高分子材料废物处理-02循环原理
- 格式:ppt
- 大小:2.88 MB
- 文档页数:92
高分子材料论文:高分子材料的循环利用研究-化工高分子材料论文:高分子材料的循环利用研究摘要:随着社会的不断进步,高分子材料在我国的使用量也在逐年的上升,但是也正是因为如此,高分子所产生的废物也在逐年的增多。
同时经济的不断发展,能源的不断使用,使我国的资源走向匮乏,所以对于高分子材料的循环利用就显得更加的重要。
本文就是对高分子材料的循环利用进行详细的阐述。
关键词:高分子材料;循环利用;解决策略所谓高分子材料就是指以高分子为基础形成的材料,在现在的生活中,以高分子材料构成的材料较多,橡胶、塑料、纤维、涂料和高分子基复合材料等等。
高分子材料在生活的大量出现,使高分子材料废旧物也大量出现,所以对于高分子材料的循环利用也显得格外重要。
现在对高分子材料循环一般都是采用生物降解的方式,生物降解的方式大概分为三种:生物细胞的不断增长对物质产生机制性的破坏;微生物的对聚合物进行作用,在聚合物内产生新的物质;通过酶的作用使高聚物内的化学键产生断裂,从而实现降解。
高分子材料的生物降解主要经过两个过程:首先是微生物的水解酶与高分子材料中的化学键结合,将化学键断裂,这样化学键就从原来高分子转变为多个小分子化合物。
之后,被分解掉得化合物就会被微生物吞噬,最终转化为二氧化碳与水。
但是现在对生物降解技术的机理所了解的还不是特别清楚,生物降解技术不仅与材料的本身有关,还与材料所在的环境有关。
一、高分子分解材料可循環使用的类型(一)微生物生产型所谓微生物生产型就是各种微生物合成的一种高分子类型,这样的高分子材料的主要构成形式是生物聚酯、微生物多糖。
这样的类型材料更易于分解,而且分解后所产生的物质还不易对环境造成污染,所以微生物分解型材料更适用于制造可降解塑料袋。
(二)合成的高分子合成的高分子材料以脂肪族聚酯、芳香族聚酯以及聚酰胺为代表,这类聚酯更易于进行生物的降解。
但是,脂肪族聚酯在使用的过程中存在着一些问题,例如熔点低、强度与耐热性都不够。
废旧聚合物材料的化学循环利用摘要:本文在介绍高分子废料循环方法之后,着重综述各种聚合物材料化学循环的状态及其发展,并描述了化学循环的工艺及其设备,最后对化学循环的发展趋势和前景进行讨论。
关键词:聚合物废料再循环化学再循环回收与利用化学循环是聚合物材料循环的重要方法之一,它指的是在热和化学试剂的作用下高分子发生降解反应,形成低分子量的产物,产物可进一步利用,如单体可再聚合,油品可进行深度加工。
目前化学循环的主要方法是化学降解化学降解可分为解聚、热裂解、加氢和气化。
一、聚合物材料化学循环发展的现状1.逐步聚合型高分子材料逐步聚合型高分子材料主要包括聚酯、聚氨酯,聚酯以聚对苯二甲酸乙二醇酯为代表。
主要用于薄膜、纤维及织物、饮料瓶等。
废料在催化剂存在下能与多元醇发生反应,其产物与不饱和多元酸缩合可以制成不饱和聚酷树脂。
用不同醇来醇解可获得不同的酯,或用作单体或用作增塑剂。
PET可在酸性或碱性条件下水解,在强酸(如硫酸、硝酸)介质中可常压水解,水解速度很快,但是酸性水解的耗酸量大,还会腐蚀设备,在实际使用中受到限制;若在碱性(如NaOH)水溶液中水解,需在210~2500C、1.4~2.0MPa条件下反应3~sh,反应结束立即用强酸中和,可沉淀出TPA。
弱碱(如氢氧化钱)也可以用来水解PET废料,获取原料单体。
常压下的皂化反应已应用于回收PET胶片中的银和TPA。
聚氨酯是缩聚型高分子材料,可以水解成多元醇和多元胺,利用特制的挤出机水解,产物经纯化可得到二元酸和二元胺,二元胺再与光气反应,制备二异氰酸酯,用于泡沫塑料生产。
但此工艺路线的费用大,回收效益不高。
PU醇解是目前用得比较多的途径,醇解PU废料可获得多元醇混合物,这种混合物目前还不能有效地分离开来,但这种产物可用作泡沫塑料和弹性体制造中的组分。
2.加聚型聚合物材料聚苯乙烯(PS)除用作涂料、粘结剂等外,还用来裂解制苯乙烯。
PS在热的作用下可以裂解成苯乙烯,其产率在65%,以上。
