25.2用列举法求概率(1)
- 格式:pdf
- 大小:1.01 MB
- 文档页数:10
25.2 用列举法求概率第一课时一、教学目标1.计算较简单情境下的概率.2.用列表的方法列举随机事件的所有等可能的结果,从而得到事件发生的概率.3.通过观察列举法的结果是否重复和遗漏,总结列举不重复不遗漏的方法,培养学生学习观察、归纳、分析问题的能力.二、教学重难点重点:能够用列表法计算简单事件发生的概率,并阐明理由.难点:当可能出现的结果很多时,用列表法求出所有可能的结果.教学过程(教学案)一、情境引入1.导入在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率.2.情景引入袋中有3个白球,1个红球,这两种球除了颜色以外其余都相同,随机取出两个球,若是1红1白则甲方胜,否则乙方胜,你愿意充当甲方还是乙方?学生思考后,师生共同分析:看哪一方胜的可能性大,即获胜概率大.设摸出2个球为1白1红为事件A ,则事件A 包含了其中3种结果:(白1,红),(白2,红),(白3,红).则P (A )=36=12,即甲方胜或乙方胜概率都是12,选择哪一方都一样. 二、互动新授1.教学例1(1)学生尝试列举出抛掷两枚硬币所能产生的全部结果.(2)学生动手操作试验后,小组交流讨论,师生共同分析.【解】 列举抛掷两枚硬币所能产生的全部结果,它们是:正正,正反,反正,反反.所有可能的结果共有4种,并且这4种结果出现的可能性相等.(1)所有可能的结果中,满足两枚硬币全部正面向上(记为事件A )的结果只有1种,即“正正”,所以P (A )=14. (2)两枚硬币全部反面向上(记为事件B )的结果也只有1种,即“反反”,所以P (B )=14. (3)一枚硬币正面向上、一枚硬币反面向上(记为事件C )的结果共有2种,即“反正”“正反”,所以P (C )=24=12. 2.教学例2(1)学生独自练习后,小组交流讨论.(2)师生共同分析,得出:当一次试验是掷两枚骰子时,为不重不漏地列出所有可能的结果,通常采用列表法.(3)师生共同用列表法解答.3.探究P137“思考”(1)学生独自思考后,小组交流讨论.(2)教师评析:“同时掷两枚质地均匀的骰子”改为“把一枚质地均匀的骰子掷两次”,得到的结果是一样的.三、课堂小结四、板书设计五、教学反思本节课以实际问题为载体,通过让学生动手解决问题,观察、分析、评价解题方法,明晰当一次试验涉及两个因素,所有可能的结果数目较多时,直接列出会遗漏或重复,就要探寻快捷准确的新方法,体会列表法简单明了.通过学生自主探求列表法,使学生对何时应用列表法,如何应用列表法有更深的理解.在教学过程中,教师应重点关注不同层次的学生对本节知识的理解及掌握程度,了解教学效果,及时调整教学.导学案一、学法点津学生在求概率时,当一次试验涉及两个因素,为不重不漏地列出所有可能的结果,通常采用列举法或列表法.在先后取两个球时,有放回和没有放回是有区别的,所有可能的结果是等可能出现的才能适用列表法.二、学点归纳总结1.知识要点总结(1)当随机事件是一次试验涉及两个因素时,宜用列表法.(2)运用列表法要符合有限等可能.2.规律方法总结当随机事件是一项试验涉及两个因素时,宜用列表法.列表要进行编号,要认真细致地列表,列出所有等可能的结果,算出事件A 包含的结果的数目,用公式P (A )=m n计算事件A 的概率.课时作业设计一、选择题1.小丽、小华和小红三人要一起照相,他们三人随意排成一排进行拍照,小红恰好排在中间的概率是( ).A.12B.13C.14D.不能确定 2.一个袋子中有4个珠子,其中2个红色,2个蓝色,除颜色外其余均相同,若在这个袋子中任取2个珠子,都是红色的概率是( ).A.12B.13C.14D.163.掷两枚质地均匀的正方体骰子,把两个点数相加,则下列事件中,发生的概率最大的是( ).A.点数和为11B.点数和为8C.点数和为3D.点数和为2二、填空题4.随机掷两枚均匀的硬币,落地后,两枚硬币正面都朝上的概率是 W.5.用1,2,3三个数字组成一个无重复数字的两位数,则组成的两位数是偶数的概率是 W.6.某班有一个同学想给老师打电话,可他记不清其中两个号码了,即36××828,他随意拨,恰好拨通的概率为 W.三、解答题7.在体育器材室内有一暗箱,暗箱内放有2个排球,2个篮球,2个足球,让你一次拿出两个球,问:(1)两个球都是足球的概率是多少?(2)一个是排球,一个是篮球的概率是多少?【参考答案】1.B2.D3.B4.145.136.11007.解:共有15种情况,其中两个都是足球的有1种情况;一个是排球,一个是篮球的有4种情况.所以(1)P (两个都是足球)=115, (2)P (一个是排球,一个是篮球)=415.。