恒成立与有解问题
- 格式:docx
- 大小:319.61 KB
- 文档页数:13
第10讲恒成立能成立3种常见题型【考点分析】考点一:恒成立问题若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则不等式()f x a >在区间D 上恒成立()min f x a ⇔>;不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥;不等式()f x b <在区间D 上恒成立()max f x b ⇔<;不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;考点二:存在性问题若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<;不等式()a f x ≤在区间D 上有解()max a f x ⇔≤;不等式()a f x >在区间D 上有解()min a f x ⇔>;不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;考点三:双变量问题①对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤;②对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥;③若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤;④若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥;⑤对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤;⑥对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥;⑦若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤⑧若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥.【题型目录】题型一:利用导数研究恒成立问题题型二:利用导数研究存在性问题题型三:利用导数处理恒成立与有解问题【典型例题】题型一:利用导数研究恒成立问题【例1】(2022·福建省福安市第一中学高二阶段练习)对任意正实数x ,不等式ln 1x x a -+>恒成立,则a 的取值范围是()A .1a <B .2a <C .1a >D .2a >【答案】B【详解】令()ln 1f x x x =-+,其中0x >,则()min a f x <,()111x f x x x-'=-=,当01x <<时,()0f x '<,此时函数()f x 单调递减,当1x >时,()0f x '>,此时函数()f x 单调递增,所以,()()min 12f x f ==,2a ∴<.故选:B.【例2】【2022年全国甲卷】已知函数()a x x xe xf x-+-=ln .(1)若≥0,求a 的取值范围;【答案】(1)(−∞,+1]【解析】(1)op 的定义域为(0,+∞),'(p =(1−12)e −1+1=1(1−1)e +(1−1)=K1(e+1)令op =0,得=1当∈(0,1),'(p <0,op 单调递减,当∈(1,+∞),'(p >0,op 单调递增o )≥o1)=e +1−,若op ≥0,则e +1−≥0,即≤e +1,所以的取值范围为(−∞,+1]【例3】已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R .(1)讨论函数的单调性;(2)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.【答案】(1)答案见解析;(2)0a ≤.【解析】【分析】(1)求()'f x ,分别讨论a 不同范围下()'f x 的正负,分别求单调性;(2)由(1)所求的单调性,结合()10f =,分别求出a 的范围再求并集即可.【详解】解:(1)由已知定义域为()0,∞+,()211'()x a a f x x x x-++=-=当10a +≤,即1a ≤-时,()'0f x >恒成立,则()f x 在()0,∞+上单调递增;当10a +>,即1a >-时,x =或x =,所以()f x 在(上单调递减,在)+∞上单调递增.所以1a ≤-时,()f x 在()0,∞+上单调递增;1a >-时,()f x 在(上单调递减,在)+∞上单调递增.(2)由(1)可知,当1a ≤-时,()f x 在()1,+∞上单调递增,若()0f x ≥对任意的[1,)x ∈+∞恒成立,只需(1)0f ≥,而(1)0f =恒成立,所以1a ≤-成立;当1a >-1≤,即10a -<≤,则()f x 在()1,+∞上单调递增,又(1)0f =,所以10a -<≤成立;若0a >,则()f x在(上单调递减,在)+∞上单调递增,又(1)0f =,所以(0x ∃∈,()0()10f x f <=,不满足()0f x ≥对任意的[1,)x ∈+∞恒成立.所以综上所述:0a ≤.【例4】已知函数()ln f x x ax =-(a 是正常数).(1)当2a =时,求()f x 的单调区间与极值;(2)若0x ∀>,()0f x <,求a 的取值范围;【答案】(1)()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,()f x 的极大值是ln 21--,无极小值;(2)1,e ⎛⎫+∞ ⎪⎝⎭.【解析】【分析】(1)求出函数的导函数,解关于导函数的不等式即可求出函数的单调区间;(2)依题意可得maxln x a x ⎛⎫< ⎪⎝⎭,设()ln x g x x =,利用导数研究函数的单调性,求出函数的最大值,即可得解;【详解】解:(1)当2a =时,()ln 2f x x x =-,定义域为()0,∞+,()1122x f x x x-'=-=,令()0f x '>,解得102x <<,令()0f x '<,解得12x >,所以函数()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以()f x 的极大值是1ln 212f ⎛⎫=-- ⎪⎝⎭,无极小值.(2)因为0x ∀>,()0f x <,即ln 0x ax -<恒成立,即maxln x a x ⎛⎫< ⎪⎝⎭.设()ln x g x x =,可得()21ln xg x x -'=,当0x e <<时()0g x '>,当x e >时()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,所以()()max 1e e g x g ==,所以1a e >,即1,a e ⎛⎫∈+∞ ⎪⎝⎭.【例5】已知函数()xf x xe=(1)求()f x 的极值点;(2)若()2f x ax ≥对任意0x >恒成立,求a 的取值范围.【答案】(1)1x =-是()f x 的极小值点,无极大值点;(2)a e ≤.【解析】【分析】(1)利用导数研究函数的极值点.(2)由题设知:xe a x≤在0x >上恒成立,构造()x e g x x =并应用导数研究单调性求最小值,即可求a 的范围.【详解】(1)由题设,()(1)xf x e x '=+,∴1x <-时,()0<'x f ,()f x 单调递减;1x >-时,()0>'x f ,()f x 单调递增减;∴1x =-是()f x 的极小值点,无极大值点.(2)由题设,()2xx f x xe a =≥对0x ∀>恒成立,即x ea x≤在0x >上恒成立,令()xe g x x =,则2(1)()xe x g x x'-=,∴01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增;∴()(1)e g x g ≥=,故a e ≤.【题型专练】1.(2022·四川广安·模拟预测(文))不等式ln 0x kx -≤恒成立,则实数k 的取值范围是()A .[)0,eB .(],e -∞C .10,e ⎡⎤⎢⎥⎣⎦D .1,e ∞⎡⎫+⎪⎢⎣⎭【答案】D 【解析】【分析】由题可得ln xk x ≥在区间(0,)+∞上恒成立,然后求函数()()ln 0x f x x x=>的最大值即得.【详解】由题可得ln xk x≥在区间(0,)+∞上恒成立,令()()ln 0x f x x x =>,则()()21ln 0xf x x x-'=>,当()0,e x ∈时,()0f x '>,当()e,x ∈+∞时,()0f x '<,所以()f x 的单调增区间为()0,e ,单调减区间为()e,+∞;所以()()max 1e ef x f ==,所以1ek ≥.故选:D.2.(2022·北京·景山学校模拟预测)已知函数()ln 2f x x x ax =++.(1)当0a =时,求()f x 的极值;(2)若对任意的21,e x ⎡⎤∈⎣⎦,()0f x ≤恒成立,求实数a 的取值范围.【答案】(1)极小值是11+2e e f ⎛⎫=- ⎪⎝⎭,无极大值.(2)222,e ⎡⎫--+∞⎪⎢⎣⎭【解析】【分析】(1)由题设可得()ln 1f x x '=+,根据()f x '的符号研究()f x 的单调性,进而确定极值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,转化为:2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,通过求导求()g x 的单调性进而求得()g x 的最大值,即可求出实数a 的取值范围.(1)当0a =时,()ln 2f x x x =+,()f x 的定义域为()0+∞,,()ln 1=0f x x '=+,则1ex =.令()0f x '>,则1,e x ⎛⎫∈+∞ ⎪⎝⎭,令()0f x '<,则10,e ⎛⎫∈ ⎪⎝⎭x ,所以()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1e x =时,()f x 取得极小值且为1111ln 2+2e e ee f ⎛⎫=+=- ⎪⎝⎭,无极大值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,则2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,()222120x g x x x x -+'=-+==,所以2x =,则()g x 在[)1,2上单调递减,在(22,e ⎤⎦上单调递增,所以()12g =,()222e 2e g =+,所以()()22max 2e 2e g x g ==+,则222e a -≥+,则222ea ≤--.实数a 的取值范围为:222,e ⎡⎫--+∞⎪⎢⎣⎭.3.(2022·新疆克拉玛依·三模(文))已知函数()ln f x x x =,()()23g x x ax a R =-+-∈.(1)求函数()f x 的单调递增区间;(2)若对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,求a 的取值范围.【答案】(1)1,e ⎛⎫+∞ ⎪⎝⎭,(2)(],4-∞【解析】【分析】(1)求函数()f x 的单调递增区间,即解不等式()0f x '>;(2)参变分离得32ln a x x x≤++,即求()()()32ln 0,h x x x x x =++∈+∞的最小值.(1)()ln f x x x =定义域为(0,)+∞,()ln +1f x x '=()0f x '>即ln +10x >解得1e x >,所以()f x 在1,)e∞+(单调递增(2)对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,即()21ln 32x x x ax ≥-+-恒成立,分离参数得32ln a x x x≤++.令()()()32ln 0,h x x x x x =++∈+∞,则()()()231x x h x x +-'=.。
恒成立问题与有解问题的区别恒成立与有解问题一直是中学数学的重要内容。
它是函数、不等式等内容交汇处的一个较为活跃的知识点,在近几年的试题中,越来越受到命题者的青睐,涉及恒成立与有解的问题,有时在同一套试题中甚至有几道这方面的题目。
1、恒成立问题1.1恒成立问题与一次函数联系给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于ⅰ) 或ⅱ),亦可合并定成,同理,若在[m,n]内恒有f(x)<0,则有【例1】对于满足|p|≤2的所有实数p,求使不等式x2+px+1>2p+x恒成立的x 的取值范围。
分析:在不等式中出现了两个字母:x及P,关键在于该把哪个字母看成是一个变量,另一个作为常数。
显然可将p视作自变量,则上述问题即可转化为在[-2,2]内关于p的一次函数大于0恒成立的问题。
解:不等式即(x-1)p+x2-2x+1>0,设f(p)= (x-1)p+x2-2x+1,则f(p)在[-2,2]上恒大于0,故有:即,解得:∴x<-1或x>3.1.2恒成立问题与二次函数联系若二次函数y=ax2+bx+c=0(a≠0)大于0恒成立,则有,若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解。
【例2】 设f(x)=x2-2ax+2,当x∈[-1,+∞)时,都有f(x)≥a恒成立,求a的取值范围。
分析:题目中要证明f(x)≥a恒成立,若把a移到等号的左边,则把原题转化成左边二次函数在区间[-1,+∞)时恒大于0的问题。
解:设F(x)= f(x)-a=x2-2ax+2-a.ⅰ)当△=4(a-1)(a+2)<0时,即-2<a<1时,对一切x∈[-1,+∞),F(x)≥0恒成立;ⅱ)当△=4(a-1)(a+2)≥0时,则由图可得:即,得-3≤a≤-2-1o综合可得a的取值范围为[-3,1]。
函数恒成立存在性问题知识点梳理1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈Bx f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;例题讲解:题型一、常见方法1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数)1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。
浅析“有解”与“恒成立”问题作者:邓卫和来源:《中学课程辅导高考版·教师版》2014年第24期摘要:在近年的高考中经常出现“有解”与“恒成立”问题,许多同学混淆了这两个概念,在解题时出错。
现对这两个概念进行阐述:“有解”是指“至少有一个满足条件的值使式子成立,则称该问题有解”。
“恒成立”是指“在某一范围内所有的变量值都使该问题成立,则称该问题恒成立”。
本文现通过具体问题进行阐述。
关键词:“有解”;“恒成立”;例析中图分类号:G427文献标识码:A ; ; 文章编号:1992-7711(2014)24-125-1一、有解问题例1方程x2-a|x|+4=0在x∈[-2,2]上有解,求a的范围。
分析:方程x2-a|x|+4=0在x∈[-2,2]上有解,可能有一解,也可能有两解,讨论比较复杂。
可通过分离变量a,转化为求函数的值域来解。
解:x2-a|x|+4=0当x=0时,方程不成立,因此x≠0故方程两边同除以|x|得a=|x|+4|x|≥2|x|·4|x|=4(当且仅当|x|=2时取到“=”)此时x=±2∈[-2,2],所以:当a≥4时该方程x2-a|x|+4=0在x∈[-2,2]上有解。
点评:本题通过“分离变量a”求值域,方法简单易行,在以后的学习中经常用到这一方法。
例2(2013重庆.理.16)若关于x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是。
分析:要使|x-5|+|x+3|<a无解,只要求|x-5|+|x+3|<a有解时实数a的范围,然后求a的补集即可。
要使|x-5|+|x+3|<a有解,则至少有一个或一个以上的x值使要|x-5|+|x+3|<a成立,因此,只要求a大于代数式|x-5|+|x+3|的最小值。
解:函数y=|x-5|+|x+3|=2-2xx≤-38-3<x<52x-2x≥5由此可知,该函数的值域为[8,+∞),因此:当a>8时,不等式|x-5|+|x+3|<a有解。
高中数学不等式恒成立与有解问题不等式恒成立与有解问题一直是中学数学的重要内容. 它是函数、数列、不等式等内容交汇处的一个较为活跃的知识点,随着中学数学引进导数,它为我们更广泛、更深入地研究函数、不等式提供了强有力的工具. 在近几年的高考试题中,涉及不等式恒成立与有解的问题,有时在同一套试题中甚至有几道这方面的题目。