高分子材料复合与废弃物资源化利用随着现代化的进展,高分子材料已经成为了我们日常生活中不可或缺的一部分。
从塑料袋、塑料瓶、手机、电视、电脑等电子设备到汽车、飞机、火车等交通工具,高分子材料的应用范围非常广泛。
同时,伴随着高分子材料的广泛使用,废弃物的产生也不断增加。
因此,高分子材料复合和废弃物资源化利用已成为了一个非常重要的问题。
高分子材料复合高分子材料复合是利用两种或多种不同的高分子材料,通过加工的方式将它们复合在一起,使得新复合材料具有各自单一材料所不能体现的一些性能。
例如,将聚丙烯(PP)和聚乙烯(PE)进行共混,可以得到一种具有更高韧性、更好耐用性和更好抗撕裂性的材料。
将聚氨酯(PU)和聚丙烯酸酯(PMMA)进行复合,可以得到一种既有PU的弹性又具有PMMA的透明度的材料。
高分子材料的复合可以使得新材料的性能得到显著提升,因此在各个领域都得到了广泛应用。
例如,在建筑材料领域,复合材料可以具有更好的隔热性能、防火性能和耐久性;在汽车领域,复合材料可以具有更好的轻量化、抗风化性能和机械强度等性能。
此外,复合材料还可以具有自修复性能、防水性能、耐腐蚀性能等。
废弃物资源化利用随着高分子材料的广泛使用,大量废弃物也会随之产生。
目前,对于高分子材料的废弃物处理主要有焚烧和填埋两种方式,但这两种方式都有其缺点。
焚烧会产生大量的二氧化碳等有害气体,影响环境;填埋会占用大量的土地资源,并且由于高分子材料的分解需要很长时间,废弃物也会长时间占用土地。
因此,废弃物资源化利用成为了一种有效的处理方式。
废弃物资源化利用的方法可以包括物理方法、化学方法和生物方法。
其中,物理方法主要是对废弃物进行分离、分类和加工;化学方法主要是对废弃物进行化学反应和转化;生物方法主要是通过微生物等生物体将废弃物转化为有用的物质。
高分子废弃物资源化利用的方法包括再生和回收利用两种。
废弃高分子材料可以通过再生的方式得到新的高分子材料,或者通过回收利用的方式得到新的其他的有用物质。
废旧聚合物材料的化学循环利用摘要:在社会经济的不断发展过程,我国化工业也得到了突飞猛进的发展,但是在化工业发展过程中或多或少的会产生一定的废旧聚合物材料,此文章详细分析了废旧聚合物材料的化学循环利用的方法,并且对化学循环的工艺和设备进行了详细的描述,最后深入的套路了化学循环的发展趋势和发展前景。
关键词:聚合物废料再循环;化学再循环;回收;利用前言:一、详细分析了如今聚合物材料化学循环发展的现状1.对逐步聚合型高分子材料进行有效的分析在化学工业生产中,我聚合型高分子材料也是多种多样的,比如说聚酯和聚氨酯等,其中化学成分的苯二甲酸已和二醇酯是聚酯的代表花絮成分,通常这种成分在人们日常生活中随处可见,比如说薄膜、纤维衣物以及塑料瓶等。
当化学废料在催化剂作用下与多元醇之间能够产生一定的化学反应,然后把其产物与不饱和多元酸缩合之后有利于聚酷树脂的形成。
我们在利用不同的醇化学反应生成的脂也是有所不同的,不仅可以当作单体利用,而且还可以当作增塑剂来进行利用。
在酸性和碱性的环境下,PET能够得到有效的水解,如果要是在硫酸或者亚硝酸的介质中,会在很大程度上增强水解的速度,不过其酸性水解消费的酸度不仅较强,而且较大,从而很容易导致先关的仪器设备出现腐蚀现象,从而限制了使用性能。
如果要在碱性水解中,也就是说要在210C-2500C和1.4MPa-2.0MPa的硬性条件下有相应的化学反应,此时使强酸得到了有效的中和,同时在沉淀之后可以得到TPA。
另外在水解PET废料过程中还利用到氢氧化钱,从中通过化学反应也可以取得一定分量的原料单体。
聚氨酯这种缩聚型高分子材料不仅可以水解成元醇,而且还可以水解成多元胺,然后通过对特制剂的利用,不但可以炼化成二元酸,而且还可以炼化成二元胺,通过光气进行相应的反应,其产生的二异氰酸酯可以有效的利用在泡沫塑料的制造。
通常这种工艺路线其成本较大的耗费,同时不具备较高的回收效益。
如今我们使用较多的就是PU醇解,多元醇混合物就在醇解的过程中产生,通常这种混合物不具有一定的分离性质,在泡沫生产中可以充分利用这种产物。
