电池管理(BMS)系统整体设计(上)
- 格式:ppt
- 大小:621.50 KB
- 文档页数:15
BMS系统方案范文BMS系统(电池管理系统)是一种电子系统,用于对电池进行监测、控制和保护。
随着电动车、储能系统和可再生能源的快速发展,BMS系统变得越来越重要。
BMS系统能够大大提高电池组的安全性、寿命和性能,同时也能优化能源利用效率。
BMS系统通常由硬件和软件两部分组成。
硬件部分包括传感器、电压和电流测量器、温度传感器、继电器和保险丝等,用于收集电池组的各种参数数据。
软件部分则负责监控和控制电池组,通过预测和响应电池组的状态变化来保护电池,并提供相关数据用于分析和优化。
BMS系统的主要功能包括电池参数监测、电池SOC(State of Charge)、SOH(State of Health)和SOP(State of Power)估计、电池均衡控制、电池温度控制和保护、通信和故障诊断等。
其中,电池参数监测功能包括对电池组的电压、电流、温度等各项参数进行实时监测和记录,以便及时发现电池组的异常状况。
SOC和SOH估计功能通过算法对电池组的放电曲线进行分析,估计电池的剩余电量和健康状况,以便及时提醒用户充电或维护电池。
电池均衡控制功能通过控制电池组内部的均衡器,使各个单体电池之间的电荷均衡,以延长电池的使用寿命和提高能源利用效率。
电池温度控制和保护功能通过监测电池组的温度和控制冷却机制,保持电池在安全和稳定的温度范围内工作,避免过热或过冷对电池造成伤害。
通信功能通过与其他车辆或系统进行数据交换和共享,实现电池组的联网和远程监控。
故障诊断功能通过分析电池组的参数和状态变化,判断电池组的故障类型和位置,提供有效的故障排除和维护方案。
BMS系统的选择应该根据具体的应用需求和电池组的特性来进行。
不同的电池类型、容量和工作环境需要不同的BMS系统。
一般来说,BMS系统应具备高精度的数据采集和处理能力,以保证对电池组的准确监测和控制。
同时,BMS系统应具备较高的安全性和可靠性,以保证电池组在各种工作条件下的安全和稳定运行。
摘要BMS电池管理系统主要由一个主控单元(BMU)和多个单体采集单元(BVT)组成的集散式系统结构。
BMU单元主要是收集电池的相关数据,对电池的数据进行集中的分析和处理,判断当前电池的故障,进行电池系统的预警和报警。
同时BMU 还完成电池的电池电压、母线电压计算、电池电流采样计算、绝缘监测、高压通断控制及电池热管理系统的控制,并根据电池的电流、电压等相关数据进行电池的SOC估算。
BVT单元主要完成单体电池的电压和温度数据采集,并实时和BMU 进行通讯,把采集到得电压、温度数据及电池状态发送个BMU单元。
在车辆运行过程中,电池管理系统和整车控制器或电机控制器进行CAN通讯,电池管理系统实时提供电池电压、充放电电流、电池SOC以及整车控制器需要的其他数据,当电池管理系统或电池系统出现报警时,电池管理系统把报警发送给整车控制器,同时根据报警级别进行限功率处理或请求断开接触器,整车控制器根据报警级别采取相应的控制策略。
关键词:主控单元;多个单体采集单元;整车控制器目录绪论............................................. 错误!未定义书签。
一、 BMS电池设计背景 (2)二、性能特点(一)电池管理系统主要功能 ......................... 错误!未定义书签。
(二) BMS系统的两大单元........................... 错误!未定义书签。