其中,特别是一些含自然对数和指数函数的不等式恒成立与有解问题,将新增内容与传统知识有机融合,用初等方法难以处理,而利用导数来解,思路明确,过程简捷流畅,淡化繁难的技巧,它不仅考查函数、不等式等有关的传统知识和方法,而且还考查极限、导数等新增内容的掌握和灵活运用. 它常与思想方法紧密结合,体现能力立意的原则,带有时代特征,突出了高考试题与时俱进的改革方向. 因此,越来越受到高考命题者的青睐. 下面通过一些典型实例作一剖析.1.不等式恒成立与有解的区别不等式恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一团.(1)不等式f(x)<k 在x ∈I 时恒成立•k•x f ,)(max <⇔x ∈I. 或f(x)的上界小于或等于k ;(2)不等式f(x)<k 在x ∈I 时有解•k•x f ,)(min <⇔x ∈I. 或f(x)的下界小于k ;(3)不等式f(x)>k 在x ∈I 时恒成立•k•x f ,)(min >⇔x ∈I. 或f(x)的下界大于或等于k ;(4)不等式f(x)>k 在x ∈I 时有解•k•x f ,)(max >⇔x ∈I. 或f(x)的上界大于k ;解决不等式恒成立和有解解问题的基本策略常常是构作辅助函数,利用函数的单调性、最值(或上、下界)、图象求解;基本方法包括:分类讨论,数形结合,参数分离,变换主元等等.例1 已知两函数f(x)=8x 2+16x-k ,g(x)=2x 3+5x 2+4x ,其中k 为实数.(1)对任意x ∈[-3,3],都有f (x)≤g(x)成立,求k 的取值范围;(2)存在x ∈[-3,3],使f (x)≤g(x)成立,求k 的取值范围;(3)对任意x 1x 2∈[-3,3],都有f (x 1)≤g(x 2),求k 的取值范围.解析 (1)设h(x)=g(x)-f(x)=2x 2-3x 2-12x+k ,问题转化为x ∈[-3,3]时,h(x)≥0恒成立,故h m in (x)≥0.令h′ (x)=6x 2-6x-12=0,得x= -1或2.由h(-1)=7+k ,h(2)=-20+k ,h(-3)=k-45,h(3)=k-9,故h m in (x)=-45+k ,由k-45≥0,得k≥45.(2)据题意:存在x ∈[-3,3],使f (x)≤g(x)成立,即为:h(x)=g(x)-f(x)≥0在x ∈[-3,3]有解,故h m ax (x)≥0,由(1)知h m ax (x )=k+7,于是得k≥-7.(3)它与(1)问虽然都是不等式恒成立问题,但却有很大的区别,对任意x 1x 2∈[-3,3],都有f (x 1)≤g(x 2)成立,不等式的左右两端函数的自变量不同,x 1,x 2的取值在[-3,3]上具有任意性,因而要使原不等式恒成立的充要条件是:]3,3[,)()(min max ••x •x g x f -∈≤,由g′(x)=6x 2+10x+4=0,得x=-32或-1,易得21)3()(min -=-=g x g ,又f(x)=8(x+1)2-8-k ,]3,3[•x -∈. 故.120)3()(max k f x f -==令120-k≤-21,得k≥141.点评 本题的三个小题,表面形式非常相似,究其本质却大相径庭,应认真审题,深入思考,多加训练,准确使用其成立的充要条件2.不等式有解问题例3 设x=3是函数f(x)=(x 2+ax+b)e x -3,x ∈R 的一个极值点.(1)求a 与b 的关系(用a 表示b ),并求f(x)的的单调区间;(2)设a>0,g(x)=x e a ⎪⎭⎫ ⎝⎛+4252,若存在S 1,S 2∈[0,4],使得|f(S 1)-g(S 2)|<1成立,求a 的取值范围.解析 (1)x e a b x a x x f --+-+-='32])2([)(,由)3(f '=0得b=-2a-3. 故f(x)=(x 2+ax-2a-3)x e -3. 因为)(x f '=-[x 2+(a-2)x-3a-3] x e -3=-(x-3)(x+a+1) x e -3. 由)(x f '=0得:x 1=3,x 2==-a-1. 由于x=3是f(x)的极值点,故x 1≠x 2,即a≠-4.当a<-4时,x 1<x 2,故f(x)在(]3,•∞-上为减函数,在[3,-a-1]上为增函数,在[)+∞--,1•a 上为减函数.当a>-4时,x 1>x 2,故f(x)在(]1,--∞-a •上为减函数,在[-a-1,3]上为增函数,在[)+∞,3•上为减函数.(2)由题意,存在S 1,S 2∈[0,4],使得|f(S 1)-g(S 2)|<1成立,即不等式|f(S 1)-g(S 2)|<1在S 1,S 2∈[0,4]上有解.于是问题转化为|f(S 1)-g(S 2)|m in <1,由于两个不同自变量取值的任意性,因此首先要求出f(S 1)和g(S 2)在[0,4]上值域.因为a>0,则-a-1<0,由(1)知:f(x)在[0,3]递增;在[3,4]递减. 故f(x)在[0,4]上的值域为[min{f(0),f(4)},f(3)]=[-(2a+3)e 3,a+6],而g(x)=x e a ⎪⎭⎫ ⎝⎛+4252在[0,4]上显然为增函数,其值域⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++422425,425e a •a . 因为4252+a -(a+6)=⎪⎭⎫ ⎝⎛-21a 2≥0, 故4252+a ≥(a+6).|f(S 1)-g(S 2)|m in =4252+a -(a+6)从而解230,01)6(4252<<⎪⎩⎪⎨⎧><+-+a ••••a a a 得. 故a 的取值范围为⎪⎭⎫ ⎝⎛23,0••. 假若问题变成:“对任意的S 1,S 2∈[0,4],使得|f(S 1)-g(S 2)|<1都成立,求a 的取值范围.”则可将其转化为|f(S 1)-g(S 2)|m ax <1点评 函数、不等式、导数既是研究的对象,又是决问题的工具. 本题从函数的极值概念入手,借助导数求函数的单调区间,进而求出函数 闭区间上的值域,再处理不等式有解问题. 这里传统知识与现代方法交互作用,交相辉映,对考生灵活运用知识解决问题的能力是一个极好的考查.3.不等式恒成立问题例2 设函数f(x)=(x+1)ln(x+1),若对所有x≥0,都有f(x)≥ax 成立,求实数a 的取值范围.解析 构作辅助函数g(x)=f(x)-ax=(x+1)ln(x+1)-ax ,原问题变为g(x)≥0对所有的 x≥0恒成立,注意到g(0)=0,故问题转化为g(x)≥g(0)在x≥0时恒成立,即函数g(x)在[)∞+••,0为增函数.于是可通过求导判断g(x)的单调性,再求出使g(x)≥g(0)成立的条件.g′(x)=l n(x+1)+1-a ,由g′(x)=0,得x=e1-a -1. 当x>e 1-a -1时,g′(x)>0,g(x)为增函数.当-1<x<e 1-a -1时,g′(x)<0,g(x)为减函数.那么对所有的x≥0,都有g(x)≥g(0),其充要条件是e 1-a -1≤0,故得a 的取值范围是(]1,••∞-.假若我们没有注意到g(0)=0,那么在解g(x)≥0对所有的x≥0恒成立时,也可转化为)0(0)(min ≥≥x x g ,再以导数为工具,稍作讨论即可得解.值得一提的是,本题还有考生采用参数分离法求解:由f(x)=(x+1)ln(x+1)≥ax 对所有的x≥0恒成立可得:(1)当x=0时,a ∈R . (2)当x>0时,.)1ln()1(x x x a ++≤设g(x)=xx x )1ln()1(++,问题转化为求g(x)在开区间(0,+∞)上最小值或下界,2)1ln()(x x x x g +-=',试图通过g′(x)=0直接解得稳定点,困难重重!退一步令h(x)=x-ln(x+1),因为0,111)(>+-='•x •x x h ,故)(x h '>0,则h(x)在(0,+∞)单调递增,即h(x)>h(0)=0,从而)(x g '>0,于是g(x)在(0,+∞)单调递增,故g(x)无最小值,此时,由于g(0)无意义,g(x)的下界一时也确定不了,但运用极限知识可得:)(lim )(0x g x g x →>,然而求此极限却又超出所学知识范围,于是大部分考生被此难关扫落下马,无果而终. 事实上采用洛比达法则可得:1]1)1[ln(lim )1ln()1(lim )(lim 000=++=++=→→→x xx x x g x x x ,故x>0时,g(x)>1,因而a≤1.综合(1)(2),得a 的取值范围是:(]1,••∞-. 点评 采用参数分离法求解本题,最大的难点在于求分离后所得函数的下界.它需要考生拥有扎实的综合素质和过硬的极限、导数知识,并能灵活地运用这些工具来研究函数的性态,包括函数的单调性,极值(最值)或上下界.突出考查了函数与方程思想、有限与无限的思想.。
不等式恒成立与能成立问题学号 姓名不等式恒成立指不等式对指定其间上的任意值都成立;不等式能成立指不等式在指定其间上至少有一个解(或称有解)。
下面从三个例子针对这两类问题的解决策略作比较说明。
例1.(1)若不等式()350x a -+<在[]1,1x ∈-内恒成立,求实数a 的取值范围。
(2).若不等式()350x a -+<在[]1,1x ∈-内能成立,求实数a 的取值范围。
例2.(1)若不等式22310x x m ++-≥在[]0,1x ∈内恒成立,求实数m的取值范围. (2)若不等式22310x x m ++-≥在[]0,1x ∈有解,求实数m的取值范围.例3.(1)若不等式245462x x a x -+≤+-在[]3,5x ∈内恒成立,求实数a的取值范围. (2)若不等式245462x x a x -+≤+-在[]3,5x ∈内有解,求实数a的取值范围。
总结:1.不等式恒成立与能成立(有解)解法策略比较:2.恒成立的参数范围是有解的参数范围的子集。
3. 不等式恒成立与能成立(有解)问题都是转化为最值解决。
作业:1.已知关于x 的不等式2350x a +-<。
(1)若此不等式对[]1,5x ∈上恒成立,求实数a的取值范围。
(2)若此不等式对[]1,5x ∈上能成立,求实数a的取值范围。
2.已知关于x 的不等式20x a +>。
(1)若此不等式对[]1,2x ∈上恒成立,求实数a的取值范围。
(2)若此不等式对[]1,2x ∈上能成立,求实数a的取值范围。
3. 已知关于x 的不等式2+2310x x a -+>。
(1)若此不等式对[]0,1x ∈上恒成立,求实数a的取值范围。
(2)若此不等式在[]0,1x ∈上有解,求实数a的取值范围。
4. 若不等式4213a x x +≤+-在[]0,1x ∈内有解,求实数a的取值范围。
数学中的恒成立与有解问题求二次函数的解析式。
若f(x) 2x m 在区间[1,1]上恒成立,求m 的取值范围解题思路:先分离系数,再由二次函数最值确定取值范围.2解析:⑴设f (x) axbx c(a 0) .由 f (0) 1得c21,故 f(x) ax bx 1••• f (x 1) f (x) 2xa(x1)2 b(x 1) 1 (ax 2 bx 1) 2x即2ax a b 2x ,所以2a 2,a b 0,解得a1,b1 二 f(x) x x 15,则g(x)在[1,1]上单调递减.所以g(x)在[1,1]上的最小值为g(1)4所以m 的取值范围是(,1).规律总结:m f(x)对一切x R 恒成立,则m [f(x)]min ;m f (x)对一切x R 恒成立,则m [f (x)]max ;注意参数的端点值能否取到需检验。
二、有解问题3、方程的有解问题例题3:题干与例题 2相同 同例题2.(2)若f(x) 2x m 在区间[1,1]上恒成立,求m 的取值范围、恒成立问题若不等式 f xA 在区间 D 上恒成立 ,则等价于在区间 D 上 f x minA 若不等式 f xB 在区间 D 上恒成立 ,则等价于在区间 D 上 f x max B 常用方法1、分离变量法;2、数形结合法;3、 利用函数的性质;4、变更主元等;1、由二次函数的性质求参数的取值范围 2例题1.若关于X 的不等式ax 2x 2 0在R 上恒成立,求实数a 的取值范围. 解题思路:结合二次函数的图象求解 解析:当a 0时,不等式2x 2 0解集不为0不满足题意;a 当a 0时,要使原不等式解集为 R ,只需…222a,解得a -0 21综上,所求实数a 的取值范围为(一,)2 2、转化为二次函数的最值求参数的取值范围 例题2 :已知二次函数满足f (0) 1,而且f (x1) f(x) 2x ,请解决下列问题2⑵由⑴知x x 12x m 在[1,1]恒成立,即m 2x 3x 1在[1,1]恒成立.令 g(x) x 2 3x 1 (x 3)22解题思路:先分离系数,再由二次函数值域确定取值范围.解析:⑴解法同例题22 2⑵由⑴知x x 1 2x m在[1,1]恒成立,即m x 3x 1在[1,1]恒成立.3 252令g(x) x2 3x 1 (x -)2-,则g(x)在[1,1]上单调递减.所以g(x)在[1,1]上的最大值为2 4g( 1) 5,最小值为g(1) 1,所以m的取值范围是1,5。
高中数学中的恒成立与有解问题作者:姜越来源:《数学教学通讯(教师阅读)》2009年第11期摘要:含参数不等式恒成立问题与有解问题是高考的热点、难点,这样的题目综合性强,可考查函数、导数、不等式等高中数学的主干知识,考查学生的综合解题能力. 在培养学生思维的灵活性、创造性方面起到了积极的作用.关键词:不等式恒成立问题;不等式有解问题含参数不等式恒成立问题与有解问题是高考的热点、难点,这样的题目综合性强,可考查函数、导数、不等式等高中数学的主干知识,考查学生的综合解题能力. 在培养学生思维的灵活性、创造性方面起到了积极的作用. 这类题目往往出现在压轴题中,令很多学生望而却步. 下面通过一些典型例题作一剖析.不等式恒成立问题例1 (2008安徽)设函数f(x)=(x>0且x≠1).(1)求函数f(x)的单调区间;(2)已知2>xa对任意x∈(0,1)恒成立,求实数a的取值范围.解析(1)f ′(x)=-,令f ′(x)=0,则x=.列表如下:所以f(x)的单调增区间为0,,单调减区间为,1,(1,+∞).(2)在2>xa两边取对数得ln2>alnx. 由于0ln2•. 因为2>xa对任意x∈(0,1)恒成立,所以a>ln2•对任意x∈(0,1)恒成立. 所以a>ln2•f(x)max. 由(1)可知当x∈(0,1)时,f(x)max=f=-e,所以a>-eln2.点评本题采用分离变量法来解,关键是如何将变量分离,本题还采用了取对数,然后利用导数求出函数f(x)的最大值,从而求出a的取值范围.不等式有解问题例2 (2009苏北四市第二次模拟考试)已知函数f(x)=alnx+x2(a为实数),若存在x∈[1,e],使得f(x)≤(a+2)x成立,求a的取值范围.解析不等式f(x)≤(a+2)x可化为a(x-lnx)≥x2-2x. 因为x∈[1,e],所以0≤lnx≤1. 所以lnx≤1≤x且等号不能同时取. 所以lnx0. 因而a≥(x∈[1,e]). 令g(x)=(x∈[1,e]),要存在x∈[1,e],使得a≥g(x)成立,当且仅当a≥g(x)min,x∈[1,e].又g′(x)=,当x∈[1,e]时,x-1≥0,lnx≤1,x+2-2lnx>0,从而g′(x)≥0,当且仅当x=1时取等号. 所以g(x)在[1,e]上为增函数. 故g(x)的最小值为g(1)=-1. 所以a的取值范围是[-1,+∞).点评本题将函数、导数、不等式结合在一起,主要思路是采用分离变量法,分离出变量后,利用导数求出函数的最小值. 要存在x∈[1,e],使得a≥g(x)成立,当且仅当a≥g(x)min,x∈[1,e],从而求出a的范围.变式假若问题变成对?坌x∈[1,e],f(x)≤(a+2)x恒成立,求a的取值范围,则问题转化为a≥g(x)max,x∈[1,e],可得a≥.不等式恒成立与有解问题的区别不等式恒成立与有解问题的区别还是比较明显的,只要细心读题,认真思考,便可找出它们的差异.(1)不等式a≥f(x)在x∈I恒成立?圳a≥f(x)max;存在x∈I使得不等式a≥f(x)成立?圳a≥f(x)min.(2)不等式a≤f(x)在x∈I恒成立?圳a≤f(x)min;存在x∈I使得不等式a≤f(x)成立?圳a≤f(x)max .解决不等式恒成立问题与有解问题往往利用函数的单调性、(下转第64页)(上接第59页)导数、最值,基本方法有:一次函数型,二次函数型,分离变量型,数形结合型等.例3 已知函数f(x)=2x2-2m, g(x)=x3+3x2-x,其中m为实数.(1)对任意x∈[-1,6]都有f(x)≤g(x)成立,求m的取值范围;(2)存在x∈[-1,6],使得f(x)≤g(x)成立,求m的取值范围;(3)对任意x1,x2∈[-1,6],都有f(x1)≤g(x2),求m的取值范围.解析 (1)令h(x)=g(x)-f(x)=x3+x2-x+2m,所以对任意x∈[-1,6]都有h(x)≥0恒成立. 故h(x)min≥0. h′(x)=3x2+2x-1,令h′(x)=0得x1=-1,x2=. 由h(-1)=2m+1,f=+2m,f(6)=246+2m,故h(x)min=+2m≥0. 所以m≥.(2)因为存在x∈[-1,6],使得f(x)≤g(x)成立,所以h(x)=g(x)-f(x)≥0在x∈[-1,6]有解. 故h(x)max≥0. 由(1)知h(x)max=246+2m≥0, 所以m≥-123.(3)与(1)虽都是不等式恒成立问题,但是差别很大,对任意x1,x2∈[-1,6],都有f(x1)≤f(x2)成立,不等式两端的自变量不同,x1,x2的取值在[-1,6]上具有任意性,因此要使原不等式恒成立当且仅当f(x)max≤g(x)min,x∈[-1,6]. 由f(x)=2x2-2m,x∈[-1,6]得f(x)max=f(6)=72-2m.?摇令g′(x)=3x2+6x-1=0得x1=,x2=(因为x∈[-1,6],舍去),g(-1)=3,g=,g(6)=318. 所以g(x)min=. 所以72-2m≤. 所以m≥+.点评这3个小题,表面非常相似,容易混为一谈,但实质各有千秋,所以我们应该认真审题,缜密思考,加强训练,准确使用其成立的充要条件.不等式恒成立与有解问题,在近几年的高考题中频频出现,这类试题常与思想方法紧密结合,体现能力立意的原则,突出了高考试题与时俱进的改革方向. 因此越来越受到高考命题者的青睐,希望广大师生高度关注.。