论高分子材料的回收利用【摘要】随着我国国民经济的不断发展,环境污染问题也日益严重,化工行业渗透在各个方面,与人们的衣、食、住、行密切相关,是国民经济十分重要的一部分,而化工环保也就显得尤为重要。
这其中对原材料成本和副产品循环利用效率为重中之重。
本文综述塑料、橡胶、复合材料和其他交联高分子材料回收利用现状和进展,简述了废弃高分子材料回收利用存在的科学与技术问题及其发展方向。
目前全球高分子聚合物的产量已超过2亿吨,高分子材料在生产、处理、循环、消耗、使用、回收和废弃的过程中也带来了沉重的环境负担。
聚合物废料的来源主要有:1、生产废料:生产过程中产生的废料如废品,边角料等。
其特点是干净,易于再生产;2、商业废料:一次性用于包装物品,电器,机器等包装材料,如泡沫塑料。
3、用后废料:指聚合物在完成其功用之后形成的废料,这类废料比较复杂,其污染程度与使用过程,场合等有关,相对而言污染比较严重,回收和利用的技术难度高,是材料再循环研究的主要对象。
我国每年废弃塑料和废旧轮胎占城市固态垃圾重量的10%,体积30-40%,难以处理,形成所谓“白色污染”(废弃塑料)和黑色污染(废弃轮胎),影响人类生态环境,也影响高分子产业自身的进一步发展。
因此废弃高分子材料的回收利用对建设循环经济、节约型社会意义重大。
【关键字】高分子材料化工环保回收利用1、国内外废弃高分子材料的回收利用研究及现状1.1国内外废弃高分子材料的回收现状废弃高分子材料又叫废弃塑料,随着高分子材料工业的发展,塑料制品的应用也日益广泛,已成为人们生活中不可缺少的重要组成部分,2000年全世界塑料总产量已超过一亿一千万吨,中国总消费两也超过数百万吨,随着塑料产量的增加,废弃塑料数量也在不断增加,全球废弃塑料量也已经达到四千万吨,已成为全世界的“白色污染”,这是环境保护的一大公害,已造成资源的巨大浪费。
由此,已引起全世界各国政府的重视和关注,根据各个国家的实际情况,有的国家投入巨大资金进行治理,美国采取限制塑料的生产,我国政府也非常重视,三令五申,严禁乱扔塑料薄膜袋,减少或杜绝“白色污染”。
高分子废弃物降解技术的研究进展摘要:合成高分子材料在问世之后,凭借着高强度、价格低、耐腐蚀性的特点,在工业、农业和交通等方面广泛的应用。
但是在这个过程中,很多高分子废弃物因为有着非自然降解性,给环境造成较大的影响,尤其是塑料饭盒、塑料袋等一次性产品的大量使用,已经造成十分严重的白色污染,研究出有效地降解技术就是当前急需解决的问题。
在现阶段,国内外研究较多的技术有固相剪切粉碎技术、超临界水降解技术、微生物的降解技术和能场降解技术。
下面就基于作者实际故障经验,简要的分析高分子废弃物降解技术。
关键词:高分子废弃物;固相剪切粉碎;微生物降解1 固相剪切粉碎技术分析作为一种连续化聚合物粉碎加工技术,固相剪切粉碎技术主要是一个固相状态下的动力学过程,利用压力场、剪切力场的共同作用使得聚合物材料在其熔点或者是玻璃化温度一下发生弹性变形粉碎。
在实际的粉碎过程中,所产生的力化学效应使得不相容聚合物增容,高分子树脂自增塑,可以有效的促进组分粘度相差三个数量级的聚合物混合物有效混合。
固态剪切粉碎设备,结构主要包含排列于挤出机主轴上的一系列捏合、剪切单元,并且配置了加热、冷却的部件,高分子研究所的设计磨盘型化学反应器是这样一种新型的加工设备,该设备可以用于几何无微粉的制备、高分子力化学应,还可以应用在共碾磨不同聚合物微粉的制备、高分子力化学反应,还可以用于共碾磨不同聚合物比如说:P66/pp,制备复合微粉,制备聚合物/金属、聚合物/非金属纳米复合材料。
在现阶段,固相剪切粉碎技术主要是应用在废PE、PP、PS、PVC和废橡胶等再生。
2 超临界水降解技术超临界液体主要是指温度、压力分别高出其固有临界温度、临界压力所处的特殊流体状态,超临界水的密度随着温度、压力的变化而不断改变,并且氢键数量得到明显的下降,介电常数值类似于非极性有机物的,因而能溶解非极性的有机物,密度迅速的下降时,其黏度和空气的接近,使得超临界水中的溶质分子扩散变得十分容易。
