4.免疫组化技术-理论篇
- 格式:ppt
- 大小:93.50 KB
- 文档页数:14
免疫组织化学技术一、免疫组织化学技术的原理和应用范围(一)免疫组织化学技术的基本原理免疫组织化学技术是用显色剂标记的特异性抗体在组织细胞原位通过抗原抗体反应和组织化学的呈色反应,对相应抗原进行定性、定位、定量测定的一项技术。
即先将组织或细胞中的某些化学物质提取出来,以其作为抗原或半抗原去免疫小鼠等实验动物,制备特异性抗体,再用这种抗体(第一抗体)作为抗原去免疫动物制备第二抗体,并用某种酶(常用辣根过氧化物酶)或生物素等处理后再与前述抗原成分结合,将抗原放大,由于抗体与抗原结合后形成的免疫复合物是无色的,因此,还必须借助于组织化学方法将抗原抗体反应部位显示出来(常用显色剂DAB显示为棕黄色颗粒)。
通过抗原抗体反应及呈色反应,显示细胞或组织中的化学成分,在显微镜下可清晰看见细胞内发生的抗原抗体反应产物,从而能够在细胞或组织原位确定某些化学成分的分布、含量。
组织或细胞中凡是能作抗原或半抗原的物质,如蛋白质、多肽、氨基酸、多糖、磷脂、受体、酶、激素、核酸及病原体等都可用相应的特异性抗体进行检测。
免疫学的基本原理决定了免疫组织化学技术具有高度特异性,因此,免疫组织化学技术从理论上讲也是组织细胞中抗原的特定显示,如角蛋白(keratin)显示上皮成分,LCA显示淋巴细胞成分。
只有当组织细胞中存在交叉抗原时才会出现交叉反应。
ABC法或SP法的出现,使抗体稀释上千倍、上万倍甚至上亿倍仍可在组织细胞中与抗原结合,所以免疫组织化学技术又具有敏感性高的特点。
免疫组织化学技术通过抗原抗体反应及呈色反应,对组织和细胞中抗原的准确定位,使其可以同时对不同抗原在同一组织或细胞中定位观察,并进行形态与功能相结合的研究。
(二)免疫组织化学技术的应用范围近年来,随着抗原的提纯和抗体标记技术的改进,特别是自70年代中期杂交瘤技术与单克隆抗体技术的引入,使制备的抗体具有高度的特异性。
简便而敏感的免疫酶标技术能够用于普通培养细胞(株)、常规福尔马林固定石蜡包埋的组织切片、若干年前的存档标本等,从而使该技术在生物医学研究和临床病理学、微生物学诊断中,日益显示出巨大的实用价值。
免疫组化技术免疫组化技术是现代生物学研究领域中一项重要的实验技术,它通过利用抗体与特定抗原的高亲和力结合特异性标记,可以准确地检测和定位分子在细胞和组织中的分布,并在这一基础上进行生物学功能的研究。
本文将对免疫组化技术的原理、应用以及发展趋势进行详细介绍。
一、免疫组化技术的原理免疫组化技术基于生物体对抗原与抗体的免疫反应,利用抗体与抗原的特异性结合来标记和检测感兴趣的分子。
免疫组化技术的关键步骤包括:抗原的固定、抗原的暴露、与抗原的特异性结合和信号检测等。
在免疫组化技术中,抗原通常需要进行固定,以保持其在组织中的形态和位置不变。
一般来说,抗原可通过形成固定化复合物或被共价结合到载玻片或膜上。
随后,我们需要将抗原从组织中溶出,以使其暴露于抗体。
这一步骤通常涉及脱水、脱脂和脱钙等处理。
暴露后的抗原可以与特异抗体结合,形成抗原-抗体复合物。
为了标记抗原-抗体复合物,我们需要选择适当的检测系统。
目前常用的检测方法包括荧光染色、酶学染色和放射性标记等。
其中,荧光染色技术具有高灵敏度和分辨率,能够利用荧光显微镜直接观察标记物的分布。
二、免疫组化技术的应用免疫组化技术在许多研究领域中广泛应用。
在医学领域,它常用于研究肿瘤形成机制、诊断和预后判断。
通过免疫组化技术,我们可以检测和定位许多肿瘤标志物,如癌胚抗原(CEA)和肿瘤相关抗原(CA)等,从而帮助医生进行早期诊断和治疗。
在神经科学领域,免疫组化技术被广泛用于研究神经元发育、突触形成和神经退行性疾病。
通过标记神经元特异性蛋白质,如神经元特异性烯醇化酶(NSE)和神经纤维酸性蛋白(NF)等,可以清晰地观察和研究神经元的结构和功能。
此外,免疫组化技术在细胞和分子生物学研究中也具有广泛的应用。
通过对细胞内蛋白质、DNA和RNA等分子的定位和检测,我们可以研究细胞的生物学功能和基因调控机制。
