第三章 最优化设计
- 格式:ppt
- 大小:1.90 MB
- 文档页数:87
最优化方法及其Matlab程序设计习题作业暨实验报告学院:数学与信息科学学院班级:12级信计一班姓名:李明学号:1201214049第三章 最速下降法和牛顿法一、上机问题与求解过程1、用最速下降法求212221216423),(x x x x x x f --+=的极小值。
解:仿照书上编写最速下降法程序如下:function [x,val,k]=grad(fun,gfun,x0) %功能:用最速下降法求解无约束化问题:min f(x) %输入:x0是初始点,fun,gfun 分别是目标函数和梯度 %输出:x,val 分别是近似嘴有点和最优值,k 是迭代次数 maxk=5000;rho=0.5;sigma=0.4;%一开始选择时选择的rho 和sibma 选择的数据不够合理,此处我参照书上的数据编写数据 k=0;epsilon=1e-5; while (k<maxk)g=feval(gfun,x0); %计算梯度 d=-g;%计算搜索方向if (norm(d)<epsilon),break ;end m=0;mk=0; while (m<20)%Armijo 搜索if (feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d) mk=m;break ;%直接利用Armijo 搜索公式,一开始的时候没有记住公式编写出现错误 end m=m+1; endx0=x0+rho^mk*d; k=k+1; end x=x0;val=feval(fun,x0) %求得每一个的函数值然后仿照书上建立两个目标函数和梯度的M 文件:function f=fun(x)f=3*x(1)^2+2*x(2)^2-4*x(1)-6*x(2); function g=gfun(x) g=[6*x(1)-4,4*x(2)-6]';选取初始点为']0,0[,调用函数程序,得出最小极值点为']500.1,6667.0[,极小值为8333.5-,在界面框中输入的程序如下:[x,val,k]=grad('fun','gfun',x0) val = -5.8333 x =0.6667 1.5000 val =-5.8333 k = 10从结果可以看出迭代次数为10次,如果选取不同的初值点则迭代次数不一样,但是极小值相同。
第四节多维无约束优化方法4.1最速下降法(梯度法)x,使f(x)minf(x+α对于多元函数,求极小点k+1k+1)=minf(x k kS k),需要确定两个内容:步长αk,方向S k,不同的搜索方向导致了不同的优化方法。
主要有:梯度法、共轭导致了不同的优化方法主要有:梯度法共轭梯度法、牛顿法、变尺度法、坐标轮换法、Powell法。
z思想函数值变化最快的方向是其梯度方向,而且负梯度方向是函数值下降最快的方向。
故沿负梯度方向搜索。
方向是函数值下降最快的方向故沿负梯度方向搜索z迭代格式z步骤1)给定初始点,迭代精度,维数。
2)置0→k。
3)确定搜索方向:计算迭代点x k的剃度,以及剃度的模,进而确定搜索方向s k。
4)求最优步长αk:从x k点出发,沿负剃度方向进行维搜索求最优步长α,f(xαS)min f(xαS)。
一维搜索求最优步长k k+k k=min f(x k+k5)检验是否满足终止条件,若满足,终止迭代,输k→x*k)→f(x*),否则,进入下一步出最优解x x,f(x f(x),否则,进入下步。
6)计算新的迭代点x k+1=x k+αk S k。
z搜索路线z特点1)迭代过程简单,存储量小,对初始点的选择要求低;2)在远离函数极小点的地方,函数值下降较快。
但是,由于所谓的最速下降方向函数在某点的负剃度方是,由于所谓的最速下降方向-函数在某点的负剃度方向,仅是对该点而言,一旦离开了这点,其方向就不再是最速方向了。
因而在这个优化过程中,沿某点的负剃是最速方向了因而在这个优化过程中沿某点的负剃度方向寻优,并不总是具有最速下降方向的性质。
因此,从局部看,在一点附近函数的下降是最快的,但从整体从局部看在点附近函数的下降是最快的但从整体看,函数的下降并不算快,而且越是接近极值点,收敛越慢。
越慢3)应用该方法可使目标函数在头几步下降很快,因此可以与其他无约束优化方法配合使用。
