第5章大数定律及中心极限定理习题及答案
- 格式:doc
- 大小:412.25 KB
- 文档页数:8
一、大数定律切比雪夫大数定律:设随机变量X1,X2,…,X n,…相互独立,且具有相同的数学期望且方差有界,那么对辛钦大数定律:设X1,X2,…,X n,…为独立同分布的随机变量序列,且数学期望E(X i)=μ存在,则对任意【例87·填空题】设X1,X2,…,X n,…相互独立,且都服从P(λ),那么依概率收敛到_____[答疑编号986305101:针对该题提问]答案:【例88·填空题】设X1,X2,…,X n,…相互独立,且都服从参数为0.5的指数分布,则。
[答疑编号986305102:针对该题提问]【例89·选择题】设随机变量列X1,X2,…,X n,…相互独立,则根据辛钦大数定律,当n充分大时依概率收敛于共同的数学期望,只要X1,X2,…,X n,…()A.有相同的数学期望B.服从同一离散型分布C.服从同一泊松分布D.服从同一连续型分布[答疑编号986305103:针对该题提问]答案:C【例90·选择题】设随机变量,X1,X2,…,X n,…是独立同分布,且分布函数为则辛钦大数定律对此序列()A.适用B.当常数a,b取适当的数值时适用C.不适用D.无法判别[答疑编号986305104:针对该题提问]答案C二、中心极限定理独立同分布的中心极限定理:设随机变量X1,X2,…,X n,…相互独立,服从同一分布,【例91·选择题】(05-4-4)设X1,X2,…,X n,…为独立同分布的随机变量列,且均服从参数为λ(λ>0)的指数分布,记为标准正态分布函数,则()[答疑编号986305105:针对该题提问]答案:C。
第5章大数定律及中心极限定理一、选择题1.设随机变量序列相互独立且都服从参数为1的泊松分布,令,则随机变量序列一定()。
A.满足切比雪夫大数定律B.不满足切比雪夫大数定律C.满足辛钦大数定律D.不满足辛钦大数定律【答案】A【解析】相互独立,其期望、方差都存在且,符合切比雪夫大数定律成立的三个条件,即①相互独立;②期望、方差都存在;③对任何,方差都小于一个共同常数。
因此满足切比雪夫大数定律。
由于不一定完全相同,因此不能确定是否同分布,(要求,此时同分布;不全相同,不同分布),故不能确定其是否一定满足辛钦大数定律。
2.设随机变量,,…,,…相互独立,且服从参数为的泊松分布,服从期望值为的指数分布,则随机变量序列,,…,,…一定满足()。
A.切比雪夫大数定律B.伯努利大数定律C.辛钦大数定律D.中心极限定理【答案】A【解析】,…不是同分布,因此不能满足辛钦大数定律、伯努利大数定律和中心极限定理。
进一步分析,,因此对任何n=1,2,…,都有,即,…相互独立,期望、方差都存在且对所有,,符合切比雪夫大数定律成立的条件。
3.设随机变量序列X1,…,X n,…相互独立,则根据辛钦大数定律,当n→∞吋,依概率收敛其数学期望,只要{X n,n≥1}()。
A.有相同的数学期望B.服从同一离散型分布C.服从同一泊松分布D.服从同一连续型分布【答案】C【解析】ABD三项,由辛钦大数定律可知,随机变量序列{,≥1}必须是:“独立同分布且数学期望存在”,A项缺少同分布条件,BD两项虽然服从同一分布但不能保证期望存在。
4.设随机变量X1,…,X n,…相互独立,记Y n=X2n-X2n-1(n≥1),概括大数定律,当n→∞时,依概率收敛到零,只要{X n,n≥l}满足()。
A.数学期望存在B.有相同的数学期望与方差C.服从同一离散型分布D.服从同一连续型分布【答案】B【解析】ACD三项,由于相互独立,所以相互独立,A项“缺少同分布”条件,CD两项“缺少数学期望存在”的条件,因此都不满足辛钦大数定律。
1.[一] 据以往经验某种电器元件的寿命服从均值为100小时的指数分布,现在随机的抽取16只,设它们的寿命是相互独立的,求这16只元件寿命总和大于1920小时的概率。
解:设第i 只寿命为X i ,(1≤i ≤16),故E (X i )=100,D (X i )=1002(l=1,2,…,16).依本章定理1知÷÷÷÷÷øöçççççèæ£-=÷÷÷÷÷øöçççççèæ´-£´-=£ååå===8.040016001001616001920100161600)1920(1616161i i i i i i X P X P X P.7881.0)8.0(=F =从而.2119.07881.01)1920(1)1920(161161=-=£-=>åå==i ii iXP XP3.[三] 计算机在进行加法时,对每个加数取整(取为最接近它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布,(1)若将1500个数相加,问误差总和的绝对值超过15的概率是多少? (2)几个数相加在一起使得误差总和的绝对值小于10的概率不小于0.90 解:(1)设取整误差为X i (L ,2,1=i ,1500),它们都在(-0.5, 0.5)上服从均匀分布。
