01背包问题动态规划 Python
- 格式:docx
- 大小:17.37 KB
- 文档页数:2
动态规划——背包问题python实现(01背包、完全背包、多重背包)参考:⽬录描述:有N件物品和⼀个容量为V的背包。
第i件物品的体积是vi,价值是wi。
求解将哪些物品装⼊背包,可使这些物品的总体积不超过背包流量,且总价值最⼤。
⼆维动态规划f[i][j] 表⽰只看前i个物品,总体积是j的情况下,总价值最⼤是多少。
result = max(f[n][0~V]) f[i][j]:不选第i个物品:f[i][j] = f[i-1][j];选第i个物品:f[i][j] = f[i-1][j-v[i]] + w[i](v[i]是第i个物品的体积)两者之间取最⼤。
初始化:f[0][0] = 0 (啥都不选的情况,不管容量是多少,都是0?)代码如下:n, v = map(int, input().split())goods = []for i in range(n):goods.append([int(i) for i in input().split()])# 初始化,先全部赋值为0,这样⾄少体积为0或者不选任何物品的时候是满⾜要求dp = [[0 for i in range(v+1)] for j in range(n+1)]for i in range(1, n+1):for j in range(1,v+1):dp[i][j] = dp[i-1][j] # 第i个物品不选if j>=goods[i-1][0]:# 判断背包容量是不是⼤于第i件物品的体积# 在选和不选的情况中选出最⼤值dp[i][j] = max(dp[i][j], dp[i-1][j-goods[i-1][0]]+goods[i-1][1])print(dp[-1][-1])⼀维动态优化从上⾯⼆维的情况来看,f[i] 只与f[i-1]相关,因此只⽤使⽤⼀个⼀维数组[0~v]来存储前⼀个状态。
那么如何来实现呢?第⼀个问题:状态转移假设dp数组存储了上⼀个状态,那么应该有:dp[i] = max(dp[i] , dp[i-v[i]]+w[i])max函数⾥⾯的dp[i]代表的是上⼀个状态的值。
01背包各种算法代码实现总结(穷举,贪⼼,动态,递归,回溯,分⽀限界)2020-05-22所有背包问题实现的例⼦都是下⾯这张图01背包实现之——穷举法:1.我的难点:(1)在⽤穷举法实现代码的时候,我⾃⼰做的时候认为最难的就是怎么将那么多种情况表⽰出来,⼀开开始想⽤for循环进⾏多次嵌套,但是太⿇烦,⽽且还需要不断的进⾏各种标记。
我现在的⽔平实在太菜,然后就在⼀篇中看到⼀个特别巧妙的枚举算法,如下所⽰:int fun(int x[n]){int i;for(i=0;i<n;i++)if(x[i]!=1) {x[i]=1; return;}//从遇到的第⼀位开始,若是0,将其变成1,然后结束for循环,得到⼀种解法else x[i]=0;return;//从第⼀位开始,若是1,将其变成0,然后继续循环,若再循环的时候遇到0,则将其变为1,结束循环。
得到另⼀种解法。
} 虽然我现在也不知道为什么会这样,但是确实是个很好的规律,找到这个规律后,就可以很轻松的⾃⼰写出各种排列情况,以后遇到排列的问题,就⽤这个⽅法。
语⾔不好描述,上图⽚演⽰(是歪的,凑活看吧。
):(2)算法思想:x[i]的值为0/1,即选或者不选w[i]的值表⽰商品i的重量v[i]的值表⽰商品的价值所以这个算法最核⼼的公式就是tw=x[1]*w[1]+x[2]*w[2]+.......+x[n]*w[n]tv=x[1]*w[1]+x[2]*v[2]+......+x[n]*v[n]tv1:⽤于存储当前最优解limit:背包容量如果 tw<limit&&tv>tv1 则可以找到最优解2.代码实现(借鉴)#include<stdio.h>#include<iostream>using namespace std;#define n 4void possible_solution(int x[n]){int i;for(i=0;i<4;i++) //n=4,有2^4-1种解法if(x[i]!=1){x[i]=1;return; //从遇到的第⼀位开始,若是0,将其变成1,然后结束循环,得到⼀种解法}elsex[i]=0;return;//从第⼀位开始,若是1,将其变成0,然后继续循环,若再循环的时候遇到0,则将其变为1,结束循环。
