发酵工艺控制
- 格式:ppt
- 大小:509.57 KB
- 文档页数:54
发酵工艺的控制发酵过程中,为了能对生产过程进行必要的控制,需要对有关工艺参数进行定期取样测定或进行连续测量。
反映发酵过程变化的参数可以分为两类:一类是可以直接采用特定的传感器检测的参数。
它们包括反映物理环境和化学环境变化的参数,如温度、压力、搅拌功率、转速、泡沫、发酵液粘度、浊度、pH、离子浓度、溶解氧、基质浓度等,称为直接参数。
另一类是至今尚难于用传感器来检测的参数,包括细胞生长速率、产物合成速率和呼吸嫡等。
这些参数需要根据一些直接检测出来的参数,借助于电脑计算和特定的数学模型才能得到。
因此这类参数被称为间接参数。
上述参数中,对发酵过程影响较大的有温度、pH、溶解氧浓度等。
1、温度温度对发酵过程的影响是多方面的,它会影响各种酶反应的速率,改变菌体代谢产物的合成方向,影响微生物的代谢调控机制。
除这些直接影响外,温度还对发酵液的理化性质产生影响,如发酵液的粘度、基质和氧在发酵液中的溶解度和传递速率、某些基质的分解和吸收速率等,进而影响发酵的动力学特性和产物的生物合成。
最适发酵温度是既适合菌体的生长,又适合代谢产物合成的温度,它随菌种、培养基成分、培养条件和菌体生长阶段不同而改变。
理论上,整个发酵过程中不应只选一个培养温度,而应根据发酵的不同阶段,选择不同的培养温度。
在生长阶段,应选择最适生长温度,在产物分泌阶段,应选择最适生产温度。
但实际生产中,由于发酵液的体积很大,升降温度都比较困难,所以在整个发酵过程中,往往采用一个比较适合的培养温度,使得到的产物产量最高,或者在可能的条件下进行适当的调整。
发酵温度可通过温度计或自动记录仪表进行检测,通过向发酵罐的夹套或蛇形管中通人冷水、热水或蒸汽进行调节。
工业生产上,所用的大发酵罐在发酵过程中一般不需要加热,因发酵中释放了大量的发酵热,在这种情况下通常还需要加以冷却,利用自动控制或手动调整的阀门,将冷却水通人夹套或蛇形管中,通过热交换来降温,保持恒温发酵。
2、pH值pH值对微生物的生长繁殖和产物合成的影响有以下几个方面:①影响酶的活性,当pH值抑制菌体中某些酶的活性时,会阻碍菌体的新陈代谢;②影响微生物细胞膜所带电荷的状态,改变细胞膜的通透性,影响微生物对营养物质的吸收及代谢产物的排泄;③影响培养基中某些组分和中间代谢产物的离解,从而影响微生物对这些物质的利用;④PH值不同,往往引起菌体代谢过程的不同,使代谢产物的质量和比例发生改变。
发酵工艺过程控制发酵工艺过程控制是指在发酵过程中,通过合理控制发酵的条件和参数,使发酵过程达到预期的目标,达到最佳的产品质量和产量。
发酵工艺过程控制包括发酵条件的选择、发酵参数的控制和数据采集、分析等内容。
下面将详细介绍发酵工艺过程控制的一些关键点。
首先,在发酵工艺过程控制中,发酵条件的选择非常重要。
发酵条件包括温度、pH值、氧气供应和搅拌速度等。
不同的微生物和发酵产物有其适宜的发酵条件。
一般来说,温度是一个非常关键的参数。
适宜的温度可以提高微生物的生长速率和代谢活性,从而提高产物的产量和质量。
同时,pH值也会影响微生物的生长和代谢。
合适的pH值可以提供一个适宜的酶活性和物质转运环境。
氧气供应和搅拌速度对于需要氧气的微生物来说非常重要。
合适的氧气供应和搅拌速度可以提高微生物的通气效果和溶氧量,从而提高产量和代谢产物的选择性。
其次,在发酵工艺过程控制中,对发酵参数的控制和数据采集、分析也是至关重要的。
发酵参数包括微生物的接种量、培养基成分比例、培养基的初始pH值等。