高分子材料的循环利用研究作者:杨康来源:《科技风》2017年第06期摘要:随着社会的不断进步,高分子材料在我国的使用量也在逐年的上升,但是也正是因为如此,高分子所产生的废物也在逐年的增多。
同时经济的不断发展,能源的不断使用,使我国的资源走向匮乏,所以对于高分子材料的循环利用就显得更加的重要。
本文就是对高分子材料的循环利用进行详细的阐述。
关键词:高分子材料;循环利用;解决策略所谓高分子材料就是指以高分子为基础形成的材料,在现在的生活中,以高分子材料构成的材料较多,橡胶、塑料、纤维、涂料和高分子基复合材料等等。
高分子材料在生活的大量出现,使高分子材料废旧物也大量出现,所以对于高分子材料的循环利用也显得格外重要。
现在对高分子材料循环一般都是采用生物降解的方式,生物降解的方式大概分为三种:生物细胞的不断增长对物质产生机制性的破坏;微生物的对聚合物进行作用,在聚合物内产生新的物质;通过酶的作用使高聚物内的化学键产生断裂,从而实现降解。
高分子材料的生物降解主要经过两个过程:首先是微生物的水解酶与高分子材料中的化学键结合,将化学键断裂,这样化学键就从原来高分子转变为多个小分子化合物。
之后,被分解掉得化合物就会被微生物吞噬,最终转化为二氧化碳与水。
但是现在对生物降解技术的机理所了解的还不是特别清楚,生物降解技术不仅与材料的本身有关,还与材料所在的环境有关。
一、高分子分解材料可循环使用的类型(一)微生物生产型所谓微生物生产型就是各种微生物合成的一种高分子类型,这样的高分子材料的主要构成形式是生物聚酯、微生物多糖。
这样的类型材料更易于分解,而且分解后所产生的物质还不易对环境造成污染,所以微生物分解型材料更适用于制造可降解塑料袋。
(二)合成的高分子合成的高分子材料以脂肪族聚酯、芳香族聚酯以及聚酰胺为代表,这类聚酯更易于进行生物的降解。
但是,脂肪族聚酯在使用的过程中存在着一些问题,例如熔点低、强度与耐热性都不够。
但是芳香族聚酯和聚酰胺在一定程度上却弥补了这些缺点,使熔点和强度都有所提高,是一种使用性很强的高分子材料。
高分子材料资源的综合利用与环境保护课件日期:目录•高分子材料概述•高分子材料的生产工艺及资源利用•高分子材料资源的综合利用•高分子材料与环境保护的关系•高分子材料资源的综合利用与环境保护的前景与挑战•案例分析高分子材料概述高分子材料定义高分子材料是指由大量重复的单元组成的材料,通常由共价键连接,其分子量通常在104~106道尔顿之间。
高分子材料分类高分子材料可根据其来源分为天然高分子材料和合成高分子材料。
天然高分子材料如纤维素、淀粉、蛋白质等,而合成高分子材料包括塑料、橡胶、纤维等。
高分子材料的定义与分类高分子材料在建筑领域中广泛应用于防水材料、保温材料、装饰材料等。
建筑领域高分子材料在电子电器领域中用于制造绝缘材料、导电材料、光学材料等。
电子电器领域高分子材料在汽车制造领域中用于制造汽车零部件、汽车内饰等。
汽车制造领域高分子材料在医疗领域中用于制造医疗器械、药物载体等。
医疗领域高分子材料的应用领域提高高分子材料的性能,如耐高温、耐腐蚀、高强度等,以满足各种领域的更高要求。
高性能化环保化智能化发展可降解、可循环利用的高分子材料,以减少对环境的污染。
将高分子材料与传感器、微电子等技术结合,实现智能化应用。
03高分子材料的发展趋势0201高分子材料的生产工艺及资源利用阐述高分子材料的基本合成原理,包括自由基聚合、离子聚合和配位聚合等。
聚合反应原理介绍高分子材料的常见合成方法,如乳液聚合法、悬浮聚合法和溶液聚合法等。
合成方法绘制高分子材料生产工艺流程图,详细标注各步骤和反应条件。
工艺流程图高分子材料的生产工艺流程资源高效利用探讨如何提高资源利用率,减少浪费,采用可持续的生产方式。
原料来源说明高分子材料的主要原料来源,包括石油、煤炭、天然橡胶等。
节能减排措施介绍生产过程中的节能减排措施,如余热回收、废物再利用等。
高分子材料生产过程中的资源利用列举高分子材料生产过程中产生的废弃物种类,如废水、废气、废渣等。
