电路原理相量法
- 格式:ppt
- 大小:1.21 MB
- 文档页数:58
第6章正弦稳态分析--相量法 (186)学习重点 (186)6.1 正弦量 (186)6.2 复数 (188)6.3正弦交流电的相量表示 (190)6.3.1问题的引入 (190)6.3.2正弦量的相量式表示 (190)6.3.3正弦量的相量图表示 (192)6.3.正弦量的相量表示的应用 (192)6.4 KCL、KVL相量形式 (194)6.5 电阻、电感和电容元件VCR的相量形式 (195)6.6正弦交流电路的阻抗、导纳及等效 (198)6.6.1阻抗的概念 (198)6.6.2 导纳的概念 (200)6.7 正弦稳态电路的一般分析方法 (201)6.7.1 相量法的原理 (201)6.7.2 相量法的一般分析过程 (202)6.7.3 相量图法 (205)6.8 有功功率、无功功率、视在功率和复功率 (206)6.9 正弦稳态电路的功率守恒 (208)6.10 正弦稳态电路的最大功率传输 (212)6.11 仿真实验 (214)习题六 (216)185186第6章 正弦稳态分析--相量法学习要点(1)正弦量的三要素及相量表示;(2)复阻抗;(3)KCL 、KVL 的相量形式;(4)有功功率、无功功率、视在功率和复功率。
电路的正弦稳态分析是重要的基础性问题,相量法是分析正弦稳态电路的简便有效的方法,重点理解为什么要引入相量法?相量法与正弦量的关系?引入相量法后,还是利用电路的两大约束,应用电路的基本分析方法,求解电路的相量响应,然后进行相量反变换求出时域响应。
本章涉及到的主要概念:三要素、有效值、相量、阻抗、有功功率、无功功率、视在功率、功率因数、复功率和最大功率传输等问题。
6.1 正 弦 量在经典电路理论中,一般把方向和大小均呈现周期性变化(交变)的电压、电流等周期函数(信号)作为基本的分析对象。
其中最重要的周期函数就是按正弦规律变化的正弦量。
可以采用sine 或cos 函数描述正弦量,本书采用cos 函数描述正弦量。
正弦交流电路的分析和计算I U 、若正弦量用相量表示,电路参数用复数阻抗()表示,则直流电路中介绍的基本定律、定理及各种分析方法在正弦交流电路中都能使用。
Cω C L ωL R R 1jj -→→→、、相量形式的基尔霍夫定律0 KCL ∑=IKVL ∑=U 电阻电路RI U =)(j L X I U =纯电感电路)j (CX I U -= 纯电容电路一般电路ZI U =相量(复数)形式的欧姆定律有功功率P有功功率等于电路中各电阻有功功率之和,或各支路有功功率之和。
iii R I P ∑=12无功功率等于电路中各电感、电容无功功率之和,或各支路无功功率之和。
)(12Ci Li ii X X I Q -=∑的相位差与为ii i I U ϕ无功功率QiQ ϕsin i ii I U ∑=1或iii i I U Pϕcos 1∑= 或一般正弦交流电路的解题步骤1、根据原电路图画出相量模型图(电路结构不变)e I i Uu X C X L R R CL →→→-→→→j j 2、根据相量模型列出相量方程式或画相量图3、用相量法或相量图求解4、将结果变换成要求的形式例1:已知电源电压和电路参数,电路结构为串并联。
求电流的瞬时值表达式。
一般用相量式计算:21212)i ,i I I I→→ 、i IZ Z Z →→→ 21 1)、分析题目:已知:V sin 2220t ωu =Ω400,Ω200Ω100,Ω501====C L X X ,R R 求: i 21i i ,+U-1R CX LX RI1I 2I解:用相量式计算V 0220︒∠=UΩj200100j 11+=+=L X R Z Ω140j j 2-=-=C X Z Ω33440240j 32050j400j200100j400)(j200)(10050︒∠=++=-+-++=Z +U-50ΩI1I 2I 100Ωj200Ωj400Ω-A 330.5334400220︒-∠=︒∠︒∠==Z U I A59.6-0.89330.5j400j200100j4002121︒∠=︒-∠⨯-+-=+=I Z Z Z IA93.80.5330.5j400j200100j2001002112︒∠=︒-∠⨯-++=+=IZ Z Z I )A33(sin 20.5︒-=∴t ωi )A 59.6(sin 20.891︒-=t ωi )A93.8(sin 20.52︒+=t ωi 同理:+U-50ΩI1I 2I 100Ωj200Ωj400Ω-例2:下图电路中已知:I 1=10A 、U AB =100V ,求:总电压表和总电流表的读数。