于是: 025.05.0)(=+-==p X E i 12112)]5.0(5.0[)(2=--=i X D18.111251211500)(,0)(==´==i i X nD X nE þýüîí죣--=ïþïýüïîïíì£-=ïþïýüïîïíì>ååå===1515115115150011500115000i i i i i i X P X P X P ïïþïïýüïïîïïí죣--=å=18.111518.1118.1115115001i i X P1802.0]9099.01[2)]34.1(1[2)]34.1()34.1([1=-´=F -=-F -F -=8.某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8,医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言。
CH5大数定律及中心极限定理--练习题第一篇:CH5 大数定律及中心极限定理--练习题CH5 大数定律及中心极限定理1.设Ф(x)为标准正态分布函数,Xi=⎨100⎧1,事件A发生;⎩0,事件A不发生,i=1,2,…,100,且P(A)=0.8,X1,X2,…,X100相互独立。
令Y=∑i=1Xi,则由中心极限定理知Y的分布函数F(y)近似于()y-804A.Ф(y)2.从一大批发芽率为0.9的种子中随机抽取100粒,则这100粒种子的发芽率不低于88%的概率约为.(已知φ(0.67)=0.7486)3.设随机变量X1,X2,…,Xn,…独立同分布,且i=1,2…,0nB.Ф()C.Ф(16y+80)D.Ф(4y+80)Yn=∑i=1⎧⎪Xi,n=1,2,Λ.Φ(x)为标准正态分布函数,则limP⎨n→∞⎪⎩⎫⎪≤1⎬=()np(1-p)⎪⎭Yn-npA.0B.Φ(1)C.1-Φ(1)D.14.设5.设X服从(-1,1)上的均匀分布,试用切比雪夫不等式估计6.设7.报童沿街向行人兜售报纸,设每位行人买报纸的概率为0.2,且他们买报纸与否是相互独立的。
试求报童在想100为行人兜售之后,卖掉报纸15到30份的概率8.一个复杂系统由n个相互独立的工作部件组成,每个部件的可靠性(即部件在一定时间内无故障的概率)为0.9,且必须至少有80%的部件工作才能使得整个系统工作。
问n至少为多少才能使系统的可靠性为0.959.某人有100个灯泡,每个灯泡的寿命为指数分布,其平均寿命为5小时。
他每次用一个灯泡,灯泡灭了之后立即换上一个新的灯泡。
求525小时之后他仍有灯泡可用的概率近似值相互独立的随机变量,且都服从参数为10的指数分布,求的下界是独立同分布的随机变量,设, 求第二篇:ch5大数定律和中心极限定理答案一、选择题⎧0,事件A不发生1.设Xi=⎨(i=1,2Λ,10000),且P(A)=0.8,X1,X2,Λ,X10000相互独立,令1,事件A发生⎩10000Y=∑X,则由中心极限定理知Y近似服从的分布是(D)ii=1A.N(0,1)C.N(1600,8000)B.N(8000,40)D.N(8000,1600)2.设X1,X2,……,Xn是来自总体N(μ,σ2)的样本,对任意的ε>0,样本均值X所满足的切比雪夫不等式为(B){X-nμ<ε}≥εnσC.P{X-μ≥ε}≤1-εA.P2nσ{X-μ<ε}≥1-nεnσD.P{X-nμ≥ε}≤εB.Pσ23.设随机变量X的E(X)=μ,D(X)=σ2,用切比雪夫不等式估计P(|X-E(X)|≤3σ)≥(C)A.C.1 98 919121B.3D.14.设随机变量X服从参数为0.5的指数分布,用切比雪夫不等式估计P(|X-2|≥3)≤(C)A.C.1B.3D.1二、填空题1.将一枚均匀硬币连掷100次,则利用中心极限定理可知,正面出现的次数大于60的概率近似为___0.0228________.(附:Φ(2)=0.9772)2.设随机变量序列X1,X2,…,Xn,…独立同分布,且E(Xi)=μ,D(Xi)=σ2>0,i=1,2,…, 则⎧n⎫X-nμ⎪⎪i⎪i=1⎪>x⎬=_对任意实数x,limP⎨n→∞nσ⎪⎪⎪⎪⎩⎭∑___________.3.设随机变量X的E(X)=μ,D(X)=σ2,用切比雪夫不等式估计P(|X-E(X)|≤3σ2)≥ ___8/9________。
5.第五章:⼤数定律与中⼼极限定理第五章练习题1.⼀复杂的系统由100个相互独⽴起作⽤的部件所组成,在整个运⾏期间每个部件损坏的概率为0.10,为了使整个系统起作⽤,⾄少必须有85个部件正常⼯作,求整个系统起作⽤的概率.2.⼀复杂的系统由n个相互独⽴起作⽤的部件所组成,每个部件的可靠性为0.90,且必须⾄少有80%的部件⼯作才能使整个系统正常⼯作,问n⾄少为多⼤时才能使系统的可靠性不低于0.95?3.对敌⼈的防御地段⽤炮⽕进⾏100次射击,每次射击的炮弹命中数的数学期望为2,均⽅差为1.5,求当射击100次时有180颗到220颗炮弹命中⽬标的概率的近似值.(已知(1.33)=0.9082, (1.5)=0.9332,(2)=0.9772).4.某种电⼦元件使⽤寿命服从λ=0.1(单位(⼩时)的指数分布.⼀个元件损坏后,第⼆个接着使⽤.求100个这类元件总计使⽤时间超过900⼩时的概率.5.设某车间有200台同型机床,⼯作时每台车床60%的时间在开动, 每台开动时耗电1千⽡.问应供给该车间多少千⽡电⼒才能有0.999的把握保证正常⽣产?6.⽤切⽐雪夫不等式确定,当掷⼀均匀铜币时,需投多少次,才能保证正⾯出现的频率在0.4与0.6之间的概率不⼩于90%?并⽤正态逼近计算同⼀问题。