(三)主要参数......................................................... (4)三、BMS电池总体设计方案 (5)(一)BMS电池的原理 (5)(二)BMS电池的元件 (7)四、BMS控制功率表(一)回馈功率表 (17)(二)放电功率表 (17)五、使用注意事项(一)充电控制...................................................................... .. (19)(二)加热控制...................................................................... .. (20)(三)bms电池控制加热流程...................................................................... (21)(四)附件bms原理图................................................................................. . (6)结论 (22)参考文献 (24)致 (25)绪论BMS是BATTERY MANAGEMENT SYSTEM的第一个字母简称组合,称之谓电池管理系统。
电动汽车动力电池管理系统(BMS)设计摘要:本文主要从硬件系统设计、软件系统设计两个方面,对电动汽车中动力电池的内部管理系统(BMS)综合设计,进行了深度的分析与研究,以通过不断地实践研究,积极探索出电动汽车中动力电池的内部管理系统(BMS)最具高效性的综合设计方案,以充分提升电动汽车中动力电池的内部管理系统(BMS)的设计水准,确保电动汽车中动力电池的内部管理系统(BMS)各项功能能够满足于电动汽车实际的应用需求,为我国电动汽车行业的长期发展奠定基础。
关键词:电动汽车;动力电池;管理系统(BMS);设计前言:电动汽车(battery electric vehicle;BEV),主要是指以车载类电源为基本动力,利用电机来驱动车轮达到行驶目地,符合于我国安全法规与交管各项规定的车辆。
基于电动汽车有着环保性特征,所以,其在国内的发展前景相对较为良好。
但是,基于国内电动汽车相关技术还处于初步探索阶段,各项技术还不够成熟,若想实现突破性发展还需作出更多的努力。
电动汽车,它与传统汽车最大的不同之处就在于电动汽车内部包含着一种动力的电池。
在一定程度上,通过该动力电池可实现电动汽车节能化、环保化的行使。
那么,为了能够更好地助推我国电动汽车行业的发展,就需从其内部的动力电池入手,对其所在的管理系统(BMS),进行系统化的分析与研究。
从而能够设计出更具有功能特性的动力电池内部管理系统(BMS),为电动汽车提供强大动力电池内部管理系统支持,进一步推动我国电动汽车行业的快速发展,让其可稳步向着新的发展征程迈进。
1、硬件系统设计基于电池组主要是由多节电池的单体并联与串联而成,实现对所有电池单体实时化监控。
因而,如图1所示,电池内部管理系统主要应用了主从结构,以实现灵活性通讯,提升通讯实际速度。
从板均需具有电池单体的温度与电压检测、CAN总线的通讯等各项功能。
图1 BMS系统框图示图1.1 IMCU系统处理器系统处理器主要选用的是Freescale -9S12DT64型号的MCU系统处理器,该型号MCU系统处理器为16位系统的单片机,主要是由CAN系统的总线模块、PWM的调节器(1个)AD的转换器(2个)定时器(1个)外部串口(1个)内部串口(2个)。
摘要随着工业发展和社会需求的增加,汽车在社会进步和经济发展中扮演着重要的角色。
汽车工业的迅速发展,推动了机械、能源、橡胶、钢铁等重要产业的发展,但同时也日益面临着环境污染、能源短缺的严重问题。
纯电动汽车以其零排放,噪声低等优点越来越受到世界各国的重视,被称作绿色环保车。
作为发展电动车的关键技术之一的电池管理系统(BMS),是纯电动车产业化的关键。
车载网络数据采集系统就是这样一个电池管理系统,可以直接检测及管理电动汽车的储能电池运行的全过程,实现对车载多级串联锂电池、电池温度、车速等数据的监测、采集和分析。
本论文是基于CAN总线的车载网络数据采集系统选用STM32F103VB作为系统的核心芯片,通过芯片自带的12位ADC对端口电压分别进行采集和监测,并通过CAN网络将采集到的数据发送到汽车仪表盘,为车辆状态量实时监测提供数据来源。