合理的微生物接种量和培养基成分比例可以提高产物的产量和质量。
同时,初始pH值的控制可以提供一个合适的环境供微生物生长和代谢。
在发酵过程中,需要对各个参数进行实时的数据采集和分析,以便及时调整和优化发酵条件。
通过数据采集和分析,可以有效地监测发酵过程的进展,及时发现并解决问题,从而提高发酵工艺的稳定性和可控性。
另外,在发酵工艺过程控制中,发酵的时间也是需要考虑的一个因素。
发酵的时间过短可能导致微生物的生长和代谢不完全,从而影响产物的产量和质量;发酵的时间过长则可能导致微生物的过度生长和细胞死亡,影响发酵过程的稳定性和可控性。
因此,需要通过实验和经验来确定合适的发酵时间,以达到最佳的产物质量和产量。
综上所述,发酵工艺过程控制是一个非常重要的领域。
通过合理选择发酵条件和控制发酵参数,以及进行数据采集和分析,可以实现对发酵过程的有效控制,提高产品的产量和质量。
发酵工艺控制概述一. 发酵体系的主要特征1. 细胞内部结构和代谢反应的复杂性2. 细胞所处环境的复杂性3. 过程系统状态的时变性及参数的多样性和复杂性影响因素多,有的因素未知,主要影响因素变化。
发酵水平主要取决于:生产菌种的特性;对工艺条件的控制(适合程度)必须了解:菌体的生理代谢规律工艺条件对发酵过程的影响及其控制发酵过程的有关变化规律常规发酵的工艺控制参数:温度、pH、搅拌转速与功率、空气流量、罐压、液位、补料速率及补料量等。
二. 发酵过程的参数检测1.直接状态参数指能直接反映发酵过程中微生物生理代谢状况的参数包括:pH、DO、溶解CO2、尾气O2、尾气CO2 、黏度、基质和产物浓度、菌体浓度(OD、DCW、湿重)等参数的检测在线检测各种传感器:pH电极、DO电极、温度电极、液位电极、泡沫电极尾气分析仪:测尾气O2和CO2含量离线检测分光光度计、pH 计、温度计、气相色谱(GC)、液相色谱(HPLC)、色质连用(GC-MS)等2.间接状态参数指利用直接状态参数计算求得的参数包括:比生长速率μ、摄氧率OUR、CO2释放率CER、呼吸商RQ、氧的得率系数YX/O 、氧体积传质系数KLa、基质比消耗速率QS、产物比生成速率Qp等综合各种状态参数,获得代谢过程的各种信息,从而对发酵过程做出相应的调整和控制,以获得最经济的发酵生产。
三. 发酵过程的代谢调控和优化1. 代谢调控以代谢(流)的调节最重要调节酶的合成量,称为“粗调”调节酶的催化活性,称为“细调”工艺控制和过程优化的实质,就是利用各种方法和手段,使细胞的外部和内部环境最适合基质和能量流向产物合成的生物途径,以获得最大的产量。
2. 发酵过程优化的一般步骤确定反映发酵过程的各种理化参数及其检测方法研究这些参数的变化对发酵过程的影响及其机制,获得最佳的范围和最适的水平建立数学模型定量描述个参数间随时间的变化关系,为过程优化控制提供依据通过计算机实施在线自动检测和控制,验证各种控制模型的可行性及其适用范围,实现发酵过程的最优控制基质浓度对发酵的影响及其控制先进的培养基组成是充分支持高产、稳产和经济的发酵过程的关键因素之一。
发酵过程中工艺参数的检测和控制引言发酵是许多生物过程中的重要步骤,广泛应用于食品工业、制药工业以及生物燃料生产等领域。
在发酵过程中,工艺参数的检测和控制对于保证产品质量和提高生产效率起着关键作用。
本文将介绍发酵过程中常见的工艺参数,以及如何通过检测和控制这些参数来优化发酵过程。
1. 温度的检测和控制温度是发酵过程中最基本也是最重要的工艺参数之一。
不同的微生物对温度的要求不同,因此在发酵过程中,需要准确地检测和控制温度以满足微生物的生长和代谢需求。