7.某公司有200名员⼯参加⼀种资格证书考试,按往年经验,该考试通过率为0.8.试⽤中⼼极限定理计算这200名员⼯⾄少有150⼈通过考试的概率.8.欲测量两地之间的距离,限于测量⼯具,将其分成1200段进⾏测量.设每段测量误差(单位:千⽶)相互独⽴,且均服从区间(-0.5,0.5)上的均匀分布,试求总距离测量误差的绝对值不超过20千⽶的概率.(⽤中⼼极限定理)9.某宿舍有学⽣900⼈,每⼈在傍晚⼤约有10%的时间要占⽤⼀个⽔龙头,设每⼈需⽤⽔龙头与否是相互独⽴的,问该宿舍⾄少需要安装多少⽔龙头,才能以95%以上的概率保证⽤⽔需要.(已知(1.645) = 0.95, (1.28) = 0.90,(1.96)=0.975).10.已知⼀本书有500页,每⼀页的印刷错误的个数服从泊松分布P(0.2).各页有没有错误是相互独⽴的,求这本书的错误个数多于88个的概率.11.某保险公司多年的统计资料表明,在索赔户中被盗索赔户占20%,以X表⽰在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.求被盗索赔户不⼩于14户且不多于30户的概率近似值.(利⽤棣莫弗--拉普拉斯定理近似计算.)12.某品牌家电三年内发⽣故障的概率为0.2,且各家电质量相互独⽴.某代理商发售了⼀批此品牌家电,三年到期时进⾏跟踪调查:(1)抽查了四个家电⽤户,求⾄多只有⼀台家电发⽣故障的概率;(2)抽查了100个家电⽤户,求发⽣故障的家电数不⼩于25的概率((2)利⽤棣莫弗--拉普拉斯定理近似计算.)证明题1. 利⽤中⼼极限定理证明:2.设随机变量X~f(x)=,其中n为正整数.证明:P{0<x<2(n+1)}≥如有侵权请联系告知删除,感谢你们的配合!。
第五章 大数定律 中心极限定律例1 设一批产品的废品率为014.0=P ,若要使一箱中至少有100个合格品的概率不低于0.9,求一箱中至少应装入多少个产品?试分别用中心极限定律和泊松定理求其近似值。
例2 某车间有200台车床,由于各种原因每台车床只有60%的时间在开动,每台车床开动期间耗电量为E ,问至少供应此车间多少电量才能以99.9%的概率保证此车间不因供电不足而影响生产?例 3 一保险公司有10000人投保,每人每年付12元保险费,已知一年内人口死亡率为006.0,如死亡,则公司付其家属1000元赔偿费,求1)保险公司年利润为零的概率 2)保险公司年利润不少于60000元的概率。
例4 设{}n X 为独立随机变量序列,()()n n n n n X P X P 2122110,212-===±=+,,,2,1 =n 证明 {}n X 服从大数定律例 5 设随机变量X 的数学期望μ=)(X E ,方差()2σ=X D ,利用切比雪夫不等式估计 {}σμ3≥-X P例6 试证当∞→n 时,21!0→∑=-n k kn k n e习 题一 填空题1 设随机变量X 的数学期望μ=EX ,方差2σ=DX ,则由切比雪夫不等式有:{}________3≤≥-σμX P2 设随机变量1001,,X X 相互独立同分布,且()()100,,2,1!11 ===-i e k k X P i ,则________1201001=⎭⎬⎫⎩⎨⎧<∑=i i X P3 设随机变量n X X X ,,,21 相互独立同分布,()()()n i X D X E i i ,,2,1,8, ===μ 对于∑==ni i X n X 11,写出所满足的切比雪夫不等式______并估计{}_____4≥<-μX P4 10万粒种子有1万粒不发芽,今从中任取100粒,问至少有80粒发芽的概率是_____二 解答题1. 某单位有200台电话分机,每架分机有5%的时间要使用外线通话,假设每架分机是否使用外线是相互独立的,问该单位总机需要安装多少条外线,才能以90%以上的概率保证分机使用时不等候?2. 甲、乙两个电影院在竞争1000名观众,假定每个观众任选一个影院且观众间的选择是彼此独立的,问每个影院至少要设多少座位,才能保证因缺少座位而使观众离去的概率小于1%?3. 某教授根据以往的经验知道,他的一个学生在期末考试中的成绩是均值为75的随机变量,a )假设这教授知道该学生成绩的方差是25,试给出此学生的成绩将超过85的概率上限; b )你对这个学生取得65分到85分之间的概率能说些什么? c)* 不用中心极限定理,求出应有多少如上的学生参加考试,才能保证他们的平均分数在70到80分之间的概率至少是0.9。
第 5 章 大数定律与中心极限定理一、填空题:1.设随机变量μξ=)(E ,方差2σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 91 . 2.设nξξξ,,, 21是n 个相互独立同分布的随机变量,),,,(,)(,)(n i D E i i 218===ξμξ对于∑==ni in1ξξ,写出所满足的切彼雪夫不等式 228εεξεμξn D P =≤≥-)(}|{| ,并估计≥<-}|{|4μξP n211-. 3. 设随机变量129,,,X X X 相互独立且同分布, 而且有1i EX =,1(1,2,,9)i DX i ==, 令91i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式直接可得{}≥<-ε9X P 291ε-. 