第八章相量法求解电路的正弦稳态响应,在数学上是求非齐次微分方程的特解.引用相量法使求解微分方程特解的运算变为复数的代数运运算,从儿大大简化了正弦稳态响应的数学运算.所谓相量法,就是电压、电流用相量表示, RLC元件用阻抗或导纳表示,画出电路的相量模型,利用KCL,KVL和欧姆定律的相量形式列写出未知电压、电流相量的代数方程加以求解,因此,应用相量法应熟练掌握:(1)正弦信号的相量表示;(2) KCL,KVL的相量表示;(3) RLC元件伏安关系式的相量形式;(4) 复数的运算.这就是用相量分析电路的理论根据.8-1将以下复数化为极坐标形式:(1) Fi=-5-j5;⑵ F2 =-4+ j3;⑶ F3 =20+j40;(4) F4=j10; (5) F5=-3; (6) F6=2.78 +j9.20o解:(1) F1 =-5-j5 = a Z0a = (-5)2 (-5)2 =5.2-5 v1-arctan ——=-135 -5 (因F1在第三象限)故F1的极坐标形式为F1=5%'2/ -135-(2) F2 =—4 + j3=C(Y)2+32/arctan⑶—4)=52143.13:(F2在第二象限)(3)F3 =20+ j40 = J202 +402N arctan(40/20) =44.72/63.43二(4) F4 =10j =10/90 二⑸ F5=-3 = 3/180 二(6)F6 =2.78 + j 9.20 = 32.782+9.202/arctan(9.20/2.78) = 9.61,73.19 :注:一个复数可以用代数型表示,也可以用极坐标型或指数型表示,即F=a1+ j a2 =a/e =ae ja它们相互转换的关系为:2 2 1-arctan—a〞0 a2 a i和a1 = acosi a2= asin?需要指出的,在转换过程中要注意F在复平面上所在的象限,它关系到日的取值及实部a i和虚部a2的正负.8-2将以下复数化为代数形式:〔1〕F i=10/—73;〔2〕F2 =15/112.6:;〔3〕F3 =1.2/152;〔4〕F4=10/-90 :〔5〕F i =5Z-180=;〔6〕 F i =10/ -1351解:〔1〕 F i =10/— 73°=10xcos〔—73二〕十j10xsin〔—73〕= 2.92 —j9.56⑵ F2=15/112.6〞 = 15cos112.6、15sin112.6' = -5.76+j13.85〔3〕 F3 =1.2/152 口=1.2cos152' + 1.2sin152 0 = —1.O6 + jO.56〔4〕F4 =10=-90*=-jIO〔5〕F1 =5/-180口= -5〔6〕 F i =10/-135,0cos〔-135:〕+10sin〔-135二〕=-7.07-j7.078 —3假设IO./.“十A260 °= 175/中.求A和中.解:原式=100+ Acos600+ ja sin600=175c o s9 + j175s in中根据复数相等的定义,应有实部和实部相等,即Acos60 100 =175cos虚部和虚部相等Asin60 =175sin「把以上两式相加,得等式A2 100 A -20625 -0-100主,1002+4乂20625 1 102.07A = ---------------------------------- 二+解得 2 「202.069.3102.07 ——Asin602sin =-------------- = --------------- — 175 175=30.348-4求8—1题中的F ,F6和F 2/F6.解:F 2 F6=(—4 j3) (2.78 j9.20) =5 143.13 9.61 73.19= 48.05. 216.32 =48.05. -143.684 j3 5. 