1.1 温度的检测方法常用的温度检测方法包括使用温度计、红外线测温仪以及温度传感器等。
温度计适用于小规模的发酵过程,能够直接测量液体中的温度。
红外线测温仪可以通过测量光谱的方式非接触地测量物体表面的温度,适用于大规模发酵过程中的温度检测。
温度传感器可以安装在发酵罐内,通过测量发酵液的温度来得到准确的温度数据。
1.2 温度的控制方法温度的控制可以通过调节加热或冷却系统来实现。
在小规模的发酵过程中,可以使用加热器和冷却器来控制温度。
温度传感器监测到的温度与设定的目标温度进行比较,然后通过调节加热器或冷却器的电流或气流来调整温度。
在大规模发酵过程中,还可以使用冷却水循环系统或蒸汽加热系统来控制温度。
2. pH值的检测和控制pH值是指溶液酸碱程度的指标,对于许多微生物的生长和代谢过程也起着重要作用。
在发酵过程中,pH值的检测和控制对于调节微生物的生长环境、抑制有害菌的生长以及促进产品产生等方面起着重要作用。
2.1 pH值的检测方法常用的pH值检测方法包括使用酸碱度试纸、玻璃电极pH计以及电化学传感器等。
酸碱度试纸是一种简单易用的检测方法,通过试纸的颜色变化来判断溶液的pH值范围。
玻璃电极pH计可以直接测量溶液的pH值,并给出精确的数值结果。
电化学传感器也可以被用于连续监测pH值的变化。
2.2 pH值的控制方法pH值的控制可以通过添加酸或碱来实现。
根据pH值的变化情况,通过自动控制系统来准确地调节加酸或加碱的量。
发酵工艺的过程控制引言发酵工艺是一种将有机物质通过微生物的作用转化为需要的产物的过程。
在发酵过程中,微生物通过吸收养分、产生代谢产物和释放能量,完成了物质的转化。
为了保证发酵过程的高效和稳定,控制发酵过程至关重要。
本文将介绍发酵工艺的过程控制,包括控制参数和控制策略。
1. 发酵过程的控制参数发酵过程的控制参数是指影响发酵过程的参数,包括温度、pH值、溶氧量、搅拌速度、发酵菌种等等。
这些控制参数对于发酵过程的高效和稳定起到了重要的作用。
1.温度:发酵过程中适宜的温度可以促进微生物的生长和代谢活动。
不同的发酵过程需要不同的温度,一般在微生物的最适生长温度附近,通常在25-42摄氏度之间。
2.pH值:发酵过程中的pH值对微生物的生长和代谢活动有重要影响。
不同的微生物对于pH值的需求不同,一般在微生物最适生长pH值的附近维持。
3.溶氧量:溶氧量是指发酵液中的氧气饱和度。
微生物在发酵过程中需要氧气进行呼吸和代谢活动。
合适的溶氧量可以提高发酵效率和产物质量。
4.搅拌速度:搅拌速度对于发酵液中的微生物的分散性和氧气气液传递有着重要影响。
适当的搅拌速度可以保证发酵液中的微生物充分接触营养物质和氧气。
5.发酵菌种:选择适宜的发酵菌种对于发酵过程的控制至关重要。
合适的发酵菌种应具备高发酵活力、产物合成能力和抗污染能力。
2. 发酵过程的控制策略为了实现对发酵过程的有效控制,需要采取相应的控制策略。
以下是几种常见的发酵过程控制策略。
1.反馈控制:反馈控制是根据实时的监测数据对发酵过程进行调节。
通过监测发酵过程中的温度、pH值、溶氧量等参数,将实际参数与设定值进行比较,根据误差进行反馈调整,以维持发酵过程的稳定性。
2.前馈控制:前馈控制是根据预期的发酵过程需求提前对控制参数进行调整。
通过事先设定好的控制策略,根据发酵过程中的状态进行预测和计算,提前对控制参数进行调整,以达到预期的控制效果。
3.比例积分控制:比例积分控制是通过调整控制器的比例参数和积分参数来改变控制器的工作方式。