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有22{||}P X σμεε-≥≤, 或者22{||}1.P X σμεε-<≥-由于随机变量129,,,X X X 相互独立且同分布, 而且有1,1(1,2,9),i i EX DX i === 所以999111()()19,i i i i i E X E X E X μ===⎛⎫===== ⎪⎝⎭∑∑∑9992111()()19.i i i i i D X D X D X σ===⎛⎫===== ⎪⎝⎭∑∑∑4. 设随机变量X 满足:2(),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 116≤. 解:切比雪夫不等式为:设随机变量X 满足2(),()E X D X μσ==, 则对任意的0ε>, 有22{||}.P X σμεε-≥≤由此得 221{||4}.(4)16P X σμσσ-≥≤=5、设随机变量2σξμξξ==)(,)(,D E ,则≥<-}|{|σμξ2P 43.6、设n ξξξ,,, 21为相互独立的随机变量序列,且),,( 21=i i ξ服从参数为λ的泊松分布,则≤-∑=∞→}{lim x n n P ni in λλξ1∞--xt dt e22 .7、设n η表示n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则≈≤<}{b a P n η⎰-----)1()1(2221p np np b p np np a t dt e π.8. 设随机变量n ξ, 服从二项分布(,)B n p , 其中01,1,2,p n <<=, 那么, 对于任一实数x , 有lim {|||}n n P np x ξ→+∞-<= 0 .9. 设12,,,n X X X 为随机变量序列,a 为常数, 则{}n X 依概率收敛于a 是指{}=<->∀+∞>-εεa X P n n lim ,0 1 ,或{}=≥->∀+∞>-εεa X P n n lim ,0 0 。
概率论与数理统计练习题系 专业 班 姓名 学号第五章 大数定律与中心极限定理一、选择题:1.设n μ是n 次重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则对任意的0ε>均有lim {}n n P p n με→∞-≥ [ A ](A )0= (B )1= (C)0> (D )不存在2.设随机变量X ,若2() 1.1,()0.1E X D X ==,则一定有 [ B ](A){11}0.9P X -<<≥ (B ){02}0.9P X <<≥(C){|1|1}0.9P X +≥≤ (D){|}1}0.1P X ≥≤3.121000,,,X X X 是同分布相互独立的随机变量,~(1,)i X B p ,则下列不正确的是 [ D ](A )1000111000i i X p =≈∑ (B)10001{}i i P a X b =<<≈Φ-Φ∑ (C)10001~(1000,)i i X B p =∑ (D )10001{}()()i i P a X b b a =<<≈Φ-Φ∑二、填空题:1.对于随机变量X ,仅知其1()3,()25E X D X ==,则可知{|3|3}P X -<≥2.设随机变量X 和Y 的数学期望分别为2-和2,方差分别为1和4,而相关系数为5.0-,则根据契比雪夫不等式{}6P X Y +≥≤三、计算题:1.设各零件的重量是同分布相互独立的随机变量,其数学期望为0.5kg ,均方差为0.1kg,问5000只零件的总重量超过2510kg 的概率是多少?解:设第i 件零件的重量为随机变量i X ,根据题意得0.1.i EX ==5000500011()50000.52500,()50000.0150.i i i i E X DX ===⨯==⨯=∑∑5000500012500(2510)110.92070.0793.i i i X P X P =->=>≈-Φ≈-=∑∑2.计算器在进行加法时,将每个加数舍入最靠近它的整数,设所有舍入误差是独立的且在(0.5,0.5)-上服从均匀分布。
第五章 大数定理与中心极限定理一、选择题1、设随机变量12,n X X X 相互独立均服从泊松分布(2)π,则随机变量1001i i Y X ==∑近似服从( )分布(A)(200)π (B)(200,200)N(C)(200,400)N (D)(100,200)B 2、在供暖的季节,住房的平均温度为20度,标准差为2度,估计住房温度与平均温度的偏差的绝对值小于4度的概率的下界为( )(A) 14 (B) 12 (C) 34 (D) 1二、填空题1、设随机变量1X ,2X ,100X 相互独立,且都服从参数为4的泊松分布,则1001ii X =∑近似服从 (要求写出分布及具体参数)2、设随机变量1X ,2X ,16X 相互独立同分布, ()i E X μ=,()8i D X = ()1,2,,16i =,则由切比雪夫不等式估计概率(44)P X μμ-<<+≥3、设随机变量 X 具有数学期望μ=)(X E ,反差2)(σ=X D ,则对于任意正数ε,切比雪夫不等式为___4、已知随机变量Y X 与的相关系数21=ρ,且EY EX =,DY DX 41=,则根据切比雪夫不等式有估计式≤≥-)(DY Y X P5、设随机变量序列2721,,,X X X 相互独立且都服从[]11,-上的均匀分布,则由中心极限定理得:概率=≤∑=)131(271i i X P (8413.0)1(=Φ,9772.0)2(=Φ) 6.设~(100,0.2)X B ,用中心极限定理求(24)P X <≈ (只要求写出近似分布的查表计算式)。