恒成立有解问题1、知识点分布:恒成立与有解问题一直是高考数学的重要内容。
它是函数、不等式等知识点与分类讨论、数形结合等思想方法较为频繁的结合,在近几年的高考试题中,越来越受到命题者的青睐,涉及恒成立与有解的问题,恒成立与有解题型分布于等式与不等式之中,并非不等式的“专利”。
等式不等式有解√☆☆√☆恒成立√√☆☆备注:“☆”越多代表在考题中越重要。
2、考纲考点分析:1.能够利用函数与不等式思想解决简单恒成立问题2.充分理解恒成立与有解问题区别、练习3、细节易错关注:1.有解问题和有几个解问题解决方法不同2.关注自变量的范围例1: 有解题型 1. 等式中“有解”题型1.等式中有解题型: 例题:① 已知方程220x x a -+=在x R ∈有解。
求实数a 的取值范围。
答案:a ≤1② 已知方程220x x a -+=在[]2,3x ∈有解。
求实数a 的取值范围。
答案:[-3,0]③ 已知不等式220x x a -+=在x R ∈有1个解。
求实数a 的取值范围。
答案:a=1④ 已知不等式220x x a -+=在[]2,3x ∈-有1个解。
求实数a 的取值范围。
答案:[-8,-3 )∪{1}⑤(2017延安中学周考)若关于x 的方程1936(5)0xx k k k +⋅-⋅+-=在[0,2]x ∈内总有两个不同的实数解,那么k 的取值范围是____________.答案:1582⎡⎫⎪⎢⎣⎭,2.不等式中有解题型:“有x ∈(a,b )型:解题方法:分离变量→数形x ∈R 型:解题方法:△与0的关系x ∈R 型:解题方法:考虑△x ∈(a,b )型:解题方法:分离变量→求最值例题:① 已知不等式220x x a -+≤在x R ∈有解。
求实数a 的取值范围。
答案:结合图像,换言之,图像在x 轴下面有,所以△≥0,a ≤1. ② 已知不等式220x x a -+≥在[]2,3x ∈有解。
求实数a 的取值范围。
2022年高考数学基础题型重难题型突破类型二恒成立问题与有解问题一.不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.二.恒成立问题的一般解答方法如下:(1)参数分离法:将原不等式化为()a g x >或()a g x <恒成立的问题,然后分析函数()g x 在所给区间的单调性及最值,只需满足最值成立即可;(2)分类讨论:讨论函数()f x 在所给区间单调性及最值,需满足()max 0f x <或()min 0f x >【典例1】已知函数f (x )=(1-x )e x-1.(1)求f (x )的极值;(2)设g (x )=(x -t )2x ,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使方程f (x 1)=g (x 2)成立,求实数m 的最小值.【典例2】设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.【典例3】已知f (x )=x 2-4x -6ln x .(1)求f (x )在(1,f (1))处的切线方程以及f (x )的单调性;(2)对任意x ∈(1,+∞),有xf ′(x )-f (x )>x 2+6k 恒成立,求k 的最大整数解;(3)令g (x )=f (x )+4x -(a -6)ln x ,若g (x )有两个零点分别为x 1,x 2(x 1<x 2)且x 0为g (x )的唯一的极值点,求证:x 1+3x 2>4x 0.【典例4】已知函数f (x )=x 2+πcos x .(1)求函数f (x )的最小值;(2)若函数g (x )=f (x )-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π.【典例5】已知函数f (x )=a e x -1-ln x +ln a .若f (x )≥1,求a 的取值范围.【典例6】设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.2思路分析❶存在x 0≥1,使得f (x 0)<aa -1↓❷fxmin<a a -1↓❸求f xmin【典例7】已知函数f (x )=2ln x +1.若f (x )≤2x +c ,求c 的取值范围.【典例8】已知函数f(x)=ln x-ax,g(x)=x2,a∈R.(1)求函数f(x)的极值点;(2)若f(x)≤g(x)恒成立,求a的取值范围.【典例9】已知x=1e为函数f(x)=x a ln x的极值点.(1)求a的值;(2)设函数g(x)=kxe x∀x1∈(0,+∞),∃x2∈R,使得f(x1)-g(x2)≥0,求k的取值范围.【典例10】设函数f(x)=ax2-a-ln x,g(x)=1x-ee x,其中a∈R,e=2.718…为自然对数的底数.(1)讨论f(x)的单调性;(2)证明:当x>1时,g(x)>0;(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.【典例11】已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).类型二恒成立问题与有解问题一.不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.二.恒成立问题的一般解答方法如下:(1)参数分离法:将原不等式化为()a g x >或()a g x <恒成立的问题,然后分析函数()g x 在所给区间的单调性及最值,只需满足最值成立即可;(2)分类讨论:讨论函数()f x 在所给区间单调性及最值,需满足()max 0f x <或()min 0f x >【典例1】已知函数f (x )=(1-x )e x-1.(1)求f (x )的极值;(2)设g (x )=(x -t )2x ,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使方程f (x 1)=g (x 2)成立,求实数m 的最小值.【解析】解(1)f ′(x )=-x e x,当x ∈(0,+∞)时,f ′(x )<0,当x ∈(-∞,0)时,f ′(x )>0,∴当x =0时,f (x )有极大值f (0)=e 0-1=0,f (x )没有极小值.(2)由(1)知f (x )≤0,又因为g (x )=(x -t )2x ≥0,所以要使方程f (x 1)=g (x 2)有解,必然存在x 2∈(0,+∞),使g (x 2)=0,所以x =t ,ln x=m t,等价于方程ln x =mx有解,即方程m =x ln x 在(0,+∞)上有解,记h (x )=x ln x ,x ∈(0,+∞),则h ′(x )=ln x +1,令h ′(x )=0,得x =1e,所以当x h ′(x )<0,h (x )单调递减,当x h ′(x )>0,h (x )单调递增,所以当x =1e 时,h (x )min =-1e ,所以实数m 的最小值为-1e.【典例2】设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.【解析】解f ′(x )=2ax -1-ln x -(2a -1)=2a (x -1)-ln x (x >0),易知当x ∈(0,+∞)时,ln x ≤x -1,则f ′(x )≥2a (x -1)-(x -1)=(2a -1)(x -1).当2a -1≥0,即a ≥12时,由x ∈[1,+∞)得f ′(x )≥0恒成立,f (x )在[1,+∞)上单调递增,f (x )≥f (1)=0,符合题意;当a ≤0时,由x ∈[1,+∞)得f ′(x )≤0恒成立,f (x )在[1,+∞)上单调递减,f (x )≤f (1)=0,显然不符合题意,a ≤0舍去;当0<a <12时,由ln x ≤x -1,得ln1x ≤1x -1,即ln x ≥1-1x,则f ′(x )≤2a (x ax -1),∵0<a <12,∴12a>1.当x ∈1,12a 时,f ′(x )≤0恒成立,∴f (x )在1,12a 上单调递减,∴当x ∈1,12a 时,f (x )≤f (1)=0,显然不符合题意,0<a <12舍去.综上可得,a ∈12,+∞【典例3】已知f (x )=x 2-4x -6ln x .(1)求f (x )在(1,f (1))处的切线方程以及f (x )的单调性;(2)对任意x ∈(1,+∞),有xf ′(x )-f (x )>x 2+6k 恒成立,求k 的最大整数解;(3)令g (x )=f (x )+4x -(a -6)ln x ,若g (x )有两个零点分别为x 1,x 2(x 1<x 2)且x 0为g (x )的唯一的极值点,求证:x 1+3x 2>4x 0.【解析】(1)因为f (x )=x 2-4x -6ln x ,所以定义域为(0,+∞),所以f ′(x )=2x -4-6x ,且f ′(1)=-8,f (1)=-3,所以切线方程为y =-8x +5.又f ′(x )=2x (x +1)(x -3),令f ′(x )>0解得x >3,令f ′(x )<0解得0<x <3,所以f (x )的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)xf ′(x )-f (x )>x 2+6等价于k <x +x ln x x -1,记h (x )=x +x ln x x -1,则k <h (x )min ,且h ′(x )=x -2-ln x (x -1)2,记m (x )=x -2-ln x ,则m ′(x )=1-1x>0,所以m (x )为(1,+∞)上的单调递增函数,且m (3)=1-ln 3<0,m (4)=2-ln 4>0,所以存在x 0∈(3,4),使得m (x 0)=0,即x 0-2-ln x 0=0,所以h (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增,且h (x )min =h (x 0)=x 0+x 0ln x 0x 0-1=x 0∈(3,4),所以k 的最大整数解为3.(3)证明:g (x )=x 2-a ln x ,则g ′(x )=2x -a x =(2x +a )(2x -a )x,令g ′(x )=0,得x 0=a2,当x g ′(x )<0,当x g ′(x )>0,所以g (x上单调递增,而要使g (x )有两个零点,要满足g (x 0)<0,即-a lna 2<0⇒a >2e.因为0<x 1<a2,x 2>a 2,令x 2x 1=t (t >1),由g (x 1)=g (x 2),可得x 21-a ln x 1=x 22-a ln x 2,即x 21-a ln x 1=t 2x 21-a ln tx 1,所以x 21=a ln tt 2-1,而要证x 1+3x 2>4x 0,只需证(3t +1)x 1>22a ,即证(3t +1)2x 21>8a ,即(3t +1)2a ln t t 2-1>8a ,又a >0,t >1,所以只需证(3t+1)2ln t -8t 2+8>0,令h (t )=(3t +1)2ln t -8t 2+8,则h ′(t )=(18t +6)ln t -7t +6+1t ,令n (t )=(18t +6)ln t -7t +6+1t,则n ′(t )=18ln t +11+6t -1t 2>0(t >1),故n (t )在(1,+∞)上单调递增,n (t )>n (1)=0,故h (t )在(1,+∞)上单调递增,h (t )>h (1)=0,所以x 1+3x 2>4x 0.【典例4】已知函数f (x )=x 2+πcos x .(1)求函数f (x )的最小值;(2)若函数g (x )=f (x )-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π.【解析】(1)易知函数f (x )为偶函数,故只需求x ∈[0,+∞)时f (x )的最小值.f ′(x )=2x -πsin x ,当x h (x )=2x -πsin x ,h ′(x )=2-πcos x ,显然h ′(x )单调递增,而h ′(0)<0,h x 0得h ′(x 0)=0.当x ∈(0,x 0)时,h ′(x )<0,h (x )单调递减,当x 0h ′(x )>0,h (x )单调递增,而h (0)=0,x h (x )<0,即x f ′(x )<0,f (x )单调递减,又当x x >π>πsin x ,f ′(x )>0,f (x )单调递增,所以f (x )min ==π24.(2)证明:依题意得x 1x 2F (x )=f (x )-f (π-x ),x F ′(x )=f ′(x )+f ′(π-x )=2π-2πsin x >0,即函数F (x )单调递增,所以F (x )<x f (x )<f (π-x ),而x 1,所以f (x 1)<f (π-x 1),又f (x 1)=f (x 2),即f (x 2)<f (π-x 1),此时x 2,π-x 1由(1)可知,f (x x 2<π-x 1,即x 1+x 2<π.【典例5】已知函数f (x )=a e x -1-ln x +ln a .若f (x )≥1,求a 的取值范围.【解析】解f (x )的定义域为(0,+∞),f ′(x )=a e x -1-1x.当0<a <1时,f (1)=a +ln a <1.当a =1时,f (x )=ex -1-ln x ,f ′(x )=ex -1-1x.当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以当x =1时,f (x )取得最小值,最小值为f (1)=1,从而f (x )≥1.当a >1时,f (x )=a ex -1-ln x +ln a ≥ex -1-ln x ≥1.综上,a 的取值范围是[1,+∞).【典例6】设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.2思路分析❶存在x 0≥1,使得f (x 0)<aa -1↓❷fxmin<a a -1↓❸求f xmin【解析】解(1)f ′(x )=ax+(1-a )x -b .由题设知f ′(1)=0,解得b =1.(2)f (x )的定义域为(0,+∞),由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=a x +(1-a )x x -1).①若a ≤12,则a1-a≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上单调递增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f (1)<a a -1,即1-a 2-1<a a -1,解得-2-1<a <2-1.②若12<a <1,则a 1-a >1,故当x f ′(x )<0,当x f ′(x )>0,f (x 增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f<aa -1.而fa lna 1-a +a 221-a +a a -1>a a -1,所以不符合题意.③若a >1,则f (1)=1-a 2-1=-a -12<aa -1.综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).【典例7】已知函数f (x )=2ln x +1.若f (x )≤2x +c ,求c 的取值范围.【解析】解设h (x )=f (x )-2x -c ,则h (x )=2ln x -2x +1-c ,其定义域为(0,+∞),h ′(x )=2x -2.当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0.所以h (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.从而当x =1时,h (x )取得最大值,最大值为h (1)=-1-c .故当-1-c ≤0,即c ≥-1时,f (x )≤2x +c .