例如,通过检测特定蛋白质的表达和定位,可以研究调节细胞周期和细胞分化的信号通路。
免疫组织化学技术: 基本原理免疫组织化学技术是应用免疫学基本原理——抗原抗体反应,对组织或细胞内抗原或抗体物质定性和定位的组织化学技术。
免疫组织化学技术按照标记物的种类可分为免疫荧光法、免疫酶法,免疫铁蛋白法。
免疫金法及放射免疫自影法等。
用于病理诊断的主要有免疫荧光法和免疫酶法。
免疫荧光法是现代生物学和医学中广泛应用的方法之一,包括荧光抗体和荧光抗原技术,具有抗原抗体反应的特异性,染色技术的快速性,在细胞或组织上定位的准确性,以及荧光效应的灵敏性等优势。
但是,由于免疫荧光法必须具有荧光显微镜,荧光强度随时间的延长而逐渐消退,结果不易长期保存等缺点,在普及应用上受到一定限制,而逐渐被免疫酶法所取代。
一、免疫荧光法免疫荧光法的基本原理是将已知的抗体或抗原分子标记上荧光素,当与其相对应的抗原或抗体起反应时,在形成的复合物上就带有一定量的荧光素,在荧光显微镜下就可以看见发出荧光的抗原抗体结合部位,检测出抗原或抗体。
常用的荧光素有①异硫氰酸荧光素(fluorecein isothiocyante,FITC),为黄色、橙黄色或褐黄色结晶粉末,有两种异构体,易溶于水和酒精等溶剂。
分子量为389,最大吸收光谱为490~495,最大发射光谱为520~530urn,呈现明亮的黄绿色荧光,是最常用的标记抗体的荧光素。
②四甲基异氰酸罗达明(tetrametrylrhodarnine isothiocyante,TRITC)是一种紫红色粉末,较稳定,是罗达明(rhodamine)的衍生物。
最大吸收光谱550urn,最大发射光谱620urn呈橙红色荧光,与FITC 发射的黄绿色荧光对比鲜明,常用于双标记染色。
按照抗原抗体反应的结合步聚,免疫荧光法可分为以下三种。
1.直接法用荧光素标记的特异性抗体直接与相应的抗原结合,以检查出相应的抗原成分。
2.间接法先用特异性抗体与相应的抗原结合,洗去未结合的抗体,再用荧光素标记的抗特异性抗体(间接荧光抗体)与特异性抗体相结合,形成抗原一特异性抗体一间接荧光抗体的复合物。
免疫组化方法范文引言:免疫组化(Immunohistochemistry,IHC)是一种应用免疫学理论研究细胞和组织内免疫反应的重要方法。
它通过使用特异性抗体与组织中的抗原发生特异性稳定的结合,从而实现对细胞和组织中抗原分布和表达量的检测。
本文将介绍免疫组化的原理、方法和应用,并以乳腺癌为例,探讨免疫组化在肿瘤病理诊断中的应用。
一、免疫组化的原理免疫组化原理主要基于抗原-抗体的特异性结合原理。
当抗原通过化学固定、冷冻等方法固定在组织切片上后,通过激活的二抗结合位点与组织中的抗原发生特异性稳定的结合,形成抗原-抗体复合物。
通常,这种复合物会通过染色反应显示出来,可通过显微镜观察细胞的抗原分布情况。
二、免疫组化的方法1.抗原获取:首先需要从组织样本中获得抗原。
组织样本可以通过剖析术、活组织检查、活检等方法获得。
为了保持抗原的原始性,一般需要对组织样本进行适当的处理,如缓冲液定型、冷冻保存等。
2.抗体选择:根据所要检测的抗原类型和特异性,选择相应的抗体。
可以根据已有的文献和实验室的经验选择商业化的抗体,也可以通过自己制备或订制特异性抗体来进行研究。
3.免疫反应:将抗体与组织样本接触,使其发生特异性结合反应。
通常,为了增强信号,需要使用带有酶、荧光素、金颗粒等标记物的二抗进行增强。
4.染色和观察:根据标记物的不同,可以使用染色方法,如免疫酶染色法、免疫荧光染色法等,以显示出抗原-抗体复合物的分布情况。
通过显微镜观察,可以对样本进行定性和定量分析。
三、免疫组化的应用免疫组化在病理学中有着重要的应用价值。
它可以用来鉴别组织类型、分析肿瘤的分子特征、评估疾病的预后和预测疾病的发展趋势等。
以乳腺癌为例,以下将探讨免疫组化在乳腺癌诊断和预后评估中的应用。
1.乳腺癌组织类型鉴别:乳腺癌的组织类型有多种,包括浸润性导管癌、乳腺导管内癌、乳腺导管外癌等。