7、已知随机变量X 的期望和方差分别为μ和0.009,利用切比雪夫不等式估计()0.9p X με-≤≥,则ε最小值是三、综合题1、 根据过去统计资料,某产品的次品率为05.0=p ,试用切比雪夫不等式估计1000件产品中,次品数在60~40之间的概率.2、设随机变量12100,X X X 相互独立,且都服从相同的指数分布,概率密度函数为⎪⎩⎪⎨⎧≤>=-0, 00,21)( 21x x e x f x ,试用中心极限定理求概率⎪⎭⎫ ⎝⎛<∑=2401001i i X P 的近似值 第五章 答案一、选择题二、填空题1.(400,400)N2. 31323. 2()()D X P X μεε-≥≤或2()()1D X P X μεε-<>- 4. 345. 6. (1)Φ 7. 0.3 三、综合题1、解:设 表示1000件产品中的次品数,则 由切比雪夫不等式: 得2、解:12i X λ由密度函数可知服从参数=的指数分布,12100(i i E X =,,,服从同一分布,则)=2,(12100i D X i =)=4,,,,又相互独立.则由林德贝格-列维中心极限定理得1001(200,400)i i X N =∑近似服从1001240200{<240}()(2)0.977220i i P X =-≈Φ=Φ=∑则)05.0 , 1000(~B X ()10000.0550,E X np ==⨯=()(1)500.9547.5,D X np p =-=⨯=22{||}1P X -≤≥-σμεε{4060}P X ≤≤{|50|10}P X =-≤0.525=247.5110≥-X。
滨州学院《概率论与数理统计》(公共课)练习题第五章 大数定律及中心极限定理一、填空题1.设某种电气元件不能承受超负荷试验的概率为0.05.现在对100个这样的元件进行超负荷试验,以X 表示不能承受试验而烧毁的元件数,则根据中心极限{}≈≤≤105X P .2.设试验成功的概率p=20%,现在将试验独立地重复进行100次,则试验成功的次数介于16和32次之间的概率Q ≈ .3.将一枚均匀对称的硬币接连掷10000次,则正面恰好出现5000次的概率≈α .4.将一枚色子重复掷n 次,则当∞→n 时,n 次掷出点数的算术平均值n X 依概率收敛于 .5.随机变量X 和Y 的数学期望分别为-2和2, 方差分别为1和4, 而相关系数为-0.5, 则根据切比雪夫不等式≤≥+)6|(|Y X P .6.已知随机变量X 的数学期望为10,方差DX 存在且1.0)4020(≤<<-X P ,则≥DX .7.设 ,n X X X ,,,21为独立同分布的随机变量序列,且),2,1( =i X i 服从参数为2的指数分布,则∞→n 当时,∑==n i i n X n Y 121依概率收敛于 . 8.设 ,n X X X ,,,21为独立同分布的随机变量序列,且),2,1( =i X i 服从参数为0>λ的泊松分布,若∑==ni i X n X 11,则对任意实数x ,有≈<)(x X P . 二、选择题1.设随机变量n X X X ,,,21 相互独立,n n X X X S +++= 21,则根据列维-林德伯格中心极限定理,当n 充分大时n S 近似服从正态分布,只要n X X X ,,,21 ( ).(A) 有相同期望和方差; (B) 服从同一离散型分布;(C) 服从同一指数分布; (D) 服从同一连续型分布.2.下列命题正确的是( ).(A) 由辛钦大数定律可以得出切比雪夫大数定律;(B) 由切比雪夫大数定律可以得出辛钦大数定律;(C) 由切比雪夫大数定律可以得出伯努利大数定律;(D) 由伯努利大数定律可以得出切比雪夫大数定律.3.设随机变量X 的方差为2, 则根据切贝雪夫不等式有估计{}≤≥-2||EX X P ( ).(A )21; (B )31; (C )41; (D )81. 4.设随机变量 ,n X X X ,,,21独立同分布,其分布函数为 ∞<<∞-+=x b x a x F ,arctan 1)(π,0≠b 则辛钦大数定律对此序列( ). (A )适用; (B )当常数a 和b 取适当数值十适用;(C )不适用; (D )无法判别.5.设随机变量n X X X ,,,21 相互独立, n n X X X S +++= 21, 则根据列维-林德伯格(Levy-Lindeberg)中心极限定理, 当n 充分大时, n S 近似服从正态分布, 只要nX X X ,,,21 ( ).(A)有相同的数学期望; (B)有相同的方差;(C)服从同一指数分布; (D)服从同一离散型分布.6.设 ,n X X X ,,,21为独立同分布的随机变量序列,且),2,1( =i X i 服从参数为1≠λ的指数分布,则( ).(A ))()(lim 1x x n n X P n i i n Φ=≤-∑=+∞→λ; (B ))()(lim 1x x nn X P n i i n Φ=≤-∑=+∞→;(C ))()(lim 1x x n X P n i i n Φ=≤-∑=+∞→λλ; (D ))()(lim 1x x n X P n i i n Φ=≤-∑=+∞→λλ. 三、解答题1.