例子z目标函数f(x)=60-10x1-4x 2+x 12+x 22-x 1x 2,设初始点[00]精度001用梯度法求极小点和极小x 0=[0 0]T ,精度ε=0.01,用梯度法求极小点和极小值。
目标函数是凸函数,可行域是凸集,则最优点是内点。
相当于·X*无约束问题的最优点。
目标函数是凸函数,可行域是凸集,则目标函数等值线与适时约束曲面的切点为最优点,而且是全局最优点。
Q pRpQR则目标函数等值线与适时约束曲面可能存在多个切点,是局部极值点,其中只有一个点是全局最优点。
结论u极小点在可行域内,是一个内点u极小点是一个边界点起作用约束。
如其它的几种情况。
则,该方向要满足以下两个条件——a )这是一个可行方向,即这个方向必须在可行域内,b )这是一个使函数值下降的方向。
Ⅱ. 如果它是一个局部极小点,那么又是否是一个全域极小点?Ⅰ. 这个点是否是一个局部最小点?Ⅰ℘∈X约束优化问题的最优解及其必要条件库恩-塔克条件在优化实用计算中,为判断可行迭代点是否是约束最优点,或者对输出的可行结果进行检查,观察其是否满足约束最优解的必要条件,引入库恩-塔克条件。
上式也称为约束优化问题局部最优点的必要条件。
=≥=≥=∇−∇−∇∑∑==j u q x h x g x F u q u j v k v v k u u k ,...,2,10.. (321)00)()()(11λνµµλν,,K -T 条件:这q 个约束的梯度向量线性无关,则点为约束极小点的必要条件是:目标函数的负梯度向量可以表示为约束梯度向量的线性组合,即:()[]()[]0)()(≥∇=∇∑∗∗u q uu X g X f λλ其中,210()[])(∗∇X f )(∗X将上式用梯度形式表示,为或者表明库恩-塔克条件的几何意义是,在约束极小值点x *处,函数f (x )的梯度一定能表示成所有起作用约束在该点梯度(法向量)的非负线性组合。
()())(0)(-)(1)()(1)(k u qu u k k q u u uk x g x f x g x f ∇=∇=∇∇∑∑==λλ库恩-塔克条件的几何意义若x k 点是极值点,则可以写成此条件要求点x k 一定要落在约束曲面g 1(x )=0和g 2(x )=0的交线上,而且-∇f (x k )和∇g 1(x k ) 及∇g 2(x k )应该线性相关,即三者共面。
最优化方法及其Matlab程序设计习题作业暨实验报告学院:数学与信息科学学院班级:12级信计一班姓名:李明学号:49第三章 最速下降法和牛顿法一、上机问题与求解过程1、用最速下降法求212221216423),(x x x x x x f --+=的极小值。
解:仿照书上编写最速下降法程序如下:function [x,val,k]=grad(fun,gfun,x0)%功能:用最速下降法求解无约束化问题:min f(x)%输入:x0是初始点,fun,gfun分别是目标函数和梯度%输出:x,val分别是近似嘴有点和最优值,k是迭代次数maxk=5000;rho=;sigma=;%一开始选择时选择的rho和sibma选择的数据不够合理,此处我参照书上的数据编写数据k=0;epsilon=1e-5;while(k<maxk)g=feval(gfun,x0);%计算梯度d=-g;%计算搜索方向if(norm(d)<epsilon),break;endm=0;mk=0;while(m<20)%Armijo搜索if(feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d)mk=m;break;%直接利用Armijo搜索公式,一开始的时候没有记住公式编写出现错误endm=m+1;endx0=x0+rho^mk*d;k=k+1;endx=x0;val=feval(fun,x0)%求得每一个的函数值然后仿照书上建立两个目标函数和梯度的M文件:function f=fun(x)f=3*x(1)^2+2*x(2)^2-4*x(1)-6*x(2);function g=gfun(x)g=[6*x(1)-4,4*x(2)-6]';选取初始点为']0,0[,调用函数程序,得出最小极值点为']6667.0[,极小值为8333500.1,,在界面框中输入的程序如下:.5[x,val,k]=grad('fun','gfun',x0)val =x =k =10从结果可以看出迭代次数为10次,如果选取不同的初值点则迭代次数不一样,但是极小值相同。