通过免疫组化染色,可以针对不同的抗原进行检测,如细胞角蛋白(CK)、雌激素受体(ER)和孕激素受体(PR),以帮助鉴别乳腺癌的组织类型。
免疫组化技术免疫组化技术是一种广泛应用于生物医学研究和临床诊断中的重要技术手段。
它通过利用抗体与其特异性抗原相互作用的特性,实现对细胞、组织和分子的检测和定位。
本文将从免疫组化技术的原理、应用、优缺点等方面进行介绍。
首先,免疫组化技术的原理主要基于抗原与抗体的高度特异性反应。
抗原一般是指能够被免疫系统识别并引发抗体产生的物质,它可以是细胞膜上的蛋白质、细胞核中的核酸、胞浆中的酶等。
而抗体是机体免疫系统产生的一类蛋白质,具有高度特异性与抗原结合。
在免疫组化技术中,通常选择一种与目标物高度特异性结合的抗体,通过与目标物反应形成抗原-抗体复合物,再利用染色、荧光等方法对其进行检测和定位。
免疫组化技术广泛应用于生物医学研究和临床诊断中。
首先,在生物医学研究领域,免疫组化技术可以用于检测和定位特定蛋白质或细胞标志物。
例如,科研人员可以利用特异性抗体对肿瘤标志物进行检测,从而实现早期肿瘤的筛查和诊断。
此外,免疫组化技术还可以用于研究免疫反应、细胞分化和分子信号传递等生物学过程。
其次,在临床诊断中,免疫组化技术可用于肿瘤诊断、感染病的检测和诊断,以及免疫性疾病的诊断等。
临床医生可以利用免疫组化技术对病理切片进行染色,帮助判断疾病类型和严重程度。
免疫组化技术具有多种优点。
首先,它具有高度特异性和敏感性。
由于抗体与特定抗原的结合是高度特异性的,因此免疫组化技术可以实现对目标物的准确检测和定位。
其次,它可以同时对多个目标进行检测。
通过同时使用多个不同特异性的抗体,可以对多个目标分子进行检测,从而提高检测效率。
此外,免疫组化技术还可以实现对细胞或组织的形态学和功能的研究,有助于揭示生物学过程的机制。
然而,免疫组化技术也存在一些限制和不足之处。
首先,技术操作复杂。
免疫组化技术需要对抗体的选择、染色剂的选择和实验条件等进行严格控制,技术操作要求较高。
其次,需要合适的阳性和阴性对照。
在使用免疫组化技术时,需要合适的阳性和阴性对照样品,以确保实验结果的准确性和可靠性。
免疫组化的原理及应用论文一、引言免疫组化(Immunohistochemistry,IHC)是一种常用的病理学技术,用于检测组织或细胞中特定蛋白的表达情况。
它结合了免疫学和组织学的原理,通过将特定的抗体与组织或细胞中的目标蛋白结合,然后使用标记的二抗进行检测,从而实现对目标蛋白的定位和定量分析。
本文将介绍免疫组化的原理和应用。
二、免疫组化的原理免疫组化的原理基于抗原-抗体反应,其中抗原是指在生物体内引起免疫反应的物质,抗体是机体产生的一种特异性蛋白质,能与抗原特异性结合。
免疫组化主要分为直接法和间接法两种。
2.1 直接法直接法是最早被应用的免疫组化方法。
具体步骤如下:1.取得需要检测的组织样本,进行固定和切片。
2.在切片上加入特定的一抗,一抗与目标蛋白特异性结合。
3.冲洗去除未结合的一抗。
4.加入标记有色素的二抗,二抗与一抗特异性结合,形成特定颜色的复合物。
5.再次冲洗去除未结合的二抗。
6.加入显色剂,使标记有色素的二抗形成显色反应。
7.观察切片下的特定颜色反应,即为目标蛋白的存在。
2.2 间接法间接法相较于直接法,更为常用。
它通过引入间接标记物,提高了对目标蛋白的敏感性和检测效果。
具体步骤如下:1.取得需要检测的组织样本,进行固定和切片。
2.在切片上加入特定的一抗,一抗与目标蛋白特异性结合。
3.冲洗去除未结合的一抗。
4.加入标记有色素的二抗,二抗与一抗特异性结合。
5.再次冲洗去除未结合的二抗。
6.加入标记有酶的三抗,三抗与二抗特异性结合。
7.再次冲洗去除未结合的三抗。
8.加入显色底物,使有酶的三抗形成显色反应。
9.观察切片下的特定颜色反应,即为目标蛋白的存在。
三、免疫组化的应用免疫组化在许多领域都具有重要的应用价值,特别是在病理学、生物医学研究和临床诊断中。
3.1 病理学研究免疫组化在病理学研究中起着重要的角色。
通过对组织样本进行免疫组化染色,可以帮助鉴定组织类型、确定肿瘤的分级和分型,评估预后等。