关键词:纯电动车,电池管理系统,电池状态,STM32F103VBAbstractWith industrial development and social demand, vehicle of social progress and economic development play important roles. Although the rapid development of automobile industry promote the machinery, energy, rubber, steel and other important industries, it is increasingly faced with environmental pollution, energy shortages and other serious problems.With the merit of zero-emission, and low noise, the pure electric vehicles which is called green cars has got more and more attention around the world. As one of the key technologies for the development of electric vehicles ,battery management system (BMS) is the point of the pure electric vehicle industry. Vehicle network data acquisition system is a battery management system that can directly detect and manage the storage battery electric vehicles to run the whole process, to achieve the data monitoring, collection and analysis of the on-board multi-level series of lithium battery, battery temperature, speed, and otherThe thesis is based on the vehicle CAN bus data acquisition system to chose STM32F103VB network as the core of the system ADC which comes from the chip collect and monitor the port voltages and sent the collected data to the car dashboard through the CAN network , which offer real-time monitoring of vehicle status amount of data sources.Key words:Pure electric cars, Battery Management Systems, The battery state, STM32F103VB摘要 (1)Abstract (2)第一章前言 (5)本课题研究的目的和意义 (5)车载网络数据采集系统的国内外研究现状 (6)本论文研究的主要工作 (7)第二章车载网络数据采集系统设计的原理 (9)车载网络数据采集系统的功能概述 (9)车载网络数据采集系统的结构 (10)基于STM32的车在网络数据采集系统设计控制框图 (10)信号的采集与处理 (11)车载系统的网络通讯 (12)CAN网络的基本概念 (12)CAN网络在车载数据采集系统中的应用 (13)系统主要性能指标 (14)系统预期误差的评估 (15)第三章基于STM32F103VB数据采集系统的硬件设计 (16)STM32F103VB简介 (16)STM32F103VB电源模块的设计 (18)电源电路的设计 (18)STM32启动模式电路选择设计 (18)STM32F103VB外围接口电路的设计 (19)模数转换器的电路设计 (19)测温电路设计 (20)复位电路的电路设计 (21)STM32F103B通讯电路的设计 (21)CAN通讯接口电路设计 (21)JTAG程序调试接口电路设计 (22)RS485通讯电路设计 (23)第四章基于STM32数据采集系统的软件设计 (25)Keil uVision3平台简介 (25)基于STM32的车在网络数据采集系统的程序设计 (25)数据采集模块程序设计 (26)LCD显示模块程序设计 (27)数据存储模块程序设计 (27)CAN数据通讯模块程序设计 (28)RS485通讯模块程序设计 (28)第五章误差分析与处理 (29)误差概述 (29)误差的主要来源 (29)误差的处理 (29)误差分析 (30)测控系统的非线性 (30)系统工作环境的噪声 (31)系统的稳定性 (31)误差处理 (32)实测电压数据分析 (32)整机PCB板设计 (33)第六章总结与展望 (35)总结 (35)展望 (35)参考文献 (36)致谢 (36)第一章前言本课题研究的目的和意义随着世界工业经济的不断发展和人类需求的不断增长,对全球气候造成严重的影响,二氧化碳排放量增大,臭氧层遭受到破坏等。
电池管理系统整体设计(一)引言概述电池管理系统(BMS)是一种用于监控、控制和保护电池组的关键系统。
其设计对于电池的性能和寿命至关重要。
本文将介绍电池管理系统整体设计的第一部分,包括系统架构、功能需求和硬件设计。
一、系统架构1.1 主控单元:负责整个电池管理系统的控制和协调工作。
1.2 通信模块:用于与外部系统进行数据交换和通信。
1.3 传感器模块:监测电池组的各种参数,如温度、电压、电流等。
1.4 保护模块:负责电池组的过流、过压、过温等保护功能。
1.5 显示模块:提供实时的电池信息展示和用户操作界面。
二、功能需求2.1 监测功能:实时监测电池组的各项参数,包括电流、电压、SOC(State of Charge)等。
2.2 控制功能:根据监测数据进行充放电控制,包括电池组的容量均衡和电池的保护控制。
2.3 通信功能:与外部系统进行数据交换和通信,以实现远程监控和控制。
2.4 故障诊断功能:对电池组进行故障诊断,及时发现和处理故障。
2.5 数据存储与分析功能:实时记录和存储电池组的历史数据,并进行数据分析和报告生成。
三、硬件设计3.1 主控单元:选择适当的处理器和存储器,设计相应的电路板布局。
3.2 通信模块:选择合适的通信模块,并与主控单元进行连接。
3.3 传感器模块:选择适当的传感器,并设计相应的电路板布局。
3.4 保护模块:选择合适的保护元件,并与主控单元进行连接。
3.5 显示模块:选择合适的显示器和按键,并设计相应的电路板布局。
总结通过引言概述,本文介绍了电池管理系统整体设计的第一部分,包括系统架构、功能需求和硬件设计。
对于电池管理系统的设计来说,合理的系统架构、满足用户需求的功能设计和合适的硬件选型都是至关重要的。
在下一部分中,我们将继续详细讨论电池管理系统的软件设计和性能优化。
储能应用中的BMS系统设计概要:设计了一款适用于储能应用中的电池管理系统。
该系统为3层结构,采用MC33771作为模拟量采样芯片,实现了电池的电压、电流、温度等数据的获取,并在此基础上完成了其他需求功能。
以储能系统中广泛使用的钛酸锂电池为实际测试对象,测试结果表明所设计的BMS系统能够实现对电池各项信息的准确采样,其中电压测量误差不超过2mV,电流采样误差在0.1%以内,并可有效完成各项设定功能,满足储能应用需求。
随着传统能源的日益减少,新能源发电技术凭借环保无污染的优点越来越受到人们的关注,然而新能源发电具有波动性和不确定性,会产生严重的谐波干扰,甚至导致电网崩溃。
为了解决这些问题,一般采用锂电池储能电站的方式降低功率波动对电网造成的危害。
储能电站一般由成千上万的单体电池串并联而成,为了确保这些单体电池能够安全有效运行,需要采用专门的电池管理系统(BMS)对电池进行监控和管理。
现有的BMS系统主要是针对电动汽车设计的,与电动汽车相比,储能系统中含有的串并联单体电池数量更多,导致储能系统结构更加复杂,对BMS系统的处理能力要求也大大提高,因此为了更好地满足储能系统的实际需求,需要对储能中BMS系统的功能和结构进行分析,并在此基础上设计一款适用于储能应用的BMS系统。
