是衔接两岸接线路堤的构筑物;它既要能挡土护岸,又能承受台背填土及填土上车辆荷载所产生的附加土侧压力。
桥梁墩台不仅自身应有足够的强度、刚度和稳定性,而且对地基的承载能力、沉降量、地基与基础之间的摩阻力等也都提出一定的要求,避免在上述荷载作用下产生危害桥梁整体结构的水平、竖向位移和转角位移。
桥梁墩台受力计算时的荷载及其组合应根据可能出现的各种荷载情况进行最不利的荷载组合。
四、桥梁上部结构分类和受力特点分析
4.1 斜交板桥
4.1.1在均布荷载作用下,当桥轴向的跨长相同时,斜板桥的最大跨内弯矩比正桥要小。
4.1.2在均布荷载作用下,当桥轴向的跨长相同时,斜板桥的跨中横向弯矩比正桥要小
4.2 简支梁桥
4.2.1装配式钢筋混凝土简支T梁
梁肋与翼板(桥面板)结合在一起作为承重结构,既充分利用扩展的桥面板的抗压能力,又有效地发挥了梁肋下部受力钢筋的抗拉作用。
4.2.2预应力混凝土简支T梁
核心距越大则抗力效应增加,为提高核心距,在构造上可采用大翼缘、薄肋板、宽矮马蹄的结构形式。
配合梁内正弯矩的分布,防止出现拉应力,纵向预应力筋须在梁端弯起或中间截断张拉。
但弯起可增强支点附近的抗剪能力
4.3 连续体系桥梁
4.3.1由于支点存在负弯矩,使跨中正弯矩显著减少,可以减少跨内主梁的高度,提高跨径,当加大支点截面附近梁高形成变截面时,还可进一步降低跨中弯矩;
4.3.2由于是超静定结构,产生附加内力的因素包括预应力、混凝土的收缩徐变、墩台不均匀沉降、截面温度梯度变化等;
4.3.3配筋要考虑正负两种弯矩的要求,顶推法施工要考虑截面正负弯矩的交替变化。
4.4 斜拉桥
4.4.1斜拉索相当于增大了偏心距的体外索,充分发挥抵抗负弯矩的能力,节约钢材;
4.4.2斜拉索的水平分力相当于混凝土的预压力;
4.4.3主梁多点弹性支承,高跨比小,自重轻,提高跨径。
4.5 悬索桥
主缆为主要承重结构,其巨大的拉力需要牢固的地锚承受,对于连续吊桥,中间地锚的两侧拉索水平推力基本平衡,主要利用自重承受向上的竖向力
4.6 拱桥
拱桥的拱圈是桥跨结构的主要承载部分,在竖直荷载作用下,拱端支撑处不仅有竖向反力,还有水平推力,这样拱的弯距比相同跨径的梁的弯矩小得多,而使整个拱主要承受压力
五、桥梁工程模板、支架和拱架的受力特点及施工要求
5.1 模板
5.1.1模板与钢筋安装工作应配合进行,妨碍绑扎钢筋的模板应待钢筋安装完毕后安设。
模板不应与脚手架连接(模板与脚手架整体设计时除外),避免引起模板变形。
5.1.2安装侧模板时,应防止模板移位和凸出。
基础侧模可在模板外设立支撑固定,墩、台、梁的侧模可设拉杆固定。
浇筑在混凝土中的拉杆,应按拉杆拔出或不拔出的要求,采取相应的措施。
对小型结构物,可使用金属线代替拉杆。
5.1.3模板安装完毕后,应对其平面位置、顶部标高、节点联系及纵横向稳定性进行检查,签认后方可浇筑混凝土。
5.1.4模板在安装过程中,必须设置防倾覆设施。
5.1.5当结构自重和汽车荷载(不计冲击力)产生的向下挠度超过跨径的1/1600时,钢筋混凝土梁、板的底模板应设预拱度,预拱度值应等于结构自重和1/2汽车荷载(不计冲击力)所产生的挠度。
纵向预拱度可做成抛物线或圆曲线。
5.1.6后张法预应力梁、板,应注意预应力、自重和汽车荷载等综合作用下所产生的上拱或下挠,应设置适当的预挠或预拱。
5.1.7当所有和模板有关的工作做完,待浇混凝土构件中所有预埋件亦安装完毕,应经监理工程师检查认可后,才能浇筑混凝土
5.2 支架和拱架
5.2.1支架和拱架宜采用标准化、系列化、通用化的构件拼装。
无论使用何种材料的支架和拱架,均应进行施工图设计,并验算其强度和稳定性。
5.2.2制作木支架、木拱架时,长杆件接头应尽量减少,两相邻立柱的连接接头应尽量分设在不同的水平面上。
主要压力杆的纵向连接,应使用对接法,并用木夹板或铁夹板夹紧。
次要构件的连接可用搭接法。
5.2.3安装拱架前,对拱架立柱和拱架支承面应详细检查,准确调整拱架支承面和顶部标高,并复测跨度,确认无误后方可进行安装。
各片拱架在同一节点处的标高应尽量一致,以便于拼装平联杆件。
在风力较大的地区,应设置风缆。
5.2.4支架和拱架应稳定、坚固,应能抵抗在施工过程中有可能发生的偶然冲撞和振动。
5.2.5支架或拱架安装完毕后,应对其平面位置、顶部标高、节点联接及纵、横向稳定性进行全面检查,符合要求后,方可进行下一工序。
5.2.6在浇筑混凝土及砌筑拱圈过程中,承包人应随时测量和记录支架和拱架的变形及沉降量。
5.2.7现浇混凝土的梁(板)结构,在支架架设后,应按图纸要求或监理工程师指示,对支架进行预压,加在支架上的预压荷载应不小于梁(板)自重。
结束语,桥梁工程中的模板及支架拱架施工是施工过程中的关键工序,是桥梁建设成败的关键。
在桥梁工程施工中起决定性作用。