细胞生物学微管微丝
- 格式:ppt
- 大小:5.66 MB
- 文档页数:49
1、细胞生物学:是研究细胞基本生命活动规律的科学,是在显微、亚显微和分子水平上,以研究细胞结构与功能,细胞增殖、分化、衰老与凋亡,细胞信号传递,真核细胞基因表达与调控,细胞起源与进化等为主要内容的一门学科。
2、分子细胞生物学:是细胞的分子生物学,是指在分子水平上探索细胞的基本生命活动规律,主要应用物理的、化学的方法、技术,分析研究细胞各种结构中核酸和蛋白质等大分子的构造、组成的复杂结构、这些结构之间分子的相互作用及遗传性状的表现的控制等。
3、细胞连接:细胞连接是多细胞有机体中相邻细胞之间通过细胞膜相互联系、协同作用的重要组织方式,在结构上常包括质膜下、质膜及质膜外细胞间几个部分,对于维持组织的完整性非常重要,有的还具有细胞通讯作用。
4、信号通路:细胞接受外界信号,通过一整套的特定机制,将胞外信号转导为胞内信号,最终调节特定基因的表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。
5、异染色质:间期核内染色质纤维折叠压缩程度高,处于聚缩状态,用碱性染料染色时着色深的染色质组分。
6、核小体:染色体的基本结构单位,是由组蛋白和200个碱基对的DNA双螺旋组成的球形小体,其核心由四种组蛋白(H2A、H2B、H3、H4)各两分子共8分子组成的八聚体,核心的外面缠绕了1.75圈的DNA双螺旋,其进出端结合有H1组蛋白分子。
7、核纤层:是位于细胞核内膜与染色质之间的纤维蛋白片层或纤维网络,与核内膜紧密结合。
它普遍存在于高等真核细胞间期细胞核中。
8、细胞骨架:细胞骨架(Cytoskeleton)是指存在于真核细胞质内的中的蛋白纤维网架体系。
包括狭义和广义的细胞骨架两种概念。
广义的细胞骨架包括:细胞核骨架、细胞质骨架、细胞膜骨架和细胞外基质。
狭义的细胞骨架指细胞质骨架,包括微丝、微管和中间纤维。
9、细胞周期:连续分裂的细胞,从上一次有丝分裂结束开始到下一次有丝分裂结束所经历的整个过程。
在这个过程中,细胞遗传物质复制,各组分加倍,平均分配到两个子细胞中。
细胞生物学知识点总结细胞是生命的基本单位,是构成生物体的最小结构和功能单位。
细胞生物学是研究细胞结构、功能和生命活动的学科。
本文将从细胞的结构、功能、分裂、信号传导和凋亡等方面进行总结。
一、细胞的结构细胞由细胞膜、细胞质和细胞核组成。
细胞膜是细胞的外层,由磷脂双层和蛋白质组成,具有选择性通透性。
细胞质是细胞膜内的液体,包含细胞器和细胞骨架。
细胞核是细胞的控制中心,包含染色体和核仁。
细胞器包括内质网、高尔基体、线粒体、溶酶体、叶绿体等。
内质网是由膜系统构成的复杂网络,分为粗面内质网和滑面内质网。
粗面内质网上有许多核糖体,参与蛋白质的合成。
高尔基体是内质网的延伸,参与蛋白质的修饰和分泌。
线粒体是细胞的能量中心,参与细胞呼吸作用。
溶酶体是细胞内的消化器官,参与细胞内外物质的分解。
叶绿体是植物细胞特有的细胞器,参与光合作用。
细胞骨架由微管、微丝和中间纤维组成。
微管是由蛋白质管组成的细胞骨架,参与细胞分裂和细胞运动。
微丝是由蛋白质丝组成的细胞骨架,参与细胞形态的维持和细胞运动。
中间纤维是由蛋白质丝组成的细胞骨架,参与细胞的机械支撑和细胞形态的维持。
二、细胞的功能细胞具有许多功能,包括物质的吸收、消化、合成、分泌、运输、排泄、感受、传递和存储等。
细胞的功能与细胞器密切相关。
例如,内质网参与蛋白质的合成和修饰,高尔基体参与蛋白质的分泌和修饰,线粒体参与细胞呼吸作用,溶酶体参与物质的分解和消化,叶绿体参与光合作用。
细胞的功能还与细胞膜密切相关。