所以c 的取值范围为[-1,+∞).【典例8】已知函数f (x )=ln x -ax ,g (x )=x 2,a ∈R .(1)求函数f (x )的极值点;(2)若f (x )≤g (x )恒成立,求a 的取值范围.【解析】解(1)f (x )=ln x -ax 的定义域为(0,+∞),f ′(x )=1x-a .当a ≤0时,f ′(x )=1x-a >0,所以f (x )在(0,+∞)上单调递增,无极值点;当a >0时,由f ′(x )=1x -a >0,得0<x <1a ,由f ′(x )=1x -a <0,得x >1a ,所以f (x f (x )有极大值点1a,无极小值点.(2)由条件可得ln x -x 2-ax ≤0(x >0)恒成立,则当x >0时,a ≥ln xx-x 恒成立,令h (x )=ln x x -x ,x >0,则h ′(x )=1-x 2-ln xx 2,令k (x )=1-x 2-ln x ,x >0,则当x >0时,k ′(x )=-2x -1x <0,所以k (x )在(0,+∞)上单调递减,又k (1)=0,所以在(0,1)上,h ′(x )>0,在(1,+∞)上,h ′(x )<0,所以h (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以h (x )max =h (1)=-1,所以a ≥-1.即a 的取值范围为a ≥-1.【典例9】已知x =1e为函数f (x )=x aln x 的极值点.(1)求a 的值;(2)设函数g (x )=kxe x∀x 1∈(0,+∞),∃x 2∈R ,使得f (x 1)-g (x 2)≥0,求k 的取值范围.【解析】解(1)f ′(x )=axa -1ln x +x a ·1x=x a -1(a ln x +1),f ln1e+1a =2,当a =2时,f ′(x )=x (2ln x +1),函数f (x 递增,所以x =1e为函数f (x )=x aln x 的极小值点,因此a =2.(2)由(1)知f (x )min =f =-12e,函数g (x )的导函数g ′(x )=k (1-x )e -x.①当k >0时,当x <1时,g ′(x )>0,g (x )在(-∞,1)上单调递增;当x >1时,g ′(x )<0,g (x )在(1,+∞)上单调递减,对∀x 1∈(0,+∞),∃x 2=-1k ,使得g (x 2)=1e k <-1<-12e ≤f (x 1),符合题意.②当k =0时,g (x )=0,取x 1=1e,对∀x 2∈R 有f (x 1)-g (x 2)<0,不符合题意.③当k <0时,当x <1时,g ′(x )<0,g (x )在(-∞,1)上单调递减;当x >1时,g ′(x )>0,g (x )在(1,+∞)上单调递增,g (x )min =g (1)=ke,若对∀x 1∈(0,+∞),∃x 2∈R ,使得f (x 1)-g (x 2)≥0,只需g (x )min ≤f (x )min ,即k e ≤-12e,解得k ≤-12.综上所述,k -∞,-12∪(0,+∞).规律方法(1)由不等式恒成立求参数的取值范围问题的策略①求最值法,将恒成立问题转化为利用导数求函数的最值问题.②分离参数法,将参数分离出来,进而转化为a >f (x )max 或a <f (x )min 的形式,通过导数的应用求出f (x )的最值,即得参数的范围.(2)不等式有解问题可类比恒成立问题进行转化,要理解清楚两类问题的差别.【典例10】设函数f (x )=ax 2-a -ln x ,g (x )=1x -ee x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0;(3)确定a 的所有可能取值,使得f (x )>g (x )在区间(1,+∞)内恒成立.【解析】.(1)解f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0有x =12a.当x f ′(x )<0,f (x )单调递减;当x f ′(x )>0,f (x )单调递增.(2)证明令s (x )=e x -1-x ,则s ′(x )=e x -1-1.当x >1时,s ′(x )>0,所以e x -1>x ,从而g (x )=1x -1e x -1>0.(3)解由(2)知,当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a>1,由(1)有f (1)=0,而所以f (x )>g (x )在区间(1,+∞)内不恒成立;当a ≥12时,令h (x )=f (x )-g (x )(x ≥1),当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈12,+【典例11】已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).【解析】.解(1)f ′(x )=1x -x +1=-x 2+x +1x ,x ∈(0,+∞).由f ′(x )>0>0,x 2+x +1>0.解得0<x <1+52.故f (x )(2)令F (x )=f (x )-(x -1),x ∈(0,+∞).则有F ′(x )=1-x 2x.当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.(3)由(2)知,当k =1时,不存在x 0>1满足题意.当k >1时,对于x >1,有f (x )<x -1<k (x -1),则f (x )<k (x -1),从而不存在x 0>1满足题意.当k <1时,令G (x )=f (x )-k (x -1),x ∈(0,+∞),则有G ′(x )=1x -x +1-k =-x 2+(1-k )x +1x .由G ′(x )=0得,-x 2+(1-k )x +1=0.解得x 1=1-k -(1-k )2+42<0,x 2=1-k +(1-k )2+42>1.当x ∈(1,x 2)时,G ′(x )>0,故G (x )在[1,x 2)内单调递增.从而当x ∈(1,x 2)时,G (x )>G (1)=0,即f (x )>k (x -1).综上,k 的取值范围是(-∞,1).。
不等式有解和恒成立问题知识点的罗列,文字不宜太多,简洁明了最好)知识点一:不等式恒成立问题知识点二:不等式有解问题分析该知识点在中高考中的体现,包含但不仅限于:考察分值、考察题型(单选、填难度)题目)【试题来源】(上海2016杨浦二模卷)【题目】设函数x x g 3)(=,x x h 9)(=,若bx g a x g x f +++=)()1()(是实数集R 上的奇函数,且0))(2()1)((>⋅-+-x g k f x h f 对任意实数x 恒成立,求实数k 的取值范围.【答案】:因为bx g a x g x f +++=)()1()(是实数集上的奇函数,所以1,3=-=b a .)1321(3)(+-=x x f ,)(x f 在实数集上单调递增. 由0))(2()1)((>⋅-+-x g k f x h f 得))(2()1)((x g k f x h f ⋅-->-,又因为)(x f 是实数集上的奇函数,所以,)2)(()1)((-⋅>-x g k f x h f ,又因为)(x f 在实数集上单调递增,所以2)(1)(-⋅>-x g k x h即23132-⋅>-x x k 对任意的R x ∈都成立, 即x k 13<例题(k f 【答案】sin k x -22k k k k ⎧-≥⎪≤⎨⎪≤⎩解决不等式有解和恒成立问题的方法✧ 二次函数法。
在之前的讲义中,我们在二次函数那一节已经适当讨论了一些一元二次不等式的恒成立(有解)问题。
事实上,在高考中,很多不等式可以通解变形为一元二次不等式。
因此利用二次函数来求解不等式的恒成立(有解)问题是一个非常有用的方法。
✧ 分离参数法。
所谓分离参数法就是将不等式同解变形为()a f x >或者()a f x <的形式,然后再利用以下命题进行求解。
m min ax ()()(())a f x a x a f x f >⇔>>恒成立(有解);m max in ()()(())a f x a x a f x f <⇔<<恒成立(有解).1、若不等式1log (10)0x a a --<有解,则实数a 的范围是____?????????????.2、函数()f x )对一切实数,x y 均有()()(21)f x y f y x y x +-=++成立,且(1)0f =.(1)求f (2)求(f 3对一切4、已知(1)若(2)若5、已知。
微专题23恒成立、能成立问题【方法技巧与总结】1.利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.2.不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()y f x =,[],x a b ∈,()y g x =,[],x c d ∈.(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有()()12f x g x <成立,则()()max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,则()()max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,则()()min max f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =成立,则()f x 的值域是()g x 的值域的子集.【题型归纳目录】题型一:分离参数题型二:判别式法题型三:数形结合题型四:多变量的恒成立问题题型五:主元法题型六:直接法【典型例题】题型一:分离参数例1.(2022·江苏·连云港市赣马高级中学高一阶段练习)若对任意12x ≤≤,有2x a ≤恒成立,则实数的取值范围是()A .{|2}a a ≤B .{|4}a a ≥C .{|5}a a ≤D .{|5}a a ≥【答案】B【解析】因为对任意12x ≤≤,有2x a ≤恒成立,所以()2maxxa ≤,因为12x ≤≤,所以204x ≤≤,所以4a ≥,故选:B例2.(2022·天津·高一期末)对于满足等式1411a b +=+的任意正数,a b 及任意实数[1,)x ∈+∞,不等式26a b x x m +≥-+-恒成立,则实数m 的取值范围为()A .[2,)+∞B .[1,)+∞C .[0,)+∞D .[3,)-+∞【答案】B【解析】因为任意正数,a b 满足等式1411a b +=+,所以()()1411111a b a b a b a b ⎛⎫+=++-=+++-⎡⎤ ⎪⎣⎦+⎝⎭144481b a a b +=++≥+=+,当且仅当126b a +==,即3,5a b ==时等号成立,因为任意实数[1,)x ∈+∞,不等式26a b x x m +≥-+-恒成立,所以,268m x x ≥-+-对任意实数[1,)x ∈+∞恒成立,因为[1,)x ∈+∞时,()2268311x x x -+-=--+≤,当且仅当=3x 时等号成立,所以,1m ≥,即实数m 的取值范围为[1,)+∞.故选:B例3.(2022·全国·高一课时练习)已知对任意[]1,3m ∈,215mx mx m --<-+恒成立,则实数x 的取值范围是()A .6,7⎛⎫+∞ ⎪⎝⎭B.11,,22∞∞⎛⎛⎫+-⋃+ ⎪ ⎪⎝⎭⎝⎭C .6,7⎛⎫-∞ ⎪⎝⎭D.⎝⎭【答案】D【解析】对任意[]1,3m ∈,不等式215mx mx m --<-+恒成立,即对任意[]1,3m ∈,()216m x x -+<恒成立,所以对任意[]1,3m ∈,261x x m-+<恒成立,所以对任意[]1,3m ∈,2min612x x m ⎛⎫-+<= ⎪⎝⎭,所以212x x -+<,解得1122x <<,故实数x的取值范围是1122⎛-+ ⎝⎭.故选:D .变式1.(2022·全国·高一单元测试)已知12x ≤≤,20x ax ->恒成立,则实数a 的取值范围是()A .{}1a a ≥B .{}1a a >C .{}1a a ≤D .{}1a a <【答案】D【解析】由12x ≤≤,20x ax ->恒成立,可得a x <在[]1,2上恒成立,即即1a <.故选:D.变式2.(2022·广东·深圳外国语学校高一阶段练习)若关于x 的不等式26110x x a -+-<在区间()2,5内有解,则实数a 的取值范围是()A .[)6,+∞B .()6,+∞C .[)2,+∞D .()2,+∞【答案】D【解析】由关于x 的不等式26110x x a -+-<在区间(2,5)内有解,得2611a x x >-+在区间(2,5)内有解,令2()611f x x x =-+,则min ()(3)918112a f x f >==-+=,即2a >,所以实数a 的取值范围是(2,)+∞.故选:D .题型二:判别式法例4.(2022·山东·潍坊一中高三期中)若关于x 的不等式()()224210a x a x -++-≥的解集不为空集,则实数a 的取值范围为()A .62,5⎛⎤- ⎥⎝⎦B .62,5⎡⎤-⎢⎥⎣⎦C .6(,2)[,)5-∞-⋃+∞D .6(,2],5⎡⎫-∞-⋃+∞⎪⎢⎣⎭【答案】C【解析】根据题意,分两种情况讨论:①当240a -=时,即2a =±,若2a =时,原不等式为410x -≥,解可得:14x ≥,则不等式的解集为1|4x x ⎧⎫≥⎨⎬⎩⎭,不是空集;若2a =-时,原不等式为10-≥,无解,不符合题意;②当240a -≠时,即2a ≠±,若22(4)(2)10a x a x -++-≥的解集是空集,则有22240Δ(2)4(4)0a a a ⎧-<⎨=++-<⎩,解得625a -<<,则当不等式22(4)(2)10a x a x -++-≥的解集不为空集时,有2a <-或65a ≥且2a ≠,综合可得:实数a 的取值范围为6(,2)[,)5-∞-⋃+∞;故选:C .例5.(2022·陕西·西安市西光中学高二阶段练习)关于x 的不等210ax ax a ++-<的解集为R ,则a ∈()A .(),0∞-B .(0,+∞)C .(0,1)D .(]0-∞,【答案】D【解析】当0a =时,2110ax ax a ++-=-<对R x ∈恒成立,符合题意;当0a ≠时,构造21y ax ax a =++-,要使0y <对R x ∈恒成立,由二次函数的图像可知:a<0且224(1)340a a a a a ∆=--=-+<,解得:a<0,综上:0a ≤.故选:D .例6.(2022·河北唐山·高一期中)已知关于x 的不等式2220mx mx ++≥的解集为R ,则实数m 的取值范围是()A .02m <<B .02m ≤≤C .0m ≤或2m ≥D .0m <或m>2【答案】B【解析】当0m =时,则20≥恒成立,0m =成立;当0m ≠时,则20Δ480m m m >⎧⎨=-≤⎩,解得02m <≤;综上所述:实数m 的取值范围为02m ≤≤.故选:B.变式3.(2022·广东·石门高级中学高一阶段练习)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围是()A .[]3,0-B .()(),30,-∞-⋃+∞C .(]3,0-D .(][),30,-∞-⋃+∞【答案】C【解析】当=0k 时,308-<对一切实数x 都成立,故=0k 符合题意;当0k ≠时,要使不等式23208kx kx +-<对一切实数x 都成立,则2<03<<03Δ=4×2×<08k k k k ⎧⎪⇒-⎨⎛⎫-- ⎪⎪⎝⎭⎩,综上可得30k -<≤,即(]3,0k ∈-;故选:C.变式4.(2022·北京市第五十中学高一阶段练习)对于任意实数x ,不等式()()222240m x m x ---+>恒成立,则m 的取值范围是()A .{22}mm -<<∣B .{22}mm -<≤∣C .{2mm <-∣或2}m >D .{2mm <-∣或2}m ≥【答案】B【解析】当20m -=,即=2m 时,40>恒成立,满足题意.当20m -≠时,则有()()22>0Δ=424×2×4<0m m m ----⎧⎪⎨⎪⎩,解得:22m -<<综上,实数m 的取值范围是22m -<≤故选:B变式5.(2022·河南·洛宁县第一高级中学高一阶段练习)已知不等式()2110ax a x --+>对任意实数x 都成立,则实数a 的取值范围是()A.{|3a a >-0}a <B.{|33a a -<<+C.{|3a a <-3a >+D.{33a a -<+【答案】D【解析】当0a =时,不等式为10x -+>,即1x <,不符合题意;当0a ≠时,不等式()2110ax a x --+>对任意实数x 都成立,由一元二次函数性质可知,0a >且判别式2[(1)]40a a ∆=---<,解得33a -<<+.故选:D .题型三:数形结合例7.已知定义在R 上的函数()f x 满足()()f x f x =-,且在(0,)+∞上是增函数,不等式(2)(1)f ax f +- 对于[1x ∈,2]恒成立,则a 的取值范围是()A .