最优化方法-习题解答张彦斌计算机学院2014年10月20日Contents1第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、412第二章线搜索算法-P27习题2、4、643第三章最速下降法和牛顿法P41习题1,2,374第四章共轭梯度法P51习题1,3,6(1)105第五章拟牛顿法P73-2126第六章信赖域方法P86-8147第七章非线性最小二乘问题P98-1,2,6188第八章最优性条件P112-1,2,5,6239第九章罚函数法P132,1-(1)、2-(1)、3-(3),62610第十一章二次规划习题11P178-1(1),5291第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、4 1.验证下列各集合是凸集:(1)S={(x1,x2)|2x1+x2≥1,x1−2x2≥1};需要验证:根据凸集的定义,对任意的x(x1,x2),y(y1,y2)∈S及任意的实数λ∈[0,1],都有λx+(1−λ)y∈S.即,(λx1+(1−λ)y1,λx2+(1−λ)y2)∈S证:由x(x1,x2),y(y1,y2)∈S得到,{2x1+x2≥1,x1−2x2≥12y1+y2≥1,y1−2y2≥1(1)1把(1)中的两个式子对应的左右两部分分别乘以λ和1−λ,然后再相加,即得λ(2x1+x2)+(1−λ)(2y1+y2)≥1,λ(x1−2x2)+(1−λ)(y1−2y2)≥1(2)合并同类项,2(λx1+(1−λ)y1)+(λx2+(1−λ)y2)≥1,(λx1+(1−λ)y1)−2(λx2+(1−λ)y2)≥1(3)证毕.2.判断下列函数为凸(凹)函数或严格凸(凹)函数:(3)f(x)=x21−2x1x2+x22+2x1+3x2首先二阶导数连续可微,根据定理1.5,f在凸集上是(I)凸函数的充分必要条件是∇2f(x)对一切x为半正定;(II)严格凸函数的充分条件是∇2f(x)对一切x为正定。
最优化理论在机械设计领域中的应用第一章前言最优化理论是一门涵盖多个学科的学科,涉及的领域有计算机科学、数学、工程学等等。
最优化理论的核心目标是寻求一个最好的解决方案,在机械设计领域中的应用也非常广泛。
本文将详细探讨最优化理论在机械设计领域中的应用。
第二章最优化理论的基础知识最优化理论有很多不同的分支,例如线性规划、非线性规划、整数规划和动态规划等。
在机械设计领域中,最常用的是非线性规划。
非线性规划是指目标函数和约束都是非线性的情况下的最优化问题。
最优化理论的核心思想是将问题转化为数学模型,通过求解该模型得到最优解。
解决非线性规划问题的一种常用方法是使用数值优化算法。
这些算法包括牛顿法、拟牛顿法、共轭梯度法和遗传算法等。
第三章机械设计中的最优化应用最优化理论在机械设计领域中的应用主要有以下三个方面:1. 结构优化设计结构优化设计是指通过优化机械结构设计的各项参数,以达到某些性能指标的最优化。
在结构优化设计中,最常用的方法是拟牛顿法。
拟牛顿法可以在实现收敛速度快的同时,还可以在迭代过程中估计目标函数的一阶和二阶偏导数,从而提高算法的收敛速度。
2. 工艺优化工艺优化是指对机械制造时的生产工艺进行优化设计,以提高机械部件的品质和生产效率。
在工艺优化中,最常用的算法是遗传算法。
遗传算法可以模拟进化的过程,通过"基因"的传递和变异,不断地产生更好的解决方案。
3. 参数优化参数优化是指通过对机械部件设计中的各项参数进行优化,以达到一定的性能指标。
在参数优化中,最常用的算法是基于响应面法的参数优化。
响应面法通过设计一定的实验方案,建立起机械部件参数与目标函数之间的数学模型,通过数学模型来优化机械部件参数。
第四章实例分析以调速机械为例,使用最优化理论中的拟牛顿法进行结构优化设计。
经过多次迭代,得到了最优解。
再以同样的调速机械为例,采用遗传算法进行工艺优化。
通过遗传算法的迭代优化,不断优化各项参数,最终得到了最优解。
第三章优化设计的数学基础一等值(线)面目标函数是n维变量的函数,它的函数图像只能在n+1维空间中描述出来。
为了在n维设计空间中反映目标函数的变化情况,常采用目标函数等值面的方法。
对于可计算的函数f(x),给定一个设计点X(k),f(x)总有一个定值c 与之对应;而当f(x)取定值 c 时,则有无限多个设计点X(i)(i=1,2, …)与之对应,这些点集构成一个曲面,称为等值面。