143.13F 2 F6 = ------------ --- = ----------------- = 0.52 69.942.78 j9.20 9.61 73.198 — 5求8 —2题中的F 1 +巳和E/F 5 o解:F 1 F 5 - 10. - 73 5. - 180= 10cos(-73 ) j10sin(-73 ) -5 =-2.08 - j9.56 =9.78 -102.2710. -73F 1 F 5= ---------------------------- = 2 -73180 =2 1075/-1808 —6 假设.i 1 = -5cos(314t +60)Ai 2 = 10sin(314t + 60)A,i 3 =4cos(314t 60 )A(1)写出上述电流的相量,并绘出它们的相量图; (2)1与心和i1与)的相位差;(3)绘出3的波形图;(4)假设将3表达式中的负号去掉将意味着什么? (5)求的周期T 和频率f .解:(1) i 1 二 一5cos(314t+601 =5cos(314t+60 = —180=) =5cos(314t —120bi 2 =10sin(314t 60 ) = 10cos(314t - 30 )=0.505 所以故i 1 , i 2和i 3的相量表达式为(4)假设将i i (t)中的负号去掉,意味着i i 的初相位超前了 180二.即i i 的 参考方向反向.(5) i i (t)的周期和频率分别为2 二 2 二T =——= ------ =0.02s = 20ms314 .1■ ■1f =一 =——= ---- =50 HzT 2 二 0.02注:定义两个同频率的正弦信号的相位差等于它们的初相之差,因此在 比拟相位差时,两个正弦量必须满足(1)同频率;(2)同函数,即都是正 弦或都是余弦;(3)同符合,即都为正号或都为负号,才能进行比拟.8-7 假设两个同频正弦电压的相量分别为U i =50/30 V ,5 =T00/-150 V ,其频率 f=100Hz .求:5I i : 一 120 A,1210 4:——30 A,13 :——60 A2 2(3) i i (t)的波形图见题解图(b)所示.13 =1 - 3 - -120 -60 - -180其相量图如题解图(a)所示.(1)写出u i,出的时域形式;(2) 3与弘的相位差.(1)u1(t) = 50.. 2 cos(2 ft 30 ) = 50 .. 2 cos(628t 30 )Vu2(t) =-100.2cos(2二ft-150 ) =100..2cos(628t-150 =180 )V 二100,2cos(628t 30 )V(2)由于U1=50. 30 V ,U2=-100/-150 V =100. 30 V故相位差为中=30<30' = 0:即u1与u2同相位.8-8 :3(t) =22072cos(314t—120 1Vu2(t) =220,2 cos(314t 30 )V(1)画出它们的波形图,求出它们的有效值、频率f和周期T;(2)写出它们的相量和画出其相量图,求出它们的相位差;(3)如果把电压电的参考方向反向,重新答复(1), (2).解:(1)波形如题解8—8图(a)所示.有效值为u1 =u2 = 220V u2314f1 = f2 =——= ---------------------- =50Hz频率2二2二1 1T1 = T2 0.02 s周期 f 50(2) 5和弘的相量形式为U1 =220 -120 V U2=220 30 V故相位差为 =i - :2 =-120 -30 <-150 相量图见题解图(b)所示.(3)U2的参考方向反向,u2 (t)变为一u2 (t),有效值、频率和周期均 不变,—U 2(t )的相量为 U'2 =220/30—180口=200/—150V故U1和U2的相位差为*=91-中2=-120 -(-150)=30 波形图和向量图见题解图(a)和(b).8 — 9一段电路的电压、电流为:3,u =10sin(10 t - 20 )V i =2cos(103t -50 )A(1)画出它们的波形图和向量图;(2)求出它们的相量差.33解:(1) u =10s lM10 t—20 )=10cos10 t —110 )V ,故 u 和 i 的相量分别为U a =22072cos 侬t +10)V , U b =22045cosgt -110 =)V , U c = 220 2 cos( t 130 )V求:(1) 3个电压的和;(2) U ab ,U bc ; (3)画出它们的相量图--------- ------------- 0 .2 I =-50 A210U =-110 V60 o8-10图示三个电压源的电压分别为:u(a) +1 -------处+e ; c ~ +题解8—10图解:“,u b, U c的相量为U a = 220 10 VU b=220. -110VU c =220. 