设n ν是n 次伯努利试验成功的次数,p(0<p<1)是每次试验成功的概率,n f n n ν=是n次独立重复试验成功的频率,设n 次独立重复试验中,成功的频率f n 对概率p 的绝对偏差不小于Δ的概率{}α=∆≥-p f n P . 试利用中心极限定理,(1) 根据∆和n 求α的近似值; (2) 根据α和n 估计∆的近似值; (3) 根据α和∆估计n .2.假设某单位交换台有n 部分机,k 条外线,每部分机呼叫外线的概率为p .利用中心极限定理,解下列问题:(1) 设n =200,k =30,p =0.12,求每部分机呼叫外线时能及时得到满足的概率α的近似值;(2) 设n =200,p =0.12,问为使每部分机呼叫外线时能及时得到满足的概率α≥95%,至少需要设置多少条外线?(3) k =30,p =0.12,问为使每部分机呼叫外线时能及时得到满足的概率α≥95%,最多可以容纳多少部分机?3.设n X X X ,,,21 是独立同分布随机变量,n X 是其算术平均值.考虑概率 {}αμ=∆≥-n X P ,其中μ=i EX ()n i .,2,1 =,()0>∆∆和α(0<α<1)是给定的实数.试利用中心极限定理,根据给定的,(1) ∆和n ,求α的近似值;(2) α和n ,求∆的近似值;(3) α和∆,估计n .4.某保险公司接受了10000电动自行车的保险,每辆每年的保费为12元.若车丢失,则车主得赔偿1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:(1) 亏损的概率α;(2) 一年获利润不少于40000元的概率β;(3) 一年获利润不少于60000元的概率γ.5.假设伯努利试验成功的概率为5%.利用中心极限定理估计,进行多少次试验才能以概率80%使成功的次数不少于5次.6.生产线组装每件产品的时间服从指数分布.统计资料表明,每件产品的平均组装时间为10分钟.假设各件产品的组装时间互不影响.试利用中心极限定理,(1) 求组装100件产品需要15到20小时的概率Q ;(2) 求以概率0.95在16个小时内最多可以组装产品的件数.7.将n 个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数.试利用中心极限定理估计,(1) 试当n =1500时求舍位误差之和的绝对值大于15的概率;(2) 估计数据个数n 满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数n .8.利用列维-林德伯格定理,证明棣莫佛-拉普拉斯定理.9.设X 是任一非负(离散型或连续型)随机变量,已知X 的数学期望存在,而 0>ε是任意实数,证明不等式{}εεXX P ≤≥.10.设事件A 出现的概率为=p 0.5,试利用切比雪夫不等式,估计在1000次独立重复试验中事件A 出现的次数在450到550次之间的概率α.11.设随机变量X 的数学期望为μ,方差为2σ,(1)利用切比雪夫不等式估计:X 落在以μ为中心,σ3为半径的区间内的概率不小于多少?(2)如果已知),(~2σμN X ,对上述概率,你是否可得到更好的估计?12.利用切比雪夫不等式来确定,当抛掷一枚均匀硬币时,需抛多少次,才能保证正面出现的频率在0.4至0.6之间的概率不小于90%,并用正态逼近去估计同一问题. 13.设 ,n X X X ,,,21为独立同分布的随机变量序列,且 ,2,1,,2===i DX EX i i σμ,令∑=+=n i i n iX n n Y 1)1(2,试证明:μP n Y →. 14.设}{n X 为一列独立同分布的随机变量序列,其概率密度函数为⎩⎨⎧<≥=--ax a x e x f a x 0)()( 令},,,m in{21n n X X X M =,试证:a M Pn →.15.在一家保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡时,其家属可向保险公司领取1000元的赔偿费.试求:(1)保险公司没有利润的概率为多大?(2)保险公司一年的利润不少于60000元的概率为多大?16.已知生男孩的概率近似地等于0.515,求在10000个婴孩中,男孩不多于女孩的概率.17.某药厂断言,该工厂生产的某种药品对于医治一种疑难的疾病的治愈率为0.8,某医院试用了这种药品进行治疗,该医院任意抽查了100个服用此药品的病人,如果其中多于75人治愈,医院就接受药厂的这一断言,否则就拒绝这一断言.问:(1)若实际上此药品对这种疾病的治愈率为0.8,那么,医院接受这一断言的概率是多少?(2)若实际上此药品对这种疾病的治愈率为0.7,那么,医院接受这一断言的概率是多少?18.一生产线生产的产品成箱包装, 每箱的重量是随机的, 假设每箱平均重50kg, 标准差为5kg . 若用最大载重量为5吨的汽车承运, 试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.(977.0)2(=Φ).19.一家有800间客房的大宾馆的每间客房内装有一台2kW (千瓦)的空调机,若该宾馆的开房率为70%,试问应供应多少千瓦的电力才能以99%的概率保证有充足的电力开动空调机?20.设有30个电子器件,他们的使用寿命(单位:小时)3021,,,T T T 均服从平均寿命为10小时的指数分布,其使用情况是第一个损坏第二个立即使用,第二个损坏第三个立即使用等等. 令T 为30个器件使用的总计时间,求T 超过350小时的概率.。