为此,基于对储能中BMS系统功能需求的分析及各主流电池管理芯片参数的对比,选择NXP公司生产的MC33771作为BMS系统中的模拟量采样芯片,并设计了3层系统结构,实现电池电压、温度、电流等模拟量的采样,并完成系统其他功能设计。
以钛酸锂电池组为测试对象,结果表明,所设计的BMS系统能够准确采样各种信息并以此为基础实现其他设定的功能,能够满足储能系统的使用需求。
1储能应用中的BMS结构对比目前常见的几种主流电池模拟量采样芯片,MC33771具有更多的电压采样通道以及宽温范围内最高的测量精度,并且采用菊花链通信的方式省去了昂贵的数字隔离器,因此采用MC33771作为模拟量采样芯片。
电池管理系统(BMS)解决方案
背景
电池管理系统(Battery Management System,BMS),通常被业内称为新能源汽车电池的“大脑”,与动力电池组、整车控制系统共同构成新能源汽车的三大核心技术。
动力锂离子电池的高能量密度特性使其成为新能源车辆的主要动力源,但由于生产工艺、使用环境的差异导致电池组的不一致性在使用过程中逐渐扩大,可能出现过充、过放和局部过热的危险,严重影响电池组的使用寿命和安全.BMS作为保护动力锂离子电池使用安全的控制系统,时刻监控电池的使用状态,通过必要措施缓解电池组的不一致性,为新能源车辆的使用安全提供保障。
产品功能
针对新能源车辆高压电池组的电池管理系统采用分布式结构,拓扑结构如下图所示:
图一高压电池管理系统拓扑结构
BMU:BMS 总控制器 , 电池组状态计算、充放电控制等
BCU:BMS 从控制器,电池单体电压、温度采集 ,主动/ 被动均衡电路
IVU:电池组电流、总电压采集
绝缘模块:电池组绝缘电阻采集 , 可以与 IVU集成
同时积极开展48V BSG 系统的BMS 的研究。
48V BMS 系统的拓扑结构如下图所示,BMS 控制器负责电池单体电压、温度采集,电池组间的主、被动均衡,电池组参数计算以及充放电控制。
图二电池管理系统拓扑结构产品参数
高压电池管理系统BMU 参数
高压电池管理系统BCU 参数
48V BSG 系统BMS 参数
成功案例
•上海某新能源公司 48V BSG系统 BMS 开发项目•某新能源公司 BMS 控制系统开发
•天津力神电池本体模型及 SOC算法开发
•国内某研究所 600V铅酸电池组管理系统开发。
电池及管理系统设计技术规范编制:校对:审核:批准:有限公司2015年9月目录前言 (3)一、锂离子电池选型 (4)1、范围 (4)2、规范性引用文件 (4)3、术语和定义 (4)4、符号 (4)5、动力蓄电池循环寿命要求 (5)6、动力蓄电池安全要求 (5)7、动力蓄电池电性能要求 (6)8、电池组匹配 (8)9、电池组使用其他注意事项 (9)二、电池管理系统选型 (10)1、术语定义 (10)2、要求 (10)3、试验方法 (12)4、标志 (13)前言综述电动车的的电池就好比汽车油箱里的汽油。
它是由小块单元电池通过串并联方式级联后,通过BMS的管理,将电能传递到高压配电盒,然后分配给驱动电机和各个高压模块(DC/DC、空调压缩机、PTC等)。
电池管理系统(BMS)采用的是一个主控制器(BMU)和多个下一级电池采集模块(LECU)组成模块化动力电池管理系统,是一种具有有效节省电池电能、提高车辆安全性、实现充放电均衡和降低运行成本功能的电池管理系统模式。
高压控制系统的预充电及正负极高压继电器均由BMS控制,设置了充电控制继电器,增加高压充电时的安全性。
动力电池容量和正极材料的选择电池容量的确定,是根据车型电机的功率、运行时的额定电压、电流。
选择出电池包的电压、串并联的形式。
由电机额定的电压可以选择出需要串联电池的个数,由电机运行时的额定电流可以选择出需要并联电池的个数。
具体计算如下:由整车设计的匹配参数,确定好电机的功率和扭矩后,就可以计算出,动力电池包的串并联电池的数目,串联电池的电压U等于电机额定电压,就可推算出串联的电池个数N串=U/3.7(对于三元锂电的锂电池),对于最少并联的电池个数N并=电机运行工况的平均电流/单元电池的容量*续航里程/工况的平均时速。