(-∞,32-B .(-∞,1]2-C .[3-,12-D .3[,1]2--【解析】解:由题可知,()f x 的图象关于y 轴对称,且函数()f x 在(,0)-∞上递减,由函数()f x 的图象特征可得121ax -+ 在[1,2]上恒成立,得31a x x-- 在[1,2]上恒成立,所以312a -- .故选:D .例8.当(1,2)x ∈时,不等式1log a x x -<恒成立,则实数a 的取值范围为()A .(0,1)B .(1,2)C .(1,2]D .(2,)+∞【解析】解:函数1y x =-在区间(1,2)上单调递增,∴当(1,2)x ∈时,1(0,1)y x =-∈,若不等式1log a x x -<恒成立,则1a >且1log 2a 即(1a ∈,2],故选:C .例9.当(1,2)x ∈时,不等式2(1)log a x x -<恒成立,则实数a 的取值范围为()A .(2,3]B .[4,)+∞C .(1,2]D .[2,4)【解析】解:函数2(1)y x =-在区间(1,2)上单调递增,∴当(1,2)x ∈时,2(1)(0,1)y x =-∈,若不等式2(1)log a x x -<恒成立,则1a >且1log 2a 即(1a ∈,2],故选:C .变式6.存在[3x ∈,4]使得2()1x x a - 成立,则实数a 的取值范围是9[3,32-.【解析】解:由题意,存在[3x ∈,4]使得21()x a x- ,设21()(),[3,4],(),[3,4]f x x a x g x x x =-∈=∈,且1()3max g x =,1()4min g x =,如图①,当3a 时,函数()f x 在[3,4]上单调递增,此时只需21()(3)(3)3min f x f a ==- ,解得3333a -+ ,故333a - ;如图②,当34a <<时,函数()f x 的最小值为()min f x f =(a )0=,显然恒成立,如图③,当4a 时,函数()f x 在[3,4]上单调递减,此时21()(4)(4)4min f x f a ==- ,解得7922a ,故942a ;综上,实数a 的取值范围是9[3,]32-.故答案为:9[3]2.题型四:多变量的恒成立问题例10.(2022·江苏省镇江第一中学高一阶段练习)已知函数2()2,R =++∈f x x ax a .(1)若不等式()0f x ≤的解集为[1,2],求不等式2()1f x x ≥-的解集;(2)若对于任意[1,1]x ∈-,不等式()2(1)4f x a x ≤-+恒成立,求实数a 的取值范围;(3)已知()g x x m =-+,当3a =-时,若对任意1[1,4]x ∈,总存在2(1,8)x ∈,使()()12f x g x =成立,求实数m 的取值范围.【解析】(1)由题意,1,2为方程220x ax ++=的两个不等实数根,123a a ∴+=-⇒=-,所以不等式2()1f x x ≥-为2223212310x x x x x -+≥-⇒-+≥,解得12x ≤或1x ≥,所以不等式解集为[)1,1,2⎛⎤-∞+∞ ⎥⎝⎦.(2)2()2(1)4220f x a x x x a a -≤-+⇒+-≤对[1,1]x ∈-恒成立,令()222a h x x x a =+--,即()0h x ≤对[1,1]x ∈-恒成立,因为函数()h x 开口向上,故只需满足()()101220101220h a a h a a ⎧≤-+-≤⎧⎪⇒⎨⎨-≤++-≤⎪⎩⎩,解得13a ≤,所以a 的取值范围为1,3⎛⎤-∞ ⎥⎝⎦(3)当3a =-时,2()32f x x x =-+,开口向上,对称轴为32x =当[1,4]x ∈时,min 1()4f x =-,max ()6f x =,1()64f x ∴-≤≤,(1,8)x ∈时,()()8,1g x m m ∈-+-+,由题意,对任意1[1,4]x ∈,总存在2(1,8)x ∈,使()()12f x g x =成立,即函数()f x 的值域是函数()g x 的值域的子集,即()1,648,1m m ⎡⎤⊆-+-+⎢⎥-⎣⎦,18416m m ⎧-+<-⎪∴⎨⎪-+>⎩,解得3174m <<,所以m 的取值范围为317,4⎛⎫⎪⎝⎭.例11.(2022·浙江·杭十四中高一期末)已知函数()4af x x x=+-,()g x x b =-,2()2h x x bx =+(1)当2a =时,求函数()()y f x g x =+的单调递增与单调递减区间(直接写出结果);(2)当[]3,4a ∈时,函数()f x 在区间[]1,m 上的最大值为()f m ,试求实数m 的取值范围;(3)若不等式()()()()1212h x h x g x g x -<-对任意1x ,[]20,2x ∈(12x x <)恒成立,求实数b 的取值范围.【解析】(1)当2a =时,21()()42(4y f x g x x x b x b x x =+=+-+-=+--,所以函数()()y f x g x =+的单调递增区间为(,1)-∞-,(1,)+∞,单调递减区间为(1,0)-,(0,1);(2)因为[3a ∈,4],且函数()y f x =在[1上单调递减,在)∞+上单调递增,又因为()f x 在[1,]m 上的最大值为()f m ,所以()()1f m f ≥,即414am a m+-≥+-,整理可得2(1)0m a m a -++≥,所以(1)()0m m a --≥,所以max m a ≥,即4m ≥;(3)由不等式1212()()|()||()|h x h x g x g x -<-对任意1x ,2[0x ∈,122]()x x <恒成立,即1122()|()|()|()|h x g x h x g x -<-,可令()()|()|F x h x g x =-,等价为()F x 在[0,2]上单调递增,而222(21),()()()2(21),x b x b x bF x h x g x x bx x b x b x b x b⎧++-<=-=+--=⎨+-+≥⎩,分以下三种情况讨论:①当12b b ≤--即14b ≤-时,可得102b -+≤,解得12b ≥,矛盾,无解;②1122b b b --<<-+,即1144b -<<时,函数()F x 的图象的走向为减、增、减、增,但是中间增区间的长度不足1,要想()F x 在[0,2]递增,只能102b -+≤,即12b ≥,矛盾,无解;③12b b ≥-+即14b ≥时,此时()F x 在1[2b --,)∞+上单调递增,要想()F x 在[0,2]递增,只能102b --≤,即12b ≥-,所以14b ≥.综上可得满足条件的b 的取值范围是1,4⎡⎫+∞⎪⎢⎣⎭.例12.(2022·辽宁·大连二十四中高三阶段练习)已知定义在R 上的函数()f x 满足()()0f x f x --=,且()2()log 21x f x kx =+-,()()g x f x x =+.(1)若不等式()422(2)x xg a g -⋅+>-恒成立,求实数a 的取值范围;(2)设4()ln 21h x x x x mx =+-+,若对任意的[]10,3x ∈,存在22e,e x ⎡⎤∈⎣⎦,使得()()12g x h x ≥,求实数m 的取值范围.【解析】(1)由题意知,()()22log 21log 210x x kx kx -+--+-=,即()()22222112log 21log 21log log 212x xxx x kx x --+=+-+===-+,所以12k =-,故()()21log 212xf x x =+-,∴()()()21log 212xg x f x x x =+=++,因为函数21x y =+为增函数,函数2log y x =在其定义域上单调递增,所以()2log 21xy =+单调递增,又12y x =为增函数,所以函数()g x 在R 上单调递增,所以不等式()()4222x xg a g -⋅+>-恒成立等价于4222x x a -⋅+>-,即442x xa +<恒成立,设2xt =,则0t >,2444442x x t t t t++==+≥,当且仅当2t =,即1x =时取等号,所以4a <,故实数a 的取值范围是(),4-∞;(2)因为对任意的[]10,3x ∈,存在22e,e x ⎡⎤∈⎣⎦,使得()()12g x h x ≥,所以()g x 在[]0,3上的最小值不小于()h x 在2,e e ⎡⎤⎣⎦上的最小值,因为()()21log 212xg x x =++在[]0,3上单调递增,所以当[]0,3x ∈时,()()min 01g x g ==,∴4()ln 211h x x x x mx =+-+≤,即存在2e,e x ⎡⎤∈⎣⎦,使311ln 22m x x ≥+成立,令()311ln ,22t x x x x =+∈2,e e ⎡⎤⎣⎦,因为312y x =在2,e e ⎡⎤⎣⎦上单调递增,1ln 2y x =在2,e e ⎡⎤⎣⎦上单调递增,∴()t x 在2,e e ⎡⎤⎣⎦上单调递增,∴()()3min 11e e 22t x t ==+,∴311e 22m ≥+,所以实数m 的取值范围是311e ,22⎡⎫++∞⎪⎢⎣⎭.变式7.(2022·湖北武汉·高一期中)已知函数()()2=R f x x mx m -∈.(1)若存在实数x ,使得()()22x xf f -=-成立,试求m 的最小值;(2)若对任意的[]12,1,1x x ∈-,都有()()122f x f x -≤恒成立,试求m 的取值范围.【解析】(1)由题意,由()()22x x f f -=-得,222222x x x x m m ---⋅=-+⋅,即222222x xxx m --+=+,2(22)22222222x x x xx x x xm ----+-∴==+-++,令222x x t -=+≥=,则2(2)m t t t=-≥,由于函数y t =在[2,)+∞为增函数,2y t=在[2,)+∞为减函数,min 2212m ∴=-=,即m 的最小值为1.(2)二次函数()2f x x mx=-的开口向上,对称轴为2m x =,若对任意的[]12,1,1x x ∈-,都有()()122f x f x -≤恒成立,则当[1,1]x ∈-时,()()max min 2f x f x -≤,①当12m≥,即2m ≥时,()min max (1)1,()(1)1f x f m f x f m =-=+==-,故1(1)2m m +--≤,解得1m ≤,又2m ≥,故无解;②当112m -≤≤,即22m -≤≤时,2min ()()24m m f x f ==-,max ()max{(1),(1)}max{1,1}f x f f m m =-=+-,要使得()()max min 2f x f x -≤,只需()122m f f ⎛⎫-≤ ⎪⎝⎭且()122m f f ⎛⎫--≤ ⎪⎝⎭,故2212(1)22242m mm m ++≤⇔+≤⇔--≤≤-,2212(1)22242m mm m -+≤⇔-≤⇔-+≤≤+,故22m -≤≤-+③当12m≤-,即2m ≤-时,max min ()(1)1,()(1)1f x f m f x f m ==-=-=+,则()()max min 2f x f x -≤,即22m -≤,解得1m ≥-,与2m ≤-矛盾,无解.综上,实数m 的取值范围是22m -+≤≤.变式8.(2022·湖南·株洲二中高一阶段练习)已知定义在R 上的函数()f x 满足()()0f x f x --=且()()2log 21x f x kx =++,()()g x f x x =+.(1)求()f x 的解析式;(2)若不等式()()4213x xg a g -⋅+>-恒成立,求实数a 取值范围;(3)设()221h x x mx =-+,若对任意的[]10,3x ∈,存在[]21,3x ∈,使得()()12g x h x ≥,求实数m 取值范围.【解析】(1)由题意知,()()22log 21log 210x x kx kx -+--+-=,即()()222212log 21log 21log 21x xxx kx x --+=+-+==-+,所以12k =-,故()()21log 212xf x x =+-.(2)由(1)知,()()()21log 212x g x f x x x=+=++,所以()g x 在R 上单调递增,所以不等式()()4213x xg a g -⋅+>-恒成立等价于4213x x a -⋅+>-,即442x xa +<恒成立.设2xt =,则0t >,2444442x x t t t t++==+≥,当且仅当2t =,即1x =时取等号,所以4a <,故实数a 的取值范围是(),4-∞.(3)因为对任意的[]10,3x ∈,存在[]21,3x ∈,使得()()12g x h x ≥,所以()g x 在[]0,3上的最小值不小于()h x 在[]1,3上的最小值,因为()()21log 212xg x x =++在[]0,3上单调递增,所以当[]0,3x ∈时,()()min 01g x g ==,又()221h x x mx =-+的对称轴为x m =,[]1,3x ∈,当1m £时,()h x 在[]1,3上单调递增,()()min 1221h x h m ==-≤,解得12m ≥,所以112m ≤≤;当13m <<时,()h x 在[)1,m 上单调递减,在[],3m 上单调递增,()()2min 11h x h m m ==-≤,解得m R ∈,所以13m <<;当3m ≥时,()h x 在[]1,3上单调递减,()()min 31061h x h m ==-≤,解得32m ≥,所以3m ≥,综上可知,实数m 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.变式9.(2022·山西·晋城市第一中学校高一阶段练习)已知函数()4f x x x=+,(1)判断函数()f x 在区间()0,∞+上的单调性,并利用定义证明;(2)若对任意的121,,42x x ⎡⎤∈⎢⎥⎣⎦时,()()122f x f x m m -≤+恒成立,求实数m 的取值范围.【解析】(1)()4f x x x =+在()0,2上单调递减,在()2,+∞上单调递增,理由如下:取()12,0,2x x ∀∈,且12x x <,()()()()121212121212444x x f x f x x x x x x x x x --=+--=--()()1212121212441x x x x x x x x x x ⎛⎫-=--=-⋅⎪⎝⎭,因为()12,0,2x x ∀∈,12x x <,故12120,40x x x x >-<,120x x -<,()()()1212121240x x f x f x x x x x --=-⋅>,所以()()12f x f x >,所以()4f x x x=+在()0,2上单调递减;取()34,2,x x ∀∈+∞,且34x x <,()()()()343434343434444x x f x f x x x x x x x x x --=+--=--()()3434343434441x x x x x x x x x x ⎛⎫-=--=-⋅ ⎪⎝⎭,因为()34,2,x x ∀∈+∞,34x x <,故34340,40x x x x >->,340x x -<,()()()3434343440x x f x f x x x x x --=-⋅<,所以()()34f x f x <,所以()4f x x x=+在()2,+∞上单调递增;(2)若对任意的121,,42x x ⎡⎤∈⎢⎥⎣⎦时,()()122f x f x m m -≤+恒成立,0m =时,2m m+无意义,舍去,当0m <时,20m m+<,此时()()122f x f x m m -≤+无解,舍去,所以0m >,只需求出()()12f x f x -的最大值,当1,22x ⎡⎤∈⎢⎥⎣⎦时,()4f x x x =+单调递减,当(]2,4x ∈时,()4f x x x =+单调递增,故()()min 2224f x f ==+=,又因为17182122f ⎛⎫=+= ⎪⎝⎭,()4415f =+=,故()max 11722f x f ⎛⎫== ⎪⎝⎭,故()()12max 179422f x f x -=-=,所以922m m≤+,因为0m >,故解得:4m ≥或102m <≤实数m 的取值范围是[)14,0,2⎛⎤+∞ ⎝⎦.变式10.(2022·黑龙江·哈尔滨三中高一阶段练习)已知定义域为R 的函数()f x 满足()()212132f x x a x a +=+--+.(1)求函数()f x 的解析式;(2)若对任意的[]3,2a ∈--,都有()0f x <恒成立,求实数x 的取值范围;(3)若[]12,2,1x x ∃∈-使得()()124f x f x >+,求实数a 的取值范围.