130 V(1)应用相量法有U a U b U c=220 10 220/ -110 220 130a c=0即三个电压的和u a⑴u b(t) u c⑴=0⑵ U ab =U a -U b =220/10 220/-110 := 220 3 40 VU bc =U b -U c =220 -110 -220 130= 220.3 -80 V(3)相量图如题解8—10图所示u c(a)中电压表读数为V 1:30V ; V 2:60V ;图(b)中的V 1 :15V ; 100V .(电压表的读数为正弦电压的有效值.)求图中电压U s .题8—11图解法一:(a)图:设回路中电流「=1/0:根据元件的电压、电流相量关系,可得题8-11图U R = RI = RI 0 =3.0 V U L = jX L l = X L I 90 =6.90 V那么总电压 U S =U R -U L =30 • j60V所以U s 的有效值为US =痴2 +602 = 67.08V(b)图:设回路中电流相量I =1/0二A,由于U R = RI = RI 0 =15 0 VU L —X L I =X L I 90 =80 90 V8-11 图 V 2 :80V . V 3 :题解8—10图元件相量关系后效值关系相位关系相量图电阻R UR = RI R U R =RI R仇=%U C=-jX C I =X C I -90 =100 -90 V所以总电压U S =U R U L U C =15 j80 -100j =15-j 20V故U s的有效值为U S=J132+202=25V解法二:利用相量图求解.设电流「=1/0 '为参考相量,电阻电压U R与「同相位,电感电压U L超前I'90 :电容电压U c要滞后「90[总电压U s与各元件电压向量构成一直角三角形.题解8-11图〔a〕和〔b〕为对应原图〔a〕和〔b〕的相量图.由题解图〔a〕可得U S = . U R U L = 302 602 = 67.08V由题解图〔b〕可得U S = ,U R 〔U C-U L〕2 = 152〔100 -80〕2 = 258V题解8—11图注:这一题的求解说明,R, L, C元件上电压与电流之间的相量关系、有效值和相位关系〔如下表所示〕是我们分析正弦稳态电路的根底,必须很好地理解和掌握.电感LU L = jX L I LU L = jX L 「 仇=仇+90二电容CU C = - jX C I C U C = X C I C仇=d -90二1 -----------------------------8—12图示正弦电流电路中,电流表的读数分别为 A :5A ; A 2:2°A;A 3 :25A o 求:〔1〕图中电流表A 的读数;〔2〕如果维持A 的读数不变,而把电 源的频率提升一倍,再求电流表 A 的读数.解法一:〔1〕 R, L, C 并联,设元件的电压为U R 二二U L 二U C 二U 二U 0根据元件电压、电流的相量关系,可得U U I R5/0 AR RU UI L =——=——-90 A - - j20A jXL X L应用KLC 的相量形式,总电流相量为I = I R I L I C =5-j20 j25 = 5 j5 =5' 2 45 A故总电流表的读数.・' =I =5、.2 =7.07A(2)设U R ==U L =U C =U -U — 0U U,,…—『一 ,、一 , I R =- =— =5,0 A. 当电流的频率提图一倍后,由于 R R不变,所以UR -U不I CU- jX C90 = 25 90 = j 25A题8—12图U UIc == = 2 25. 90 =50. 90 A一jX C _j ; 2 cI =I R I L 1c =5-j10 j50 =5 j40即,电流表的读数解法二: 利用相量图求解.设U =U /00=U R =U L =Uc 为参考向量,根据元件电压、电流的相位关系知,I R 和U 同相位,1c 超前90: I L 滞后U 901 ■ ■ ■ 相量图如题解8—12图所示,总电流「与I R, I c 和I L 组成一个直角三角形.