细胞膜具有选择性通透性,可以控制物质的进出。
细胞膜上的受体可以感受外界的信号,参与细胞的信号传导。
细胞膜上的酶可以参与物质的合成和分解。
细胞膜上的通道可以参与物质的运输。
三、细胞的分裂细胞分裂是细胞生命周期中最重要的过程之一,包括有丝分裂和无丝分裂两种方式。
有丝分裂是指细胞在分裂过程中形成纺锤体,将染色体均分到两个子细胞中。
无丝分裂是指细胞在分裂过程中没有形成纺锤体,染色体直接分裂成两个子细胞。
细胞骨架名词解释1.细胞骨架(cytoskeleton):真核细胞中由纤维状蛋白质组成的网络系统,可分为三种:微丝、微管和中间纤维。
2.微丝(microfilament):是由肌动蛋白单体聚合而成的纤维状结构,肌动蛋白头尾相连组成微丝,具有极性。
3.中间纤维(intermediate filament, IF):10nm的纤维状蛋白结构,由于其直径介于微管和微丝之间,故称之为中间纤维。
IF蛋白由约310个aa形成的、非常保守的a-螺旋杆状区和高度可变的非螺旋端部组成。
4.微管(microtubule):管蛋白组成的管状结构,由13根原丝平行排列组成的圆柱形管状结构,原丝由α-tubulin和β-tubulin组成的异二聚体组成。
5.踏车模型:当肌动蛋白浓度高于正端临界浓度,而低于负端临界浓度时,微丝可以表现出在正端因加入肌动蛋白而延长,而在负端因肌动蛋白脱落而缩短。
6.微管组织中心(MTOC):细胞内能够起始微管成核并使之延伸的结构,微管组织中心MTOC是细胞组织微管聚合的特殊细胞器或部位。
大多数动物细胞的MTOC是中心体。
鞭毛和纤毛的MTOC是基体。
卵母细胞和植物细胞中没有中心体。
7.胞质分裂环:在有丝分裂末期,两个即将分裂的子细胞之间产生一个收缩环。
收缩环是由大量平行排列的微丝组成,由分裂末期胞质中的肌动蛋白装配而成,随着收缩环的收缩,两个子细胞被分开。
胞质分裂后,收缩环即消失。
填空题1.在细胞内微管以单管、二联体和三联体3种形式存在。
2.微管壁由13根原纤丝组成。
3.微管由管蛋白分子组成,微管的单体形式是α-tubulin和β-tubulin组成的异二聚体。
4.微管结合蛋白具有稳定微管,防止解聚,协调微管与其他细胞成分相互关系的作用。
5.中心体含有一对垂直排列的中心粒,外面被无定形结构γ-tubulin所包围。
6.基体类似于中心粒,是由9个三联管组成的小型圆柱形细胞器。
7.在细胞内参与物质运输的马达蛋白分为三类:沿微丝运动的肌球蛋白、沿微管运动的驱动蛋白和动力蛋白。
微丝生物学功能微丝生物学功能微丝(Microfilament)是细胞骨架的重要组成部分,是动态网状结构,主要由肌动蛋白(Actin)构成。
微丝在细胞生物学中具有重要的功能,包括细胞形态维持、细胞运动、细胞分裂、细胞黏附、信号传递等方面。
在本篇文章中,我们将按照微丝的不同功能,对其进行类别划分,更好地理解微丝在生物体内的作用。
细胞形态维持细胞形态维持是微丝最常见的功能之一。
微丝通过与微管和中间纤维相互作用来维持细胞的形态,从而维持细胞的结构和机能。
例如,肌动蛋白和其他细胞骨架蛋白构成的微丝支架可以支撑细胞表面的膜,并维持细胞的形态和结构稳定。
在某些细胞中,微丝还可形成微小凸起(Microspikes)和薄板(Filopodia),并与整合素等蛋白质结合,起到细胞黏附和迁移的作用。
细胞运动微丝参与了细胞的多种运动,其中包括肌肉收缩、细胞骨架动力学改变、细胞骨架内有丝分裂纺锤体形成和纺锤体分裂引导作用等。
肌动蛋白和肌球蛋白构成的微丝对肌肉收缩和骨骼肌运动负责;微丝参与了细胞膜肥大、突触形成和嗅觉接收细胞生长锥伸长等有关细胞骨架动力学改变的过程;此外,微丝还能调控胚胎发育中细胞的定向迁移,以及神经细胞、癌细胞等极性细胞的定向扩散。