即具有相等目标函数值的设计点构成的平面曲线或曲面称为等值线或等值面。
目标函数F(x)的等值面(线)数学表达式为:F(x)=C当 c 取c1,c2, …等值时,就获得一族曲面族,称为等值面族。
等值线的“心”(以二维为例)一个“心”:是单峰函数的极(小)值点,是全局极(小)值点。
没有“心”:例,线性函数的等值线是平行的,无“心”,认为极值点在无穷远处。
多个“心”:不是单峰函数,每个极(小)值点只是局部极(小)值点,必须通过比较各个极值点和“鞍点”(须正确判别)的值,才能确定极(小)值点。
等值线的形状:同心圆族、椭圆族,近似椭圆族;严重非线性函数——病态函数的等值线族是严重偏心和扭曲、分布疏密严重不一的曲线族。
等值线的疏密:沿等值线密的方向,函数值变化快;沿等值线疏的方向,函数值变化慢。
等值线的疏密定性反应函数值变化率。
二 方向导数与梯度1 方向导数二元函数在点x 0处沿某一方向s 的方向导数方向导数是偏导数概念的推广。
方向导数与偏导数之间的数量关系是n 元函数在点x 0处沿s 方向的方向导数2 梯度二元函数的梯度▽F (x 0)为函数F (x 1,x 2)在x 0点处的梯度。
设010*********(,)(,)lim S F F x x x x F x x s s ∆→∂+∆+∆-=∂∆x 0001212cos cos F F F s x x θθ∂∂∂=+∂∂∂x x x 0000012121cos cos cos cos n n n ii i F F F F s x x x F x θθθθ=∂∂∂∂=+++∂∂∂∂∂=∂∑x x x xx O x 110x 0001212cos cos F F F s x x θθ∂∂∂=+∂∂∂x x x 01212cos cos F F x x θθ⎡⎤⎡⎤∂∂=⎢⎥⎢⎥∂∂⎣⎦⎣⎦x 0010122()T F x F F F F x x x ∂⎡⎤⎢⎥∂⎡⎤∂∂⎢⎥∇==⎢⎥∂∂∂⎢⎥⎣⎦⎢⎥∂⎣⎦x x x 12cos cos s θθ⎡⎤=⎢⎥⎣⎦s 方向和梯度方向重合时,方向导数值最大。
三年级上册数学优化设计上册的答案2022版本书是三年级上册数学优化设计的教材,内容包括加减法、数量比较、物体的测量、时间的计算等多个方面,全面覆盖了小学数学的基础知识。
以下是本册教材中各章节的内容及答案:第一章加法1、加法初步加数1+2=(3)2+3=(5)3+4=(7)4+5=(9)5+6=(11)6+7=(13)7+8=(15)2、用竖式解决加法问题78+30=(108)29+48=(77)53+42=(95)46+39=(85)81+52=(133)3、用图形解决加法问题(见课本附页)4、回归加法基本概念,练习加法算式第二章减法1、认识“比”1比4(1:4)4比7(4:7)6比9(6:9)2、认识减法符号及减法的概念8-3=(5)9-4=(5)10-6=(4)7-5=(2)6-3=(3)3、用竖式解决减法问题80-30=(50)60-35=(25)78-27=(51)91-50=(41)63-28=(35)4、用图形解决减法问题(见课本附页)5、回归减法基本概念,练习减法算式第三章数量比较1、认识“大于”、“小于”、“等于”5<73>28=82、用图形比较大小(见课本附页)3、用数字比较大小27<2996>8473=734、从图形中找出较大或较小的数量(见课本附页)第四章物体的测量1、认识长度的计量单位1英寸=2.54厘米1厘米=0.394英寸2、认识长度的估算一张卡片的长度估算为5厘米。
3、认识长度的测量用卡尺、直尺等工具测量物体的长度。
4、认识重量的计量单位1千克=1000克1斤=500克5、认识重量的估算一盒面粉的重量估算为1千克。
6、认识重量的测量用秤等工具测量物体的重量。
第五章时间的计算1、认识钟表小时针、分针、秒针的作用和指向。
2、认识时间的读法例:11点20分。
3、认识时间的计算例:3小时40分钟后是几点?答案:下午3点20分。
4、认识日期例:今天是2022年10月1日。
注册测绘师教材第三章知识点:控制网优化设计控制网优化设计
(一)含义
控制网优化设计指在一定的人力、物力、财力等条件下,设计出精度高、可靠性强、灵敏度最高(对变形监测网而言)、经费最省的控制网布设方案.