第 5 章 大数定律与中心极限定理一、填空题:1.设随机变量μξ=)(E ,方差2σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 91 . 2.设nξξξ,,, 21是n 个相互独立同分布的随机变量,),,,(,)(,)(n i D E i i 218===ξμξ对于∑==ni in 1ξξ,写出所满足的切彼雪夫不等式 228εεξεμξn D P =≤≥-)(}|{| ,并估计≥<-}|{|4μξP n211-. 3. 设随机变量129,,,X X X 相互独立且同分布, 而且有1i EX =,1(1,2,,9)i DX i ==, 令91i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式直接可得{}≥<-ε9X P 291ε-. 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有22{||}P X σμεε-≥≤, 或者22{||}1.P X σμεε-<≥-由于随机变量129,,,X X X 相互独立且同分布, 而且有1,1(1,2,9),i i EX DX i === 所以999111()()19,i i i i i E X E X E X μ===⎛⎫===== ⎪⎝⎭∑∑∑9992111()()19.i i i i i D X D X D X σ===⎛⎫===== ⎪⎝⎭∑∑∑4. 设随机变量X 满足:2(),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 116≤. 解:切比雪夫不等式为:设随机变量X 满足2(),()E X D X μσ==, 则对任意的0ε>, 有22{||}.P X σμεε-≥≤由此得 221{||4}.(4)16P X σμσσ-≥≤=5、设随机变量2σξμξξ==)(,)(,D E ,则≥<-}|{|σμξ2P 43.6、设n ξξξ,,, 21为相互独立的随机变量序列,且),,( 21=i i ξ服从参数为λ的泊松分布,则≤-∑=∞→}{lim x n n P ni in λλξ1∞--xt dt e22 .7、设n η表示n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则≈≤<}{b a P n η⎰-----)1()1(2221p np np b p np np a t dt e π.8. 设随机变量n ξ, 服从二项分布(,)B n p , 其中01,1,2,p n <<=, 那么, 对于任一实数x , 有lim {|||}n n P np x ξ→+∞-<= 0 .9. 设12,,,n X X X 为随机变量序列,a 为常数, 则{}n X 依概率收敛于a 是指{}=<->∀+∞>-εεa X P n n lim ,0 1 ,或{}=≥->∀+∞>-εεa X P n n lim ,0 0 。
10. 设供电站电网有100盏电灯, 夜晚每盏灯开灯的概率皆为0.8. 假设每盏灯开关是相 互独立的, 若随机变量X 为100盏灯中开着的灯数, 则由切比雪夫不等式估计, X 落 在75至85之间的概率不小于 259 .解:()80,()16E X D X ==, 于是169(7585)(|80|5)1.2525P X P X <<=-<≥-=二.计算题:1、在每次试验中,事件A 发生的概率为0.5,利用切比雪夫不等式估计,在1000次独立试验中,事件A 发生的次数在450至550次之间的概率.解:设X 表示1000次独立试验中事件A 发生的次数,则250)(,500)(==X D X E}50|500{|}550450{≤-=≤≤X P X P9.02500250150)(1}50|)({|2=-=-≥≤-=X D X E X P2、一通信系统拥有50台相互独立起作用的交换机. 在系统运行期间, 每台交换机能清晰接受信号的概率为0.90. 系统正常工作时, 要求能清晰接受信号的交换机至少45台. 求该通信系统能正常工作的概率. 解:设X 表示系统运行期间能清晰接受信号的交换机台数, 则~(50,0.90).X B由此 P(通信系统能正常工作)(4550)P X =≤≤P =≤≤(2.36)(0)0.99090.50.4909.ΦΦ≈-=-=3、某微机系统有120个终端, 每个终端有5%的时间在使用, 若各终端使用与否是相互独立 的, 试求有不少于10个终端在使用的概率.解:某时刻所使用的终端数~(120,0.05),6, 5.b np npq ξ==7 由棣莫弗-拉普拉斯定理知{10}11(1.67)0.0475.P ξΦΦ≥=-≈-=4、某校共有4900个学生, 已知每天晚上每个学生到阅览室去学习的概率为0.1, 问阅览室 要准备多少个座位, 才能以99%的概率保证每个去阅览室的学生都有座位.解:设去阅览室学习的人数为ξ, 要准备k 个座位.~(,),4900,0.1,49000.1b n p n p np ξ===⨯=21.===4900490{0}2121k P k ξΦΦΦΦ⎛⎫⎛⎫--⎛⎫⎛⎫≤≤≈-=- ⎪ ⎪⎝⎭⎝⎭490490(23.23)0.99.2121k k ΦΦΦ--⎛⎫⎛⎫=--≈= ⎪ ⎪⎝⎭⎝⎭查(0,1)N 分布表可得4902.3263,21 2.3263490538.852321k k -==⨯+=539.≈要准备539个座位,才能以99%的概率保证每个去阅览室学习的学生都有座位.5.随机地掷六颗骰子 ,试利用切比雪夫不等式估计:六颗骰子出现的点数总和不小于9且不超过33点的概率。