关于高分子材料的循环利用探讨摘要:近年来,科学技术的不断发展,使得高分子材料得到了广泛的应用。
本文首先介绍了高分子材料的分类,并基于我国建设资源节约型社会的背景,探讨了实现高分子材料循环利用的方法,希望能够对相关的工作有所帮助。
关键词:高分子材料;循环;化学反应引言虽然我国高分子材料的生产和制作水平居于世界领先地位,但是也产生了大量的废弃物,在浪费资源的同时造成了不小的环境污染,所以探讨高分子材料的循环利用是一件十分重要的事情。
1.高分子材料的分类通常情况下,生产和生活中常见的高分子材料主要有三类:第一类:微生物聚合型。
指的是微生物通过聚合的方式形成高分子材料,常见的有微生物多糖和微生物聚酯,因为在自然环境下很容易分解,所以这种高分子材料更多地用于制造生活中的塑料袋。
第二类,高分子合成型。
典型的代表是芳香族聚氨酯以及苯酚酰胺,它们具有熔点高和韧性好的特点,在工程材料中应用广泛,但是可降解性较低,需要进一步合成。
第三类,天然高分子型。
自然界中广泛存在的纤维素以及木质素等,都是降解性很好的天然高分子,可以制成农村土地常用的薄膜,但是需要注意的是,纤维素自身耐水性较差,需要进行混合加工。
2.高分子材料循环利用的方法传统的废弃物处理方法主要是填埋或者是焚烧,不仅污染了水源,占用了土地,还产生二氧化硫、氮氧化物等有毒气体,更浪费了大量的资源,所以对废旧的高分子材料采取循环利用的方法,既能够节约资源,同时还能保护环境。
大致而言,高分子材料循环利用的方法主要有以下三种:2.1物理方法物理方法分为两种,第一种,简单利用。
比如对高分子材料进行回收和分类,再统一清洗和破碎,之后直接加工,常见的一些建筑板材或者是管壁,可以加工成电线护管[1]。
这种循环利用的方法十分简单,并不需要添加额外的材料,但是制成的产品性能较差,只能充当次级品。
第二种,改性利用。
目前这种技术应用较广,并且通过机械混合以及加工的方法,对材料的性质进行改造和升级,可以显著提高材料的性能,但是工艺较为复杂,常常涉及到特殊的装置和设备。
可降解高分子材料循环利用探讨【摘要】虽然,我国目前的高分子材料生产和使用已跃居世界前茅,但是随之而来的是每年产生几百万吨高聚物废旧物。
我们迫切需要对其进行生物可降解,从而减少对人类及环境的污染。
本文着重探讨一下高分子材料的循环利用途径。
【关键词】高分子材料可降解循环利用1 生物可降解高分子材料的含义及降解机理生物可降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。
生物可降解的机理大致有以下三种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。
一般认为,高分子材料的生物可降解是经过两个过程进行的。
首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。
因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。
到目前为止,有关生物可降解的机理尚未完全阐述清楚。
除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。
生物可降解高分子材料的降解除与材料本身性能有关外,还与材料温度、酶、PH值、微生物等外部环境有关。
2 生物可降解高分子材料的类型按材料来源,生物可降解高分子材料可分为天然高分子和人工合成高分子两大类。
按用途分类,有医用和非医用生物可降解高分子材料两大类。
按合成方法可分为如下几种类型。
2.1 微生物生产型通过微生物合成的高分子物质。
这类高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染环境的生物可降解塑料。
2.2 合成高分子型脂肪族聚酯具有较好的生物可降解性。
但其熔点低,强度及耐热性差,无法应用。
芳香族聚酯(PET)和聚酰胺的熔点较高,强度好,是应用价值很高的工程塑料,但没有生物可降解性。