【解析】(1)()()2+1=+213+2f x x a x a --,令1x t +=,则1x t =-,故()()()()2212113221f t a t t a t a t a =-+---+=--+,所以()221f x a a x x =--+;(2)()221f x a a x x =--+可看作关于a 的一次函数()()2211x a h a x =--++,要想对任意的[]3,2a ∈--,都有()0h a <恒成立,只需要()()()()223=321++1<02=221++1<0h x x h x x --------⎧⎪⎨⎪⎩①②,解①得:33x -<<-解②得:31x -<<-,则33x -<<-31x -<<-求交集得33x -<<-实数x 的取值范围是(3,3--;(3)若[]12,2,1x x ∃∈-使得()()124f x f x >+,只需()()max min 4f f x x >+在[]2,1x ∈-上成立,()221f x a a x x =--+的对称轴为=x a ,当2a ≤-时,()f x 在[]2,1x ∈-上单调递增,所以()()max 112123x f a a a f ==--+=-,()()min 244135f x f a a a =-=+-+=+,由23354a a ->++,解得:76a <-,2a ≤-与76a <-取交集得:2a ≤-;当1a ≥时,()f x 在[]2,1x ∈-上单调递减,所以()()min 123x f a f ==-,()()min 235x f a f =-=+,由35234a a +>-+,解得:16a >,1a ≥与16a >取交集得:1a ≥;当122a -<<-时,()f x 在[)2,a -上单调递减,在[],1a 上单调递增,且()()12f f >-,所以()()max 123x f a f ==-,()()2min ==+1f x f a a a --,由22314a a a ->--++,解得:3a >或1a <-,3a >或1a <-与122a -<<-取交集得:21a -<<-,当112a -≤<时,()f x 在[)2,a -上单调递减,在[],1a 上单调递增,且()()21f f -≥,所以()()max 235x f a f =-=+,()()2min ==+1f x f a a a --,23514a a a +>--++,解得:0a >或4a <-,0a >或4a <-与112a -≤<取交集得:0<<1a ,综上:1a <-或0a >实数a 的取值范围是()(),10,+-∞-⋃∞变式11.(2022·江西·贵溪市实验中学高三阶段练习(文))设函数()f x 的定义域是()0,+∞,且对任意的正实数x 、y 都有()()()f xy f x f y =+恒成立,已知()164f =,且01x <<时()0f x <.(1)求()1f 与()2f 的值;(2)求证:对任意的正数1x 、2x ,()()121f x x f x +>;(3)解不等式()()111282f x f x +>-.【解析】(1)对任意的正实数x 、y 都有()()()f xy f x f y =+恒成立,所以,()()()16444f f f =+=,则()42f =,()()()4222f f f =+=,可得()21f =,()()()221f f f =+,可得()1=0f .(2)证明:对任意的正实数x 、y 都有()()()f xy f x f y =+恒成立,令1y x =,则()()110f x f f x ⎛⎫+== ⎪⎝⎭,可得()1f f x x ⎛⎫=- ⎪⎝⎭,对任意的正数1x 、2x ,则11201x x x <<+,所以,()()()11112121210x f f x f f x f x x x x x x ⎛⎫⎛⎫=+=-+<⎪ ⎪++⎝⎭⎝⎭,故()()121f x x f x +>.(3)由()()111282f x f x +>-,可得()()()()()()21282244f x f x f x f x f f x -<+=++=,由(2)可知,函数()f x 在()0,+∞上为增函数.所以,24>128>0128>0x x x x --⎧⎪⎨⎪⎩,解得213x <<或>2x .故原不等式的解集为()2,12,3⎛⎫+∞ ⎪⎝⎭.题型五:主元法例13.(2022·广东实验中学高三阶段练习)已知函数()f x 对任意实数,x y 恒有()()()f x y f x f y +=+,当0x >时,()0f x <,且()12f =-(1)判断()f x 的奇偶性;(2)求函数()f x 在区间[]3,3-上的最大值;(3)若][()21,1,1,1,<22x a f x m am ∃∈-∀∈---⎡⎤⎣⎦恒成立,求实数m 的取值范围.【解析】(1)令==0x y ,则(0)2(0)f f =,可得(0)=0f ,令y x =-,则(0)()()0f f x f x =+-=,可得()()f x f x -=-,又()f x 定义域为R ,故()f x 为奇函数.(2)令12=+>=x x y x x ,则1212()=()+()f x f x f x x -,且120x x ->,因为0x >时,()0f x <,所以1212()()=()<0f x f x f x x --,故12()()f x f x <,即()f x 在定义域上单调递减,所以()f x 在区间[]3,3-上的最大值为(3)=(12)=(1)+(2)=3(1)=3(1)=6f f f f f f -------.(3)由(2),()f x 在[]1,1-上min ()=(1)=2f x f -,2[1,1],[1,1],()<22x a f x m am ∃∈-∀∈---恒成立,即2[1,1],22>2a m am ∀∈----恒成立,所以2[1,1],()=2>0a g a m ma ∀∈--恒成立,显然0m =时不成立,则2>0(1)=2>0m g m m -⎧⎨⎩,可得2m >;2<0(1)=+2>0m g m m -⎧⎨⎩,可得2m <-;综上,2m <-或2m >.例14.(2022·广东·深圳中学高三阶段练习)已知当11a -≤≤时,()24420x a x a +-+->恒成立,则实数x 的取值范围是()A .(),3-∞B .][(),13,∞∞-⋃+C .(),1-∞D .()(),13,-∞⋃+∞【答案】D【解析】()24420x a x a +-+->恒成立,即()22440x a x x -+-+>,对任意得[]1,1a ∈-恒成立,令()()2244f a x a x x =-+-+,[]1,1a ∈-,当2x =时,()0f a =,不符题意,故2x ≠,当2x >时,函数()f a 在[]1,1a ∈-上递增,则()()2min 12440f a f x x x =-=-++-+>,解得3x >或2x <(舍去),当2x <时,函数()f a 在[]1,1a ∈-上递减,则()()2min 12440f a f x x x ==-+-+>,解得1x <或2x >(舍去),综上所述,实数x 的取值范围是()(),13,-∞⋃+∞.故选:D.例15.(2022·黑龙江·双鸭山一中高一阶段练习)若命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,则实数x 的取值范围为()A .[]1,4-B .50,3⎡⎤⎢⎥⎣⎦C .[]51,0,43⎡⎤⎢⎥⎣-⎦D .[)51,0,43⎛⎤- ⎥⎝⎦【答案】C【解析】命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,其否定为真命题,即“[]()21,3,2130a ax a x a ∀∈---+-≥”为真命题.令22()23(21)30g a ax ax x a x x a x =-++-=--++≥,则(1)0(3)0g g -≥⎧⎨≥⎩,即22340350x x x x ⎧-++≥⎨-≥⎩,解得14503x x x -≤≤⎧⎪⎨≥≤⎪⎩或,所以实数x 的取值范围为[]51,0,43⎡⎤⎢⎥⎣-⎦.故选:C变式12.(2022·江西·于都县新长征中学高一阶段练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为()A .(-∞,2)(3⋃,)∞+B .(-∞,1)(2⋃,)∞+C .(-∞,1)(3⋃,)∞+D .(1,3)【答案】C【解析】令()2(2)44f a x a x x =-+-+,则不等式2(4)420x a x a +-+->恒成立转化为()0f a >在[1,1]a ∈-上恒成立.∴有(1)0(1)0f f ->⎧⎨>⎩,即22(2)4402440x x x x x x ⎧--+-+>⎨-+-+>⎩,整理得:22560320x x x x ⎧-+>⎨-+>⎩,解得:1x <或3x >.x \的取值范围为()(),13,-∞⋃+∞.故选:C .变式13.(2022·江西·金溪一中高三阶段练习(理))不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是()A .(]1,42⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭【答案】A【解析】令()()227532=-+-+f a a x x x ,对一切()1,0a ∈-均大于0恒成立,所以()()22270175320⎧->⎪⎨-=--+-+≥⎪⎩x f x x x ,或()227005320⎧-<⎪⎨=-+≥⎪⎩x f x x ,或22705320⎧-=⎪⎨-+≥⎪⎩x x x ,解得4x ≤-或x12≤<xx =综上,实数x 的取值范围是4x ≤-,或12x ≥.故选:A.题型六:直接法例16.(2022·全国·高三专题练习)已知函数2()23f x x ax =--+满足对任意[2,]x a a ∈-,恒有()0f x >,则实数a 的取值范围是()A .(1,1)-B.51,3⎛⎫- ⎪⎝⎭C.⎫⎪⎝⎭D.⎛ ⎝⎭【答案】C【解析】由题设,()f x 开口向下且对称轴为4ax =-,∴要使任意[2,]x a a ∈-,恒有()0f x >,则()()()()2222Δ240{222230230a f a a a a f a a a =+>-=----+>=--+>,∴22310501a a a ⎧-+<⎪⎨<⎪⎩1a <<.故选:C.例17.(2022·全国·高一单元测试)若不等式2(1)10x a x +-+≥对一切(1,2]x ∈都成立,则a的最小值为()A .0B.-C.2-D .5-【答案】D【解析】记22()(1)11f x x a x x ax a =+-+=++-,要使不等式()2110x a x +-+≥对一切(1,2]x ∈都成立,则:12(1)20a f ⎧-≤⎪⎨⎪=≥⎩或2122()1024a a a f a ⎧<-<⎪⎪⎨⎪-=--+≥⎪⎩或22(2)50a f a ⎧-≥⎪⎨⎪=+≥⎩解得2a ≥-或42a -<<-或54a -≤≤-,即5a ≥-.故选:D例18.(2022·全国·高一课时练习)若关于x 的不等式22(1)0x m x m -+-≥在(1,1)-有解,则m 的取值范围为()A .(,1][0,)-∞-+∞B .(,1)(0,)-∞-+∞C .[0,1]D .(0,1)【答案】B【解析】令22()(1)f x x m x m =-+-,其对称轴为202m x =≥,关于x 的不等式22(1)0x m x m -+-≥在(1,1)-有解,当(1,1)x ∈-时,有()(1)f x f <-,(1)0f ∴->,即20m m +>,可得0m >或1m <-.故选:B .【过关测试】一、单选题1.(2022·浙江·杭州高级中学高一期末)已知函数()()log 8a f x ax =-满足1a >,若()1f x >在区间[]1,2上恒成立,则实数a 的取值范围是()A .()4,+∞B .8,43⎛⎫⎪⎝⎭C .81,3⎛⎫ ⎪⎝⎭D .()81,4,3⎛⎫⋃+∞ ⎪⎝⎭【答案】C【解析】因为()()log 8a f x ax =-且1a >,又8y ax =-单调递减,log a y x =在定义域上单调递增,所以()()log 8a f x ax =-在定义域上单调递减,因为()1f x >在区间[]1,2上恒成立,所以()()2log 821log a a f a a =->=恒成立,所以821a a a ->⎧⎨>⎩,解得813a <<,即81,3a ⎛⎫∈ ⎪⎝⎭;故选:C2.(2022·全国·高一单元测试)已知函数()()221,1,,12,2,2xa x x f x a x x ax a x ⎧-+≤⎪=<<⎨⎪+-≥⎩(0a >且1a ≠),若对任意两个不相等的实数1x ,2x ,()()()12120x x f x f x -->⎡⎤⎣⎦恒成立,则实数a 的取值范围是()A .[]2,4B .(]1,4C .()2,+∞D .(]2,4【答案】D【解析】对任意两个不相等的实数1x ,2x ,()()()12120x x f x f x -->⎡⎤⎣⎦恒成立,所以函数()f x 在R 上为增函数,则有220,1,22,221,44,a a aa a a a a ->⎧⎪>⎪⎪-≤⎨⎪⎪-+≤⎪≤+-⎩解得:24a <≤.故选:D.3.(2022·湖南·高一阶段练习)已知())()ln 0f x ax a =>是奇函数,若()()210f ax bx f ax -++<恒成立,则实数b 的取值范围是()A .()8,8-B .()0,8C .()8,16-D .()8,0-【答案】B【解析】∵()f x 是奇函数,∴()()f x f x -=-即()()0f x f x +-=恒成立,即)())lnln0ax a x +-=,则2160a -=,解得4a =±,又∵0a >,∴4a =,则())ln 4f x x =,所以())ln4ln ⎛⎫==f x x ,())()ln4ln ⎫-=+==-⎪⎭f x x f x ,()f x 是奇函数,因为=u 在[)0,∞+是单调递减函数,()ln =f x u 在[)0,∞+是单调递增函数,由复合函数的单调性性判断得,函数()f x 在[)0,∞+上单调递减,又()f x 为奇函数,所以()f x 在R 上单调递减;由()()210-++<f ax bx f ax 恒成立得,()()2441-<-+f x bx f x 可得()()2441-<--f x bx f x 恒成立,则2441->--x bx x ,即()24410--+>x b x 恒成立,所以()244410b =--⨯⨯<△恒成立,解得08b <<.故选:B.4.(2022·江苏·高一专题练习)若4230x x m -+>在()01x ∈,上恒成立,则实数m 的取值范围是()A.()+∞B .()4∞+,C.(-∞D .()4∞-,【答案】C【解析】令()212xt t =∈,,,则原问题转化为230t mt -+>在()12t ∈,恒成立,即3m t t<+在()12t ∈,恒成立,又3t t +≥=当且仅当t =),故实数m的取值范围是(-∞,故选:C .5.(2022·辽宁·东北育才双语学校高一期中)定义在R 上的函数()f x 满足()()2f x f x -=,且当1x ≥时,()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[],1x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为()A .-1B .23-C .23D .13-【答案】D【解析】由题设,()f x 关于1x =对称,根据()f x 的解析式,在[1,)+∞上()f x 在4x =处连续且单调递减,所以()f x 在(,1)-∞上递增,要使对任意[],1x t t ∈+,()()()21f x f x f x t -≤++=恒成立,则|1|||x x t -≥+在[],1t t +上恒成立,所以222212x x x tx t -+≥++,即(1)(21)0t x t ++-≤在[],1t t +上恒成立,当10210t x t +≥⎧⎨+-≤⎩,即 min ,可得113t -≤≤-;当10210t x t +<⎧⎨+-≥⎩,即()max 1{1212t t x t <-≥-=-,无解;综上,t 的最大值为13-.故选:D.6.(2022·四川·石龙中学高一阶段练习)已知对于任意实数x ,220kx x k -+>恒成立,则实数k 的取值范围是()A .1k >B .=1k C .1k ≤D .1k <【答案】A【解析】由题知,当=0k 时,20x ->不恒成立,舍去;当0k ≠时,220kx x k -+>即22y kx x k =-+图像恒在x 轴的上方,所以2>0Δ=44<0k k -⎧⎨⎩解得1k >;综上,1k >.故选:A7.(2022·全国·高一单元测试)已知函数2()3f x ax x =+-,若对任意的12,[1,)x x ∈+∞,且()()121212,3f x f x x x x x -≠<-恒成立,则实数a 的取值范围是()A .(,1)-∞B .(,1]-∞C .(,0)-∞D .(,0]-∞【答案】D【解析】不妨设121x x ≤<,则120x x -<,根据题意,可得()()()12123f x f x x x ->-恒成立,即()()112233f x x f x x ->-恒成立.