故 电流表的读数为... =\IR(I c -I L )2A即 (1)@ =,52 +(25 -20)2 =7.07A⑵ @ =,52 +(25 -10)2 =40.31A注:从8—11题的解法二,可以体会到应用向量图分析电路的要点,那就是 首先要选好一个参考相量,这个参考相量的选择,必须能方便地将电路中其它电变,而X L =2^L 增大一倍,26C 减小一倍,因此,有U 1 ——=—20.jX L j2 L 2所以A - -52 402 -40.31A题解8—12图压、电流相量,根据电路的具体结构及参数特点逐一画出,把所给的条件转化成 相量图中的几何关系.最后根据相量图中的相量关系,使问题得到解决.一般对 串联电路,选电流作参考方向较方便,如 8-11题.对并联电路,那么选电压作参 考相量较方便,如8-12题.有些问题通过相量图分析将很直观和简便.8-13 对RL 串联电路作如下两次测量:(1)端口加90V 直流电压=0)时, 输入电流为3A; (2)端口加f =50H z 的正弦电压90V 时,输入电流为1.8A .求R 和L 的值.题解8—13图解:由题意画电路如题解8—13图所示.(1)当u s 为90V 直流电压时,电感L 看作短路,那么电阻RU-(2)当u s 为90V 交流电压时,设电流「=1/0口=1.8/0二A,根据相量法,U S = RI jX L I =30 1.8 jX L 1.8 U S =90 = 1.8 , 302 X i 2X L= (90)2 -302 =40 】1.8, X L X L 40L = ----- = ------- = -------- 解得 • 2开 100二8-14某一元件的电压、电流(关联方向)分别为下述 4种情况时,它可能是U0.127H 庆什么元件?'u =10cos(10t 十 45 1V (D i =2sin(10t +135)AU = 10. 45 V2即电压、电流同相位,根据元件电压、电流相位关系可知这是一个 5建的电阻元件.(1)把电压变为余弦形式有u=cos(100t - j 90 )V102 U 45 I =0 A(2) u 和i 的相量为J 2V 2U5一二5 45 (1 j); R jX L 那么I.. 255R : ---- :. iX L :--- :. i即这是一个 「2 的电阻和v 2 的电感的串联组合.3,、.,8—15电路由电压源u s n 00 cos(10 t)V 及R 和L= 0.025H 串联组成.电感端电 压的有效值为25V .求R 值和电流的表达式.解:由题意画电路的相量模型如题解 8—15图(a)所示,相量图如题解图 (b)所示.由于100U.2 0X L = L=103 0.025= 25」u =10sin(100t)V(2) i =2cos(100t)AU = -10costV (3) 、i=-sintA;u = 10cos(314t+451V (4)、 i =2cos(314t)A解:(1)把电流变为余弦形式有= 2cos(10t +135、901=2cos(10t + 45°)A,u和i 的相量为题解8—15图由图〔b〕知电阻电压的有效值为U R 66.144R = —R = -------- =66.144' 1所以电阻为I 1「滞后U S的角度(由于是感性电路)为.U L . 25Z= arcsin——=arcsin -------- -- - 20.70U S100 2因此电流的瞬时表达式为i(t) = 2cos(103t -20.70 )A100■ _________I U S— = ------------------------ 2—— =1 -20.70 A也可根据R jX L 66.144 j25得i(t) = 2cos(103t -20.70 )A8-16图示电路I1 =I2 =10A.求I和U S.■ ■ ■ ■ ■解:设U S为参考相量.I1与U S同相位,I2超前U S901相量图如题解8-题解8—16图题解8—16图I = J l2-12 = J102・ 102 =10、,2 A12Z= arctan = arctanl = 4511由电路图知U S = RI1 =10 10 = 100V故U s和「分别为U S -100. 0 VI = I. :Z =10,2 45 A8-17图示电路中1s=2/0 A.求电压u o■■' u u1s = I R ' I L =二 '解:R jX Lu - I S -2 0= 2 45V1 .2 —451即j题8—17图。