泥页岩储层岩石力学特性及脆性评价
- 格式:pdf
- 大小:562.96 KB
- 文档页数:7
页岩气储层岩石力学特性及井壁稳定性分析页岩气是一种非常有前景的能源资源,其储层岩石力学特性和井壁稳定性对于开发和生产页岩气十分重要。
本文将详细分析页岩气储层岩石力学特性和井壁稳定性,并探讨其影响因素和解决方法。
1. 页岩气储层岩石力学特性页岩气储层岩石具有以下几个主要的力学特性:1.1 低渗透性:由于页岩中孔隙度低、连通性差,储层渗透率低,导致气体难以流通和开采。
1.2 脆性:页岩岩石易于破裂和碎裂,在压力作用下容易萌生裂缝,但裂缝的扩展能力有限,对气体渗透性的改善作用有限。
1.3 维持力弱:页岩岩石强度较低,常常呈现脆性破裂,难以在高温高压环境下维持稳定。
1.4 孔隙结构复杂:页岩储层的孔隙结构相对于传统储层来说较复杂,主要包括纳米孔隙和裂缝孔隙,这对储层渗流特性和岩石力学性质产生影响。
2. 井壁稳定性分析井壁稳定性是指井壁在钻井和生产过程中不发生塌陷、裂缝和滑移等现象的能力。
页岩气储层的井壁稳定性主要受到以下几个因素的影响:2.1 初始地应力:页岩气储层通常位于深部地层,初始地应力较高。
高差异性地应力使得井壁容易发生塌陷和滑移。
2.2 井壁液压:钻井液和地层流体与井壁之间的相互作用会改变井壁的力学性质,进而影响井壁稳定性。
2.3 复杂的页岩岩石力学特性:页岩岩石具有复杂的力学特性,对井壁稳定性的影响也较大。
岩石破碎、断裂和固结都会导致井壁的变形和破坏。
2.4 井壁支撑能力:井壁支撑材料的选择和加固对于井壁稳定性至关重要。
针对这些影响因素,可以采取以下措施来提高页岩气储层的井壁稳定性:1. 优化钻井液:选择适当的液相比重、粘度和有效抑制剂,减小与地层的相容性差异,降低井壁液压引起的问题。
2. 加强井壁支撑:选择适当的井壁支撑材料,如钢夹心井壁、钢网井壁等,提高井壁的强度和稳定性。
3. 预防井壁塌陷:通过合理的斜井设计、优化固井技术和有效的井壁支撑材料,减少井壁塌陷的风险。
4. 精确控制钻井参数:合理控制钻井参数,如钻井液性质、钻进速度和饱和度等,减少对井壁的损害。
页岩气储层脆性评价方法研究摘要页岩气储层在近年来受到各个能源大国的积极关注,成为非常规油气勘探开发的焦点,然而由于页岩气储层低孔特低渗的物理性质,勘探开发难度大。
水力压裂作为页岩气开发的常用方式,己经得到广泛应用,但影响压裂效果的因素众多,例如岩石脆性、地层敏感性及岩石受力方向等,使得压裂作业很难成功进行,因此需要对页岩进行改造。
研究表明,页岩储层压裂改造的前提是进行岩石脆性评价。
目前用于评价页岩可压性的脆性指数大都孤立的考虑了峰前或峰后的力学性质,而且计算出的脆性指数不符合脆性随围压增大而单调递减的客观规律。
本文基于岩石的应力-应变曲线,分析岩石破裂过程中的能量变化情况,利用声波测井资料结合力学实验法提出了新的岩石脆性评价指标。
首先,用岩石压缩过程中实际的弹性形变能与理想情况下的弹性能量之比来表征岩石的峰前特征,应力达峰值以后外界提供的能量与岩石发生破裂的断裂能之比表征岩石的峰后特征,利用乘性综合法将二者结合,提出了能够综合反映峰前和峰后能量特征的脆性指标B,经过实例验证,使用该指标计算的脆性指数符合脆性随围压增大而单调递减的客观规律。
其次,通过声波测井资料获取纵波时差和横波时差,利用理论公式计算出动态的弹性模量和泊松比,将其拟合后得到静态的弹性模量和泊松比,并通过数据统计分析提出了峰值应变和峰后模量的拟合关系式。
最后,将岩石力学实验和测井技术相结合,对七块岩石样品进行室内实验获取弹性模量等参数,并将直接通过岩石力学实验数据得到的脆性指数和测井资料结合力学试验法得到的脆性指数进行对比,验证了声波测井资料结合实验力学法具有较高的可行性,能够更高效、快速方便地对岩石脆性指数进行计算,而且能保证所获得数据的连续性,能够为进行准确有效的水力压裂提供一个参考依据,更好地用于实际工程。
关键词:页岩;脆性指数;脆性评价;声波时差测井;能量变化Research On The EvaluationMethod Of Brittleness Of Shale Gas ReservoirsABSTRACTIn recent years, shale gas reservoirs have received active attention from various major energy countries and become the focus of unconventional oil and gas exploration and development. However, due to the low porosity and low permeability physical properties of shale gas reservoirs, exploration and development are difficult. As a common method of shale gas development, hydraulic fracturing has been widely used, but there are many factors that affect the effect of fracturing, such as rock brittleness, formation sensitivity and rock stress direction, making fracturing operations difficult to succeed. Therefore, the shale needs to be transformed. Studies have shown that the prerequisite for shale reservoir fracturing reconstruction is to conduct rock brittleness evaluation. At