细胞分裂微丝对细胞分裂至关重要,尤其是在有丝分裂过程中。
在细胞有丝分裂前,微丝会参与中心粒的双极组合和纺锤体的形成。
在分裂中期,微丝通过与收缩蛋白和有丝分裂蛋白互作,拆解纺锤体和屏障区一边的微丝,使染色体分离。
分裂完成后,微丝在分裂口处重新组装,维持细胞形态和机能。
细胞黏附微丝也在细胞黏附中起到重要作用。
在许多细胞中,微丝通过与钙离子水平及细胞骨架其他蛋白质如肌抑制蛋白或矢形蛋白进行互作,在细胞黏附中发挥重要作用。
这种作用可以维持正常的细胞功能、跨膜通信以及细胞与纤维和血管贴附间的互动。
通过肌动蛋白与微丝的重组,细胞形态也可以发生改变,进而发挥不同的功能。
信号传递微丝还能传递细胞的信号,通过肌动蛋白的调控,微丝能够响应细胞的信号,并改变微丝的某些构型,从而诱导一些反应。
2019自学考试《细胞生物学》知识点:微管组装影响微丝组装的特异性药物作用原理(1)细胞松弛素是一组真菌的代谢产物,与微丝结合后能够将微丝切断,并结合在微丝末端阻抑肌动蛋白在该部位的聚合,但对微丝的解聚没有明显影响,因而用细胞松弛素处理细胞能够破坏微丝的网络结构,并阻止细胞的运动。
(2)鬼笔环肽是一种由毒葷产生的双环杆肽,与微丝表面有强亲和力,但不与肌动蛋白单体结合,对微丝的解聚有抑制作用,可使肌动蛋白丝保持稳定状态。
用荧光标记的鬼笔环肽染色可清晰地显示细胞中微丝的分布。
将鬼笔环肽注射到细胞内同样能阻止细胞运动,可见微丝的功能依赖于肌动蛋白的组装和去组装的动态平衡。
片状伪足和丝状伪足的形成过程片状伪足和丝状伪足的形成有赖于肌动蛋白的聚合,肌动蛋白聚合产生推动细胞运动的力。
(1)细胞受到外来信号的刺激;(2)位于细胞质膜附近的WASP蛋白将Arp2/3复合物激活;(3)使Arp2/3复合物成为微丝组装的成核位点,启动微丝的组装;(4)抑制蛋白能够促动结合AIP的肌动蛋白单体在微丝正极端聚合,使其向细胞质膜一侧延伸。
待微丝延伸到一定的水准后,Arp2/3复合物结合到微丝的侧面;(5)在此启动新的微丝的组装,形成分支。
在微丝侧支以分支点为负极,其游离的肌动蛋白持续在正极加入而使侧支向细胞质膜延伸,在侧支上面再形成新的分支,并继续延伸。
持续延伸的肌动蛋白网络推动细胞质膜向信号源方向伸出,形成伪足。
简述秋水仙素和紫杉醇对细胞内微管组装和去组装的影响(1)用低浓度的秋水仙素处理细胞,可立即破坏细胞内的微管或纺锤体结构。
秋水仙素能够与微管蛋白亚基结合,而当结合有秋水仙素的微管蛋白亚基组装到微管末端后,其他的微管蛋白亚基就很难再在该处实行组装,但末端带有秋水仙素的微管对其去组装并没有影响,从而导致细胞内微管系统的解体。
(2)紫杉醇的作用与秋水仙素相反,当紫杉醇与微管结合后能够阻止微管的去组装,增强微管的稳定性,但不影响新的微管蛋白亚基在微管的末端实行组装。
核定位信号(NLS):引导蛋白质进入细胞核的一段信号序列,受体为importin 。
核输出信号(NES):引导RNA输出细胞核的一段信号序列,受体为exportin。
着丝粒:处于主缢痕的内部,是主缢痕的染色质部位。
主缢痕:在两条姐妹染色单体相连处,有一个向内凹陷的缢痕,称为主缢痕,光镜下,相对不着色。
次缢痕:在某些染色体上除具有主缢痕外,还有另一个染色较浅的缢痕部位称为次缢痕,其大小和范围是恒定的,常存在于近端着丝粒染色体的短臂上,可作为染色体的鉴别标志。
端粒:是存在于染色体末端的特化部位。
通常由一简单重复的序列组成,进化上高度保守。
人体细胞中序列为GGGTAA。
核基质:是真核细胞间期中除核被膜、染色质和核仁以外的一个精密的网架系统。
又称核骨架。