令2()()323g x f x x ax x =-=--,则()()12g x g x >恒成立,所以函数()g x 在[1,)+∞上单调递减.当0a =时,()23g x x =--在[1,)+∞上单调递减,符合题意;当0a ≠时,要使2()23g x ax x =--在[1,)+∞上单调递减,则0,21,2a a<⎧⎪-⎨-≤⎪⎩解得a<0.综上所述,实数a 的取值范围是(,0]-∞.故选:D.8.(2022·江苏省横林高级中学高一阶段练习)已知对任意(),0,x y ∈+∞,且23x y +=,11221t x y ≤+++恒成立,则t 的取值范围是()A .4t ≤B .12t ≤C .13t ≤D .23t ≤【答案】D【解析】由23x y +=得:()()2216x y +++=,(),0,x y ∈+∞,22x ∴+>,211y +>,()()111111212221222162216221y x x y x y x y x y ⎛⎫⎛⎫++∴+=++++=++⎡⎤ ⎪ ⎪⎣⎦++++++⎝⎭⎝⎭12263⎛≥+= ⎝(当且仅当1x y ==时取等号),∴当11221t x y ≤+++恒成立时,23t ≤.故选:D.二、多选题9.(2022·重庆十八中高一阶段练习)不等式22x bx c x b ++≥+对任意R x ∈恒成立,则()A .2440b c -+≤B .0b ≤C .1c ≥D .0b c +≥【答案】ACD【解析】对于A ,将22x bx c x b ++≥+整理为()220x b x c b +-+-≥,因为22x bx c x b ++≥+对任意R x ∈恒成立,所以0∆≤,即()()2240b c b ---≤,整理得2440b c -+≤,故A 正确;对于B ,令1,2b c ==,则()()2124211430∆=---=-=-<,满足题意,故B 错误;对于C ,由A 知244c b ≥+,即2114b c ≥+≥,故C 正确;对于D ,2211042b b b c b ⎛⎫+≥++=+≥ ⎪⎝⎭,故D 正确.故选:ACD.10.(2022·福建·三明一中高一阶段练习)已知函数()f x 的定义域为{}0x x >,当210x x >>时,()()1212120x x f x f x x x ⎡⎤-+->⎣⎦恒成立,则()A .()y f x =在()0,∞+上单调递减B .()12y f x x=-在()0,∞+上单调递减C .()()1236f f ->D .()()1236f f -<【答案】ABC【解析】A 选项:由()()1212120x x f x f x x x ⎡⎤-+->⎣⎦,210x x >>,得()()2112120x xf x f x x x -->>,所以()y f x =在()0,∞+上单调递减,A 选项正确;B 选项:()()()()21212121121212121212121211022222x x x x x x x x y y f x f x f x f x x x x x x x x x x x -----=--+=-->-=>,所以()12y f x x=-在()0,∞+上单调递减,C 选项与D 选项:由A 选项得()()2112120x x f x f x x x -->>,令12x =,23x =,则()()32123236f f -->=⨯,所以C 选项正确,D 选项错误;故选:ABC.11.(2022·浙江省平阳中学高一阶段练习)设函数()22f x x x a =++,若关于x 的不等式()()0f f x ≥恒成立,则实数a 的可能取值为()A .0B .12C .1D .32【答案】CD【解析】因为函数()22f x x x a =++的开口向上,对称轴为=1x -,所以()()min 11f x f a =-=-,即()f x 的值域为[)1,a -+∝且关于x 的不等式()()0f f x ≥恒成立,则()1011f a a ⎧-≥⎨-≥-⎩,即2100a a a ⎧+-≥⎨≥⎩,解得a ≥或11Δ0a -<-⎧⎨≤⎩,此时无解.所以实数a的取值范围为⎫+∝⎪⎪⎣⎭故选:CD.12.(2022·江苏省怀仁中学高一阶段练习)已知函数()[]()212,2f x x x =-+∈-,()[]()220,3g x x x x =-∈,则下列结论正确的是()A .[]2,2x ∀∈-,()f x a >恒成立,则实数a 的取值范围是(),3-∞-B .[]2,2x ∃∈-,()f x a >恒成立,则实数a 的取值范围是(),3-∞-C .[]0,3x ∃∈,()g x a =,则实数a 的取值范围是[]1,3-D .[]2,2x ∀∈-,[]0,3t ∃∈,()()f x g t =【答案】AC【解析】对于A 选项,[]2,2x ∀∈-,()f x a >恒成立,即()min f x a >,()f x 为减函数,所以()min ()23f x f a ==->,A 选项正确;对于B 选项,[]2,2x ∃∈-,()f x a >恒成立,即()max f x a >,所以()25f a -=>,B 选项不正确;对于C 选项,[]0,3x ∃∈,()g x a =,即()()max min g x a g x ≥≥,()g x 的图像为开口向上的抛物线,所以在对称轴1x =处取最小值,在离对称轴最远处3x =取最大值,所以()()3311g a g =≥≥=-,C 选项正确;对于D 选项,[]2,2x ∀∈-,[]0,3t ∃∈,()()f x g t =,即要求()f x 的值域是()g x 值域的子集,而()f x 的值域为[3,5]-,()g x 值域为[1,3]-,不满足要求,D 选项不正确;故选:AC.三、填空题13.(2022·江苏省新海高级中学高一期中)若不等式()()2log ln 40,1a x x a a -<>≠对于任意()31,e x ∈恒成立,则实数a 的取值范围是____________【答案】()140,1e ,⎛⎫+∞ ⎪⎝⎭【解析】因为不等式()()2log ln 40,1a x x a a -<>≠对于任意()31,e x ∈恒成立,即不等式()2ln ln 4ln x x a+<对于任意()31,e x ∈恒成立,因为()31,e x ∈,所以()ln 0,3x ∈,所以不等式14ln ln ln x a x +<对于任意()31,e x ∈恒成立,令()4g x x x=+,()0,3x ∈,因为()4g x x x=+在()0,2上单调递减,在()2,3上单调递增,所以()()min 24g x g ==,即min4ln 4ln x x ⎛⎫= ⎪+⎝⎭,所以14ln a<,所以ln 0a <或1ln 4a >,解得01a <<或14e a >,即()140,1e ,a ⎛⎫∈+∞ ⎪⎝⎭;故答案为:()140,1e ,⎛⎫+∞ ⎪⎝⎭14.(2022·全国·高一单元测试)若关于x 的方程12log 1mx m =-在区间()01,上有解,则实数m 的取值范围是_____.【答案】()(),01,∞∞-⋃+【解析】当()01x ∈,时,()12log 0,x ∞∈+,所以要使方程12log 1m x m =-在区间()01,上有解,只需01mm >-即可,解得0m <或1m >,所以实数m 的取值范围是()(),01,∞∞⋃+-.故答案为:()(),01,∞∞⋃+-.15.(2022·全国·高一专题练习)已知关于x 的方程2222212x a x a x x a ++-=-+-+有解,则实数a 的取值范围是___________.【答案】1a ≥或1a ≤-【解析】由题知,2222212x a x a x x a ++-=-+-+有解①当2x a <-时,即2222212x a a x x x a --=-+-+-+化简得22421x x a -=-有解即()()2222214a a a ->--⨯-整理得:42210a a ++<无解②当22a x a -≤≤时,即2222212x a a x x a x +=-+--++化简得2210x x -+=解得1x =即221a a -≤≤解得:1a ≥或者1a ≤-③当2x a >时,即2222212x a a x x a x +=-+-++-化简得:2221a x =+有解即()22221a a >+化简得:()2210a -<无解综上,实数a 的取值范围为:1a ≥或1a ≤-故答案为:1a ≥或1a ≤-.16.(2022·全国·高一单元测试)记{}()max ,()a ab a b b a b ≥⎧=⎨<⎩,已知2()3,()2g x x f x x =-=,设函数{}()max (),()F x f x g x =,若方程()0F x m -=有解,则实数m 的取值范围是__________________.【答案】[)2,-+∞【解析】由题意()0F x m -=有解,即(),y F x y m ==有交点令12()()1,3f x g x x x =∴=-=当(,1)(3,),()()x g x f x ∈-∞-⋃+∞>当(1,3),()()x g x f x ∈-<故{}223,1()max (),()2,133,3x x F x f x g x x x x x ⎧-≤-⎪==-<<⎨⎪-≥⎩画出函数{}()max (),()F x f x g x =的简图,如下图所示:数形结合可知,当=1x -时,min ()(1)2F x F =-=-故若(),y F x y m ==有交点,2m ≥-则实数m 的取值范围是[)2,-+∞故答案为:[)2,-+∞。
数学中的恒成立与有解问题一、恒成立问题若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 常用方法1、分离变量法;2、数形结合法;3、利用函数的性质;4、变更主元等;1、由二次函数的性质求参数的取值范围例题1.若关于x 的不等式2220ax x ++>在R 上恒成立,求实数a 的取值范围. 解题思路:结合二次函数的图象求解解析:当0a =时,不等式220x +>解集不为R ,故0a =不满足题意;当0a ≠时,要使原不等式解集为R ,只需202420a a >⎧⎨-⨯<⎩,解得12a >综上,所求实数a 的取值范围为1(,)2+∞2、转化为二次函数的最值求参数的取值范围例题2:已知二次函数满足(0)1f =,而且(1)()2f x f x x +-=,请解决下列问题 (1) 求二次函数的解析式。
(2) 若()2f x x m >+在区间[1,1]-上恒成立 ,求m 的取值范围。
解题思路:先分离系数,再由二次函数最值确定取值范围。
解析:(1)设2()(0)f x ax bx c a =++≠.由(0)1f =得1c =,故2()1f x ax bx =++. ∵(1)()2f x f x x +-= ∴22(1)(1)1(1)2a x b x ax bx x ++++-++=即22ax a b x ++=,所以22,0a a b =+=,解得1,1a b ==- ∴2()1f x x x =-+ (2)由(1)知212x x x m -+>+在[1,1]-恒成立,即231m x x <-+在[1,1]-恒成立。
令2235()31()24g x x x x =-+=--,则()g x 在[1,1]-上单调递减。
一元二次不等式恒成立和有解问题一、一元二次不等式在实数集上的恒成立1、不等式20ax bx c >++对任意实数x 恒成立⇔00==⎧⎨>⎩a b c 或0Δ<0>⎧⎨⎩a2、不等式20ax bx c <++对任意实数x 恒成立⇔00==⎧⎨<⎩a b c 或0Δ<0<⎧⎨⎩a【注意】对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方; 恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方.二、一元二次不等式在给定区间上的恒成立问题求解方法方法一:若()0>f x 在集合A 中恒成立,即集合A 是不等式()0>f x 的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围);方法二:转化为函数值域问题,即已知函数()f x 的值域为[,]m n ,则()≥f x a 恒成立⇒min ()≥f x a ,即≥m a ;()≤f x a 恒成立⇒max ()≤f x a ,即≤n a .三、给定参数范围的一元二次不等式恒成立问题解决恒成立问题一定要清楚选谁为主元,谁是参数;一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数. 即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解。
四、常见不等式恒成立及有解问题的函数处理方法不等式恒成立问题常常转化为函数的最值来处理,具体如下: 1、对任意的[,]∈x m n ,()>a f x 恒成立⇒max ()>a f x ; 若存在[,]∈x m n ,()>a f x 有解⇒min ()>a f x ;若对任意[,]∈x m n ,()>a f x 无解⇒min ()≤a f x .2、对任意的[,]∈x m n ,()<a f x 恒成立⇒min ()<a f x ; 若存在[,]∈x m n ,()<a f x 有解⇒max ()<a f x ; 若对任意[,]∈x m n ,()<a f x 无解⇒max ()≥a f x .题型一 一元二次不等式在实数集上的恒成立问题【例1】若关于x 的不等式2220ax ax --<恒成立,则实数a 的取值范围为( ) A .[]2,0- B .(]2,0- C .()2,0- D .()(),20,-∞-⋃+∞ 【答案】B【解析】当0=a 时,不等式成立;当0≠a 时,不等式2220--<ax ax 恒成立,等价于()()20,2420,<⎧⎪⎨∆=--⨯-<⎪⎩a a a 20∴-<<a . 综上,实数a 的取值范围为(]2,0-.故选:B .【变式1-1】“不等式20-+>x x m 在R 上恒成立”的充要条件是( ) A .14>m B .14<m C .1<mD .1>m 【答案】A【解析】∵不等式20-+>x x m 在R 上恒成立,∴2(1)40∆--<=m ,解得14>m , 又∵14>m ,∴140∆=-<m ,则不等式20-+>x x m 在R 上恒成立, ∴“14>m ”是“不等式20-+>x x m 在R 上恒成立”的充要条件,故选:A.【变式1-2】已知关于x 的不等式2680-++>kx kx k 对任意∈x R 恒成立,则k 的取值范围是( )A .01k ≤≤B .01k ≤< C .0k <或1k > D .0k ≤或1k > 【答案】B【解析】当0=k 时,80>恒成立,符合题意;当0≠k 时,由题意有()()2Δ6480>⎧⎪⎨=--+<⎪⎩k k k k ,解得01<<k , 综上,01≤<k .故选:B.【变式1-3】已知关于x 的不等式()()221110a x a x ----<的解集为R ,则实数a 的取值范围( )A .3,15⎛⎫- ⎪⎝⎭B .3,15⎛⎤- ⎥⎝⎦C .[)3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .()3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】B【解析】当1a =时,不等式为10-<,对x R ∀∈恒成立,所以满足条件当1a =-时,不等式为210x -<,解集为1,2⎛⎫-∞ ⎪⎝⎭,不满足题意当210a ->时,对应的二次函数开口向上,()()221110ax a x ----<的解集一定不是R ,不满足题意当210a -<,11a -<<时,若不等式()()221110a x a x ----<的解集为R ,则()()221410a a ∆=-+-<,解得:315a -<<,综上,315a -<≤故选:B【变式1-4】关于x 的不等式21x x a x +≥-对任意x ∈R 恒成立,则实数a 的取值范围是( )A .[]1,3-B .(],3-∞C .(],1-∞D .(][),13,-∞⋃+∞ 【答案】B【解析】当0x =时,不等式为01≥-恒成立,a R ∴∈;当0x ≠时,不等式可化为:11a x x ≤++,0x >,12x x ∴+≥(当且仅当1x x=,即1x =±时取等号),3a ∴≤; 综上所述:实数a 的取值范围为(],3-∞.故选:B.题型二 一元二次不等式在某区间上的恒成立问题【例2】若14x <≤时,不等式()2241x a x a -++≥--恒成立,求实数a 的取值范围.【答案】(,4]-∞.【解析】对于任意的14x <≤,不等式()22241(1)25x a x a x a x x -++≥--⇔-≤-+,即2254(1)11x x a x x x -+≤=-+--, 因此,对于任意的14x <≤,2254(1)11x x a x x x -+≤=-+--恒成立, 当14x <≤时,013x <-≤,44(1)(1)411x x x x -+≥-⋅=--, 当且仅当411x x -=-,即3x =时取“=”,即当3x =时,4(1)1x x -+-取得最小值4,则4a ≤, 所以实数a 的取值范围是(,4]-∞.