电池的选择,则要考虑电池正极材料的类型,总的原则是12米以上的客车主要以磷酸铁锂电池为主,6米小型客车和乘用车的主要是三元锂电池为主。
电池管理系统(BMS)的功能性设计董云鹏(江西优特汽车技术有限公司,江西 上饶 334100)摘 要:随着传统汽车的普及,石油能源的需求大幅度增加,加剧了石油能源紧缺的危机。
随之而来的噪音、废气污染等问题愈演愈烈。
在此环境下,新能源汽车行业快速发展,锂离子动力电池系统作为新型能源,被大量运用在新能源汽车上。
电池管理系统(BMS)是锂离子动力电池系统的主要部分,在系统中起着至关重要的作用。
文章主要对电池管理系统(BMS)的功能、控制策略等内容进行阐述。
关键词:BMS;电池管理系统;功能性设计中图分类号:TM912 文献标志码:A 文章编号:1672-3872(2020)06-0134-02——————————————作者简介: 董云鹏(1988—),男,江西赣州人,本科,研究方向:新能源汽车的动力电池和BMS 的设计。
随着经济的发展,汽车数量大幅度增加,噪声污染和废气污染严重,加剧了石油能源紧缺的危机[1]。
在此环境下,新能源汽车应运而生,并快速发展。
锂离子动力电池系统作为新能源汽车的主要新型能源之一,在能量密度和BMS 等方面不断取得关键性的技术突破。
BMS 是锂离子动力电池系统的主要部分,在系统中起着至关重要的作用。
BMS 最核心的功能就是采集动力电池系统的电压、温度、电流、绝缘电阻、高压互锁状态等数据,然后分析数据状态和电池的使用环境,对电池系统充放电过程进行监测和控制,从而在保证电池安全的前提下最大限度地利用动力电池系统储存的能量[2]。
按照功能,可将BMS 分为电池数据采集、电池状态分析、电池安全保护、电池系统能量管理控制、数据通信和储存、故障诊断和管理等部分[3]。
1 电池数据采集电池数据采集包括电压、温度、电流、绝缘电阻、高压互锁状态等数据的采集,能为BMS 提供电池系统的实时数据,为后续的电池系统的状态分析、控制和保护提供依据。
电压采集有每串电芯的电压、电池系统内部总电压Vbat 和电池系统外部总电压Vlink。
浅析锂电池保护板(BMS)系统设计思路(⼀)什么是BMS? ⾸先必须弄懂⼀个定义,什么是BMS? BMS其实就是BATTERY MANAGEMENT SYSTEM的缩写,中⽂名字叫电池管理系统,顾名思义,是专门⽤来进⾏锂电池运⾏管理的模块,对象是锂电池。
对于⼀般的终端⽤户⽽⾔,锂电池保护板其实并不存在,或者说,他们并不知道正在⾃⼰使⽤的产品中还有这么⼀个东西。
⽐如说电动车,100%的⽤户都知道电动车上⾯有电池,因为电池提供了能源,但我敢保证,最多有1%的⽤户知道还有锂电池保护板这个东西的存在。
BMS的存在感之所以如此低,完全是因为它并不能和⽤户产⽣直接的交流,也并不能与⽤户发⽣频繁的交互,就算是偶尔产⽣了⼀些数据,不过这些数据也是通过某些仪表盘传递给⽤户观测,当⽤户看见仪表盘上的红灯时只会说:“嗯,车⼦好像是坏掉了,质量真差。
” 话说回来,BMS虽然存在感低,不过它存在的意义却是丝毫不亚于仪表,甚⾄可以说是⽐仪表还重要,因为他可以检测出这辆车⼦的能源系统是否坏掉了,只有拥有BMS系统,⽤户才可能在不冒险的情况下知道这辆车到底是好是坏。
如果有⼀个⾏业内的嵌⼊式⼯程师要买⼀辆电动车,在⼀辆没有显⽰仪表和BMS板⼦的电动车中进⾏选择,那么他肯定不敢选后者,因为如果电动车没有了仪表,那么⽤户体验会极差,但如果电动车没有了BMS……与其说是⼀辆电动车,还不如说是⼀辆随时可能发⽣被激活的炸弹。
那么BMS在能源领域为什么如此重要?BMS的存在到底有什么意义?------------------------------------------------------------------------------------------------------------- 本⽂便从⼀个底层⼯程师的⾓度,以电动车⽤的BMS模块作为例⼦专门对锂电池的保护板设计进⾏⼀些探讨,并且会给出⼀个参考⽅案,当然由于笔者能⼒有限,⽔平⼀般,如果⽂中出现了错误或者纰漏,请直接指出。