解:设 η表 示 六 颗 骰 子 出 现 的 点 数 总 和。
ξi ,表 示 第 i 颗 骰 子 出 现 的 点 数 ,i = 1,2,…,6ξ1, ξ2, … ,ξ6 相 互 独 立 , 显 然 ηξ==∑i i 16()()235211235449621612765432161222===-+++==+++++=ηηξξD E D E i i {}{}12339≤-=≤≤ηηηE p p {}131>--=ηηE p()9.03383511691≈-=-≥ηD 6. 设随机变量n ξξξ,,, 21 相互独立,且均服从指数分布()0000>⎩⎨⎧≤>=-λλλx x e x f x )( 为 使 10095101111≥⎭⎬⎫⎩⎨⎧<-∑=λλξn k k n P , 问: n 的最小值应如何 ?解: E D k k ξλξλ==112, ()21211111,11λξξλξn D n n D n E nk k n k k n k k ==⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∑∑∑===由 切 比 雪 夫 不 等 式 得⎪⎪⎭⎫ ⎝⎛<-∑=λλξ101111nk k n P ,1009510111101112211≥⎪⎭⎫ ⎝⎛-≥⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛-=∑∑==λλλξξn n E n P nk k nk k 即 110095100-≥n n , 从 而 n ≥ 2000 , 故 n 的 最 小 值 是 20007.抽样检查产品质量时,如果发现次品多于10个,则拒绝接受这批产品,设某批产品次品率为10%,问至少应抽取多少个产品检查才能保证拒绝接受该产品的概率达到0.9?解:∴ 设n 为至少应取的产品数,X 是其中的次品数,则)1.0,(~n b X ,9.0}10{≥>X P ,而9.0}9.01.01.0109.01.01.0{≥⨯⨯⨯->⨯⨯⨯-n n n n X P所以1.0}09.01.0109.01.01.0{≤-≤⨯⨯⨯-nn n n X P由中心极限定理知,当n 充分大时, 有1.0)3.01.010(}09.01.0109.01.01.0{=-Φ≈-≤⨯⨯-n nn n n n X P ,∴ 由1.0)3.01.010(=-Φnn查表得28.13.01.010-=-nn147=∴n8.(1)一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为0.1,又知为使系统正常运行,至少必需要有85个元件工作,求系统的可靠程度(即正常运行的概率);(2)上述系统假设有n 个相互独立的元件组成,而且又要求至少有80%的元件工作才能使系统正常运行,问n 至少为多大时才能保证系统的可靠程度为0.95? 解:(1)设X 表示正常工作的元件数,则)9.0,100(~b X ,9901009.01.01009.010099085{}85100{}85{-≤⨯⨯⨯-≤-=≥≥=≥X P X P X P}31039035{≤-≤-=X P由中心极限定理可知))35(1()310()35()310(}85{Φ--Φ=-Φ-Φ=≥X P 95.0)35(1)35()310(=Φ=-Φ+Φ=(2)设X 表示正常工作的元件数,则)9.0,(~n b Xnnn n X n n P n X n P n X P 3.02.01.09.09.03.01.0{)8.0()8.0(≤⨯⨯-≤-=≤≤=≥}3.09.03{}323.09.03{nnX n P n n n X n P -≤-=≤-≤-= 95.0)3()3(1=Φ=-Φ-=nn353=∴n25=∴n9.一部件包括10部分,每部分的长度是一随机变量,相互独立且具有同一分布,其数学期望为2 mm ,均方差为0.05 mm ,规定总长度为20 ± 0.1 mm 时产品合格,试求产品合格的概率。
已 知 :Φ( 0.6 ) = 0.7257;Φ( 0.63 ) = 0.7357。
解:设 每 个 部 分 的 长 度 为 X i ( i = 1, 2, …, 10 ) E ( X i ) = 2 = μ, D( X i ) = σ2= ( 0.05 )2 ,依题意 ,得合格品的概率为⎭⎬⎫⎩⎨⎧≤-≤-∑=102010101..i i X P ⎭⎬⎫⎩⎨⎧≤⨯-⨯≤-=∑=6302100501831630101.)(...i i X P⎰⎰---==63.00263.063.022221221dte dte t t ππ4714.017357.02121263.022=-⨯=-⨯=⎰∞--dtet π10.计算机在进行加法计算时,把每个加数取为最接近它的整数来计算,设所有取整误差是相 互独立的随机变量,并且都在区间[- 0.5,0.5 ]上服从均匀分布,求1200个数相加时误 差总和的绝对值小于10的概率。