【变式2-1】已知2(2)420+-+-x a x a对[)2,∀∈+∞x 恒成立,则实数a 的取值范围________. 【答案】(],3-∞【解析】因为2(2)420x a x a +-+-对[)2,x ∀∈+∞恒成立,即4222x a x ++-≥+在[)2,x ∀∈+∞时恒成立,令2,4x t t +=≥, 则4222x x ++-+代换为42t t +-,令4()2g t t t=+-, 由对勾函数可知,()g t 在[)4,t ∈+∞上单增,所以min ()(4)3g t g ==, 所以(],3a ∈-∞.故答案为:(],3-∞【变式2-2】已知二次函数222y x ax =++.若15x ≤≤时,不等式3y ax >恒成立,求实数a 的取值范围. 【答案】22<a .【解析】不等式()3f x ax >即为:220x ax -+>,当[]1,5x ∈时,可变形为:222x a x x x+<=+,即min 2()a x x <+. 又2222x x x x+≥+= 当且仅当2x x=,即[]21,5x =时,等号成立,min 2()22x x∴+=22a <故实数a 的取值范围是:22a <【变式2-3】若不等式2(1)10x a x +-+≥对一切(1,2]x ∈都成立,则a 的最小值为( )A .0B .2-C .222-D .5- 【答案】D【解析】记22()(1)11f x x a x x ax a =+-+=++-,要使不等式()2110x a x +-+≥对一切(1,2]x ∈都成立,则:12(1)20a f ⎧-≤⎪⎨⎪=≥⎩或2122()1024a a a f a ⎧<-<⎪⎪⎨⎪-=--+≥⎪⎩或22(2)50a f a ⎧-≥⎪⎨⎪=+≥⎩ 解得2a ≥-或42a -<<-或54a -≤≤-,即5a ≥-.故选:D【变式2-4】不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( )A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭【答案】A【解析】令()()227532=-+-+f a a x x x ,对一切()1,0a ∈-均大于0恒成立,所以()()22270175320⎧->⎪⎨-=--+-+≥⎪⎩x f x x x ,或()227005320⎧-<⎪⎨=-+≥⎪⎩x f x x ,或22705320⎧-=⎪⎨-+≥⎪⎩x x x , 解得4x ≤-或7x >172≤<x 7x =综上,实数x 的取值范围是4x ≤-,或12x ≥,故选:A.题型三 给定参数范围的一元二次不等式恒成立问题【例3】当[]2,3a ∈时,不等式210ax x a -+-≤恒成立,求的取值范围.【答案】1,12⎡⎤-⎢⎥⎣⎦【解析】由题意不等式210ax x a -+-≤对[]2,3a ∈恒成立,可设2()(1)(1)f a x a x =-+-+,[]2,3a ∈,则()f a 是关于a 的一次函数,要使题意成立只需(2)0(3)0f f ≤⎧⎨≤⎩,即22210320x x x x ⎧--≤⎨--≤⎩,解2210x x --≤,即()()2110x x +-≤得112x -≤≤,解2320x x --≤,即()()3210x x +-≤得213x -≤≤,所以原不等式的解集为1,12⎡⎤-⎢⎥⎣⎦,所以x 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.【变式3-1】若命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,则实数x 的取值范围为( )A .[]1,4-B .50,3⎡⎤⎢⎥⎣⎦C .[]51,0,43⎡⎤⎢⎥⎣-⎦D .[)51,0,43⎛⎤- ⎥⎝⎦【答案】C【解析】命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,其否定为真命题,即“[]()21,3,2130a ax a x a ∀∈---+-≥”为真命题.令22()23(21)30g a ax ax x a x x a x =-++-=--++≥,则(1)0(3)0g g -≥⎧⎨≥⎩,即22340350x x x x ⎧-++≥⎨-≥⎩,解得14503x x x -≤≤⎧⎪⎨≥≤⎪⎩或,所以实数x 的取值范围为[]51,0,43⎡⎤⎢⎥⎣-⎦.故选:C【变式3-2】已知[]1,1∈-a ,不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为( ) A .()()3,,2∞-∞+ B .()()2,,1∞-∞+ C .()()3,,1∞-∞+D .()1,3 【答案】C【解析】令()2(2)44f a x a x x =-+-+,则不等式2(4)420x a x a +-+->恒成立转化为()0f a >在[1,1]a ∈-上恒成立.∴有(1)0(1)0f f ->⎧⎨>⎩,即22(2)4402440x x x x x x ⎧--+-+>⎨-+-+>⎩, 整理得:22560320x x x x ⎧-+>⎨-+>⎩,解得:1x <或3x >.∴x 的取值范围为()(),13,-∞⋃+∞.故选:C .【变式3-3】已知当11a -≤≤时,()24420x a x a +-+->恒成立,则实数x 的取值范围是( )A .(),3-∞B .][(),13,∞∞-⋃+C .(),1-∞D .()(),13,-∞⋃+∞ 【答案】D【解析】()24420x a x a +-+->恒成立,即()22440x a x x -+-+>,对任意得[]1,1a ∈-恒成立, 令()()2244f a x a x x =-+-+,[]1,1a ∈-,当2x =时,()0f a =,不符题意,故2x ≠, 当2x >时,函数()f a 在[]1,1a ∈-上递增,则()()2min 12440f a f x x x =-=-++-+>,解得3x >或2x <(舍去),当2x <时,函数()f a 在[]1,1a ∈-上递减,则()()2min 12440f a f x x x ==-+-+>,解得1x <或2x >(舍去),综上所述,实数x 的取值范围是()(),13,-∞⋃+∞.故选:D.【变式3-3】不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( )A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭【答案】A【解析】令()()227532=-+-+f a a x x x ,对一切()1,0a ∈-均大于0恒成立,所以 ()()22270175320⎧->⎪⎨-=--+-+≥⎪⎩x f x x x ,或()227005320⎧-<⎪⎨=-+≥⎪⎩x f x x , 或22705320⎧-=⎪⎨-+≥⎪⎩x x x ,解得4x ≤-或7x >172≤<x 7x = 综上,实数x 的取值范围是4x ≤-,或12x ≥.故选:A.题型四 一元二次不等式在实数集上的有解问题【例4】已知不等式20kx x k -+<有解,则实数k 的取值范围为__________. 【答案】1,2⎛⎫-∞ ⎪⎝⎭【解析】当0k =时,0x -<,符合题意当0k >时,令2y kx x k =-+,由不等式20kx x k -+<有解,即2140k ∆=->,得102k <<当0k <时, 2y kx x k =-+开口向下,满足20kx x k -+<有解,符合题意综上,实数k 的取值范围为1,2k ⎛⎫∈-∞ ⎪⎝⎭【变式4-1】若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____. 【答案】(),1-∞【解析】当0a =时,不等式为210x +<有实数解,所以0a =符合题意;当0a <时,不等式对应的二次函数开口向下, 所以不等式2210ax x ++<有实数解,符合题意; 当0a >时,要使不等式2210ax x ++<有实数解, 则需满足440∆=->a ,可得1a <,所以01a <<, 综上所述:a 的取值范围是(),1-∞.【变式4-2】x R ∃∈,使得不等式231x x m -+<成立,则m 的取值范围是___________.【答案】11,12⎛⎫+∞ ⎪⎝⎭【解析】令()22111313612f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,则()min 1112f x =,因为x R ∃∈,使得不等式231x x m -+<成立, 所以1112m >, 则m 的取值范围是11,12⎛⎫+∞ ⎪⎝⎭,【变式4-3】若关于x 的不等式29(2)04ax a x -++<有解,则实数a 的取值范围是____________. 【答案】(,1)(4,)-∞+∞【解析】当0a =时,不等式为9204x -+<有解,故0a =,满足题意;当0a >时,若不等式29(2)04ax a x -++<有解, 则满足29(2)404a a ∆=+-⋅>,解得1a <或4a >;当0a <时,此时对应的函数的图象开口向下,此时不等式29(2)04ax a x -++<总是有解,所以0a <,综上可得,实数a 的取值范围是(,1)(4,)-∞+∞.题型五 一元二次不等式在某区间上的恒成立问题【例5】已知关于x 的不等式2630mx x m -+<在(]02,上有解,则实数m 的取值范围是( )A .(3-∞,B .127⎛⎫-∞ ⎪⎝⎭, C .()3+∞, D .127⎛⎫+∞ ⎪⎝⎭, 【答案】A【解析】由题意得,2630mx x m -+<,(]02x ∈,,即263xm x <+ , 故问题转化为263xm x <+在(]02,上有解, 设26()3x g x x =+,则266()33x g x x x x==++,(]02x ∈,, 对于323x x+≥,当且仅当3(0,2]x =时取等号, 则max ()323g x ==3m <,故选:A【变式5-1】已知命题p :“15∃≤≤x ,250x ax -->”为真命题,则实数a 的取值范围是( )A .4a <B .4aC .4a >D .4a >-【答案】A 【解析】由题意,当15x ≤≤时,不等式250x ax -->有解,等价于“15x ∀≤≤,250x ax --≤恒成立”为真时对应a 取值集合的补集 若15x ∀≤≤,250x ax --≤恒成立为真命题, 需满足25550a --≤且150a --≤,解得4a ≥. 因此p 命题成立时a 的范围时4a <,故选:A .【变式5-2】若关于x 的不等式22(1)0x m x m -+-≥在(1,1)-有解,则m 的取值范围为( )A .(,1][0,)-∞-+∞B .(,1)(0,)-∞-+∞ C .[0,1] D .(0,1) 【答案】B【解析】令22()(1)f x x m x m =-+-,其对称轴为202m x =≥, 关于x 的不等式22(1)0x m x m -+-≥在(1,1)-有解, 当(1,1)x ∈-时,有()(1)f x f <-,(1)0f ∴->,即20m m +>,可得0m >或1m <-.故选:B .【变式5-3】已知当12x ≤≤时,存在x 使不等式()()14m x m x -++<成立,则实数m 的取值范围为( )A .{}22m m -<<B .{}12m m -<<C .{}32m m -<<D .{}12m m <<【答案】C【解析】由()()14m x m x -++<可得224m m x x +<-+,由题意可得()22max 4m m x x +<-+,且12x ≤≤,令()24f x x x =-+对称轴为12x =,开口向上,所以()24f x x x =-+在[]1,2上单调递增, 所以2x =时,()()2max 22246f x f ==-+=,所以26m m +<,解得:32m -<<, 所以实数m 的取值范围为{}32m m -<<,故选:C.【变式5-4】关于x 的不等式2244x x a a -+≥在[]1,6内有解,则a 的取值范围为________.【答案】[]2,6-【解析】2244x x a a -+≥在[]1,6内有解,()22max 44a a x x ∴-≤-,其中[]1,6x ∈;设()2416y x x x =-≤≤, 则当6x =时,max 362412y =-=, 2412a a ∴-≤,解得:26a -≤≤,a ∴的取值范围为[]2,6-.。
【例1】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的
取值范围是 _ .
【例2】 若不等式1
21x a x
+
-+≥对一切非零实数x 均成立,则实数a 的最大值是_________.
【例3】 设
函数
2()1
f x x =-,对任意
23x ⎡⎫∈+∞⎪⎢⎣⎭
,,
典例分析
恒成立与有解问题
24()(1)4()x f m f x f x f m m ⎛⎫
--+ ⎪⎝⎭
≤恒成立,则实数
m
的取值范围
是 .
【例4】 若不等式220ax x ++>的解集为R ,则a 的范围是( )
A .0a >
B .18
a >- C .18
a > D .0a <
【例5】 已知不等式
()11112
log 112
2123
a a n n n +++
>-+++对于一切大于1的自然数n 都成立,试求实数a 的取值范围.
【例6】 若不等式2(2)2(2)40a x a x -+--<对x ∈R 恒成立,则a 的取值范围
是______.
【例7】 2()1f x ax ax =+-在R 上恒满足()0f x <,则a 的取值范围是( )
A .0a ≤
B .4a <-
C .40a -<<
D .40a -<≤
【例8】 若对于x ∈R ,不等式2230mx mx ++>恒成立,求实数m 的取值范
围.
【例9】 不等式210x ax ++≥对一切102x ⎛⎤
∈ ⎥⎝⎦
,成立,则a 的最小值为( )
A .0
B .2-
C .
5
2
- D .3-
【例10】 不等式2|3||1|3x x a a +---≤对任意实数x 恒成立,则实数a 的取值
范围为( )
A .(][)14-∞-+∞,,
B .(][)25-∞-+∞,,
C .[12],
D .(][)12-∞∞,
,
【例11】 对任意[11]a ∈-,
,函数2()(4)42f x x a x a =+-+-的值恒大于零,则x 的取值范围为 .
【例12】 若不等式
lg 21lg()
ax
a x <+在[1,2]x ∈时恒成立,试求a 的取值范围.
【例13】 若(]1x ∈-∞-,,()21390x x a a ++->恒成立,求实数a 的取值范围.
【例14】 设()222f x x ax =-+,当[)1x ∈-+∞,
时,
都有()f x a ≥恒成立,求a 的取值范围.
【例15】 设对所有实数x ,不等式()()2
22
222
4112log 2log log 014a a a
x x a
a a ++++>+恒
成立,求a 的取值范围.
【例16】 已知不等式22412ax x x a +---≥对任意实数恒成立,求实数a 的取
值范围.
【例17】 已知关于x 的不等式20x x t ++>对x ∈R 恒成立,则t 的取值范围
是 .
【例18】 如果|1||9|x x a +++>
对任意实数x 恒成立,则a 的取值范围是( )
A .{|8}a a <
B .
{|8}
a a > C .{|8}a a ≥
D .{|8}a a ≤
【例19】 在R 上定义运算⊗:)1(y x y x -=⊗.
若不等式1)()(<+⊗-a x a x 对任意实数x 成立,则( ) A .11<<-a B .20<<a C .2
321
<<-a
D .2
123<<-a
【例20】 设不等式2220x ax a -++≤的解集为M ,如果[1,4]M ⊆,求实数a 的
取值范围.
【例21】 如果关于
x 的不等式23208
kx kx +-<对一切实数x 都成立,则k
的取值范围是 .
【例22】 已知函数()1)f x x g x =+,若不等式(3)(392)0x x x f m f ⋅+--<对
任意x ∈R 恒成立,求实数m 的取值范围.
【例23】 已知集合(){}121212|00D x x x x x x k =>>+=,,,(其中k 为正常数).
⑴ 设12
u x x =,求u 的取值范围;
⑵ 求证:当
1
k ≥时不等式
2
12121122k x x x x k ⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪⎝⎭
⎝⎭⎝⎭≤对任意
()12x x D ∈,恒成立;
⑶ 求使不等式2
12121122k x x x x k ⎛⎫⎛⎫⎛⎫
--- ⎪⎪ ⎪
⎝⎭
⎝⎭⎝⎭≥对任意()12x x D ∈,恒成立
的2k 的范围.。