present, the brittleness index used to evaluate the shale compressibility mostly considers the mechanical properties before or after the peak, and the calculated brittleness index does not conform to the objective law that the brittleness decreases monotonously as the confining pressure increases.Based on the stress-strain curve of the rock, this paper analyzes the energy changes during the rock failure process, and uses the acoustic logging data combined with the mechanical experiment method to propose a new rock brittleness evaluation index. First, the ratio of the actual elastic deformation energy to the ideal elastic energy during rock compression is used to characterize the peak-front characteristics of the rock. The ratio of the energy provided by the outside world after the stress reaches the peak and the fracture energy of the rock fracture characterizes the peak of the rock After the characteristics, using the multiplicative synthesis method to combine the two, a brittleness index B that can comprehensively reflect the energy characteristics before and after the peak is proposed. After verification by examples, the brittleness index calculated using this index is consistent with the brittleness monotonous with the increase of confining pressure The objective law of diminishing. Secondly, the longitudinal wave time difference and the shear wave time difference are obtained from the sonic logging data, the dynamic elastic modulus and Poisson's ratio are calculated by using theoretical formulas, and the static elastic modulus and Poisson's ratio are obtained after fitting it. Peak strain and post-peak modulus fitting relationship. Finally, the rock mechanics experiment and logging technology are combined to perform laboratory experiments on seven rock samples to obtain elastic modulus and other parameters, and the brittleness index and logging dataobtained directly from the rock mechanics experimental data are combined with the mechanical test method to obtain The comparison of the brittleness index verifies that the sonic logging data combined with the experimental mechanics method has high feasibility, can calculate the rock brittleness index more efficiently, quickly and conveniently, and can ensure the continuity of the obtained data, which can be accurate Effective hydraulic fracturing provides a reference basis for better use in actual projects.Key words:Shale; Brittleness index; Brittleness evaluation; Acoustic time difference log; Energy change目录学位论文独创性声明 (I)学位论文使用授权声明 (I)摘要 (II)ABSTRACT (III)目录 (V)第一章前言 (1)1.1研究背景 (1)1.2研究的目的、意义 (1)1.3国内外研究现状 (2)1.3.1 脆性定义 (2)1.3.2 页岩脆性评价方法研究现状 (2)1.4研究内容 (6)第二章页岩脆性评价方法对比研究 (7)2.1基于矿物组分的评价方法 (7)2.2基于应力-应变曲线的评价方法 (8)2.3基于岩石弹性参数的评价方法 (10)2.4基于岩石模量参数的评价方法 (11)2.5基于岩石强度参数的评价方法 (12)2.6本章小结 (14)第三章基于能量特征的岩石脆性指标分析 (15)3.1岩石破裂过程中能量规律分析 (16)3.1.1 基于峰前曲线的页岩脆性评价分析 (16)3.1.2 基于峰后曲线的页岩脆性评价分析 (16)3.1.3 基于全应力-应变曲线的页岩脆性评价分析 (16)3.2基于峰前曲线的脆性指数的建立 (17)3.3基于峰后曲线的脆性指数的建立 (19)3.4基于全应力-应变曲线的脆性指数的建立 (20)3.5本章小结 (21)第四章页岩储层脆性指数评价新方法研究 (22)4.1岩石脆性评价指标的基础参数计算 (22)4.1.1 脆性评价指标参数计算方法 (22)4.1.2 实例分析与模型的建立 (24)4.2回归分析脆性评价指标的关键参数 (32)4.2.1 岩石力学性质测试 (33)V4.2.2 回归分析峰值应变 (34)4.2.3 回归分析峰后模量 (35)4.3本章小结 (38)第五章页岩储层脆性评价方法对比验证 (39)5.1利用测井资料和室内实验获取参数 (39)5.2基于页岩储层脆性评指数对比验证 (40)5.3本章小结 (46)结论 (48)参考文献 (49)致谢 (54)VI东北石油大学工程硕士专业学位论文第一章前言1.1 研究背景随着经济不断发展,全球能源消耗量加剧,世界各个国家对能源的需求持续攀升,这种必不可少的需求直接迫使石油工作者在石油勘探和开采等技术上不断进步,导致常规能源基本上开采殆尽,与此同时,发现新常规油气田也日渐困难,能源压力日益剧增[1-2]。
基于矿物岩石力学特征差异的页岩储层脆性评价方法研究【摘要】本文针对基于矿物岩石力学特征差异的页岩储层脆性评价方法展开研究。
在介绍了研究背景、研究目的和研究意义。
在对页岩储层特征进行了分析,探讨了页岩脆性评价方法并设计了实验方案。
通过结果分析和讨论,揭示了不同页岩储层的脆性特征差异。
在结论部分总结了研究成果,并展望未来的研究方向。
本研究为页岩储层脆性评价提供了新的方法和思路,对于页岩气田的勘探开发具有一定的指导意义。
【关键词】页岩储层、力学特征、脆性评价、矿物岩石、差异、实验设计、结果分析、讨论、总结、展望1. 引言1.1 研究背景页岩气是一种重要的非常规天然气资源,其开发对于我国能源安全具有重要意义。
由于页岩气储层的特殊性质,其开采过程中常常面临着诸多挑战。
其中一个重要的问题就是页岩储层的脆性评价方法不够完善,导致无法准确评估页岩储层的脆性特征,从而影响了页岩气的开采效果和效率。
在传统的岩石力学评价方法中,往往忽略了不同矿物岩石之间的差异性,导致了评价结果的不准确性。
针对基于矿物岩石力学特征差异的页岩储层脆性评价方法的研究具有重要意义。
通过分析不同矿物岩石的力学特征,可以更加准确地评估页岩储层的脆性特征,从而为页岩气的开采提供科学依据。
这项研究还将为岩石力学领域的发展提供新的思路和方法,推动我国页岩气资源的开发利用。
1.2 研究目的本研究的目的是通过分析基于矿物岩石力学特征差异的页岩储层脆性评价方法,探讨不同页岩的脆性特征以及评价方法的有效性。
通过研究页岩储层的特性以及不同页岩的脆性特征,可以为页岩气等资源的开发提供更多的理论支持和技术指导,促进页岩储层脆性评价方法的进一步完善和发展,为页岩气勘探开发提供更准确的地质力学参数。
通过对脆性评价方法的研究,可以为页岩储层的工程应用提供更加科学和有效的技术支持,提高页岩气等资源开发的成功率和效率。
本研究的目的是为了进一步深化对页岩储层脆性特征的认识,并探索更加有效的脆性评价方法,为页岩气等资源的开发提供更好的技术支持和指导。
页岩气储层岩石力学特性及脆性评价一、绪论A. 研究背景和意义B. 国内外研究现状和不足C. 研究内容和方法二、页岩气储层的岩石力学特性A. 岩石成分和构造特征B. 岩石力学参数测试及分析C. 岩石力学特性分析结果三、页岩气储层岩石脆性特征分析A. 岩石脆性特征及分类B. 岩石脆性测试方法及数据分析C. 岩石脆性分析结果四、页岩气储层岩石力学特性与脆性关系分析A. 岩石力学特性与脆性关系分析方法及流程B. 数据处理及分析结果C. 岩石力学特性与脆性关系研究结果五、页岩气储层岩石力学特性与脆性评价A. 岩石力学特性与脆性对储层的控制作用评价B. 储层资源量及开发难度的评估C. 储层开发中的岩石力学特性与脆性应用实践六、结论与展望A. 研究结论B. 存在不足及改进方向C. 未来发展趋势和展望第一章:绪论A. 研究背景和意义随着能源危机的不断加剧和环保意识的提高,传统能源已经无法满足社会的需求。
而页岩气作为一种新型的清洁能源,具有储量大,开采成本低,提高我国能源自给率等优势。
因此,研究页岩气资源开发是非常必要的。
B. 国内外研究现状和不足国内研究页岩气资源开发较为晚起。
而国外发达国家在页岩气开发方面拥有较为成熟的技术,同时也对储层的力学特性和脆性进行了广泛的研究。
不足之处,需要对页面气储层岩石力学特性及脆性评价进行更深入的研究。
C. 研究内容和方法本文主要对页岩气储层岩石力学特性及脆性进行研究。
通过实验室测试和分析,探讨岩石的物理力学参数和脆性特征的影响因素及作用机理,并评价它们对储层开发的影响,研究方法涵盖实验室测试、数学模型分析和应用实践。
第二章:页岩气储层的岩石力学特性A. 岩石成分和构造特征岩石的成分是岩石力学特性的一大影响因素。
绝大部分页岩气储层都由黏土矿物、石英、长石碎屑和有机质等组成。
岩石构造特征表现为压实程度和裂纹分布等,对岩石的力学特性有着重要的影响。
B. 岩石力学参数测试及分析岩石力学参数主要包括抗压强度、抗张强度、弹性模量等。