(二)分类
根据固定参数和待定参数的不同,控制网优化设计分为如下四类: (1)零类设计(基准设计).是在控制网的图形和观测值的先验精度已定的情况下,选择合适的参考基准(起始数据)使网的精度最高;
(2)一类设计(网形设计).是在控制网成果要求精度和观测手段可能达到的精度已定的情况下,选择最佳的点位布设和最合理的观测值数量; (3)二类设计(权设计).是在控制网的网形和控制网成果要求精度已定的情况下,设计各观测值的精度(权),使观测工作量最佳分配;
(4)三类设计(改进设计).是对现有网或现有设计进行改进,从而改善控制网成果精度.
(三)方法
(1)解析法.解析法是通过数学方程的表达,用最优化方法解算.该法适用于各类设计.
(2)模拟法.模拟法是根据经验和准则,通过计算、比较和修改得到最优方案.该法适用于一、二、三类设计.
(一)施测方法
1.平面控制测量
平面控制测量通常采用gps 测量方法,也可采用三角形网测量、导线测量等常规方法.。
第三章优化设计模块§3.1 概述1.功能简介优化设计模块(STRUN)的主要功能是进行管结构在各种荷载组合作用下的线性、非线性内力分析、杆件截面优化设计、相贯节点强度验算及其它球节点的设计。
可以进行结构的模态分析、采用振型分解反应谱法进行结构的地震反应分析、结构的整体稳定分析。
2.主窗口界面STRUN模块主窗口界面如图3.1.1所示,窗口的最上方为标题栏;标题栏下是菜单区和工具栏;中间为图形区,在图形区显示管结构模型;下侧为信息提示区和状态栏,执行命令时在提示信息区提供下一步操作的有关信息,状态栏显示当前鼠标所在点的坐标、当前视图、当前文件名等参数。
图3.1.1 STRUN主窗口界面§3.2 “文件”菜单图3.2.1 “文件”菜单1.打开数据文件打开一个由建模模块STPREP生成的要进行优化设计的管结构模型数据文件(*.Tub),或读取*.Tub文件生成的有限元分析数据文件(*.Twj)。
对于同一结构模型,读入*.Twj 文件的速度比读入*.Tub文件的速度快。
STRUN模块读入模型数据文件的同时,导入与模型相对应的杆单元截面、材料特性的文件*.Tba(如果模型中存在杆单元,并且与之对应的*.Tba数据文件存在);导入与模型相对应的梁单元截面、材料特性的文件*.Tbc(如果模型中存在梁单元,并且与之对应的*.Tbc数据文件存在);导入与模型相对应的索单元截面、材料特性的文件*.Tca(如果模型中存在索单元,并且与之对应的*.Tca数据文件存在);并且导入结构设计参数文件*.Tcf等。
STRUN读入*.Tub文件时,将检查结构模型中节点之间最小距离,如果模型中节点之间的最小距离小于0.3m,则提示用户检查模型,以避免模型中存在错误。
STRUN读入*.Twj文件时,如果对应的结果文件(*.Trs)存在,则直接读入计算结果。
2.保存当前图形将当前图形显示区域内显示的图形保存成DXF文件。