核仁(nucleolus):见于间期的细胞核内,呈圆球形,一般1~2个,有时多达3~5个。
主要功能是转录rRNA 和组装核糖体单位。
核仁趋边(边集):在生长旺盛的细胞中,核仁常趋向核的边缘,靠近核膜,即发生该现象细胞骨架(cytoskeleton):由蛋白纤维交织而成的立体网架结构,充满整个细胞质的空间,以保持细胞特有的形状并与细胞运动有关。
包括:微管、微丝、中间纤维三种类型。
微管组织中心MTOC :微管聚合从特异性的核心形成位点开始,这些核心形成位点主要是中心体和纤毛的基体,称为微管组织中心,微管在生理状态或实验解聚后重新装配的发生处称为微管中心,其存在位置为间质的中心体。
微管:真核细胞质中的一种中空圆柱状的结构,主要由微管蛋白组成,作为细胞中骨架系统,微管具有维持细胞形态,组成新细胞的功能。
微丝:真核细胞质中含肌动蛋白的细丝,直径约为5-9nm,微丝具有许多重要功能,如细胞形状的维持、细胞运动、细胞收缩等。
中间纤维(IF):中间纤维是一种直径约为10nm的纤维状蛋白,由于其直径介于粗肌丝和细肌丝以及微丝和微管之间,因此命名为中间纤维。
基粒:内膜的内表面附着许多突出于内腔的颗粒,由许多蛋白质亚基构成,分为头部、柄部、基片,又称为A TP酶复合体。
细胞生物学名词解释整理原核细胞 prokaryotic真核细胞 eukaryotic cell细胞生物学 cell biologyMiRNA:是一条长约21到25nt的非编码RNA,其前体为70到90nt,具有发卡结构(即茎环结构),普遍存在于生物界,具有高度的保守性。
25RNA干扰(RNA interference,RNAi)现象:通过促使特定基因的miRNA降解来高效、特异地阻断体内特定基因表达。
是揭示细胞内基因沉默机制,基因功能分析的有力工具。
25细胞膜 cell membrane 是包围在细胞表面的一层薄膜,又称质膜.将细胞中的生命物质与外界环境物质分隔开,维持细胞特有的内环境。
63脂筏 lipid rafts 由于鞘脂的脂肪酸尾比较长,因此微区比膜的其他部分厚,更有秩序且较少流动。
78内膜系统 endomembrane system :相对于质膜而言,把细胞内在结构、功能以及发生上密切关联的其他所有膜性结构细胞器统称为内膜系统。
分子伴侣 molecular chaperone一类虽然能通过对其各自作用对象的识别,结合来协助它们的折叠组装和转运,但其本身却并不参与最终作用产物的行成,也不会改变其自身的基本分子生物学特性的蛋白质信号序列 signal sequence 信号肽 signal peptid指导蛋白质多肽链在糙面内质网上进行合成的决定因素,是被合成肽链N端的一段特殊氨基酸序列,即信号肽或称信号序列。
112驻留信号retention signal 是内质网驻留蛋白,主要包括内质网驻留信号,内质网回收信号.核输入信号nuclear import signal 又称为核定位信号 nuclear localization signal NLS凡是细胞质中合成的核蛋白质,其肽链中均含有7个氨基酸组成的特异性信号序列,负责分拣并指导蛋白质从细胞质通过核孔复合体输入到细胞核内。
115内质网 endoplasmic reticulum ER在细胞质的内置区分布着一些由小管小泡相互连接吻合形成的网状结构,内质网实质上是由膜性的囊泡所构成的.高尔基复合体 Golgi complex 117溶酶体 lysosome过氧化物酶体 peroxisome 微体 microbody细胞骨架 cytoskeleton是指真核细胞中与保持细胞形态结构与保持细胞形态结构和细胞运动有关的纤维网络,包括微管、微丝和中间丝。