动态规划法求01背包问题思路状态表⽰:f[i][j]表⽰前i个物品在容量为j的背包下的最⼤价值v[i]表⽰第i个物品的价值,w[i]表⽰第i个物品的重量状态转换:对于第i个物品如果当前背包不可以装下这个物品,那么当前的f[i][j] = f[i - 1][j],也就是上⼀个状态的最⼤价值如果当前背包可以装下这个物品,那么当前的f[i][j] = f[i - 1][j - v[i]] + w[i]和f[i - 1][j]取较⼤的那⼀个,第⼀个是考虑把第i个物品装⼊背包,那么背包物品的价值就是前i-1个物品装⼊容量为j-w[i]再加上第i个物品v[i]的价值,第⼆个是不把当前物品装⼊背包的价值,两个取⼤的那⼀个作为最优解代码详解:1. 0/1背包问题#include<iostream>using namespace std;const int N = 1e3 + 10;int f[N], w[N], v[N];int main(){int n, c;cin >> n >> c;for(int i = 1; i <= n; i ++ )cin >> v[i] >> w[i];for(int i = 1; i <= n; i ++)for(int j = c; j >= 0 && j >= v[i]; j --)f[j] = max(f[j], f[j - v[i]] + w[i]);cout << f[c] << endl;return 0;}}完全背包问题(每个物品可以使⽤⽆数次f[i][j] = max(f[i - 1][j], f[i][j - v[i]] + w[i])完全背包问题本来应该是在背包问题上再加⼀个循环的,但是可以推导出下⾯这个样⼦f[i][j] = max(f[i - 1][j], f[i][j - v[i]] + w[i])为什么呢,只是把0/1背包问题的f[i - 1][j - v[i] + w[i])的i-1换成了i就可以了?从头来说:完全背包问题,对于第i个物品,假设剩下的背包容量还可以装n个这个物品,那么⼀共就有n+1中决策⽅案,还有⼀种⽅案就是⼀个都不选那么对于第i个物品:它的最⼤价值就是f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]), f[i - 1][j - 2 * v[i]] + 2 * w[i]....)⼀直到n为⽌(①式)令 j = j - v[i] 那么f[i][j - v[i]] = max(f[i - 1][j - v[i]], f[i - 1][j - 2 * v[i]] + w[i].....)(②式)然后发现⼆式中的右边⽐较像⼀式中的第⼆项到最后⼀项,就是每⼀项都少了⼀个w[i]把⼆式带⼊⼀式,那么⼀式就是 f[i][j] = max(f[i - 1][j], f[i][j - v[i]] + w[i]), 就是下⾯这个状态⽅程啦 ;#include<iostream>using namespace std;const int N = 1e3 + 10;int f[N][N], w[N], v[N];int main(){int n, c;cin >> n >> c;for(int i = 1; i <= n; i ++)cin >> v[i] >> w[i];for(int i = 1; i <= n; i ++ ){for(int j = 1; j <= c; j ++ ){f[i][j] = f[i - 1][j];if(j >= v[i])f[i][j] = max(f[i - 1][j], f[i][j - v[i]] + w[i]);}}cout << f[n][c] << endl;return 0;}完全背包优化:#include<iostream>using namespace std;const int N = 1e3 + 10;int f[N], w[N], v[N];int main(){int n, c;cin >> n >> c;for(int i = 1; i <= n; i ++)cin >> v[i] >> w[i]; for(int i = 1; i <= n; i ++ )for(int j = v[i]; j <= c; j ++ )//从前往后更新 f[j] = max(f[j], f[j - v[i]] + w[i]);cout << f[c] << endl;return 0;}。
python背包问题例题背包问题是一个经典的组合优化问题,其目标是在给定的一组物品中选择一些物品放入背包,使得背包中物品的总价值最大,同时限制背包的总重量不超过一定值。
下面给出一个简单的例题来说明背包问题:假设有以下物品:物品1:重量2,价值3物品2:重量3,价值4物品3:重量4,价值5物品4:重量5,价值6现在有一个背包,其最大承重为10。
问如何选择物品放入背包,使得背包中物品的总价值最大?针对这个问题,我们可以使用动态规划的方法来解决。
定义一个二维数组dp,其中dp[i][j]表示将前i个物品放入承重为j的背包中所能达到的最大价值。
首先,考虑边界情况:当i=0或j=0时,dp[i][j]均为0,表示没有物品可选或者背包承重为0,此时背包中的总价值为0。
然后,我们可以通过以下递推关系来更新dp数组:若第i个物品的重量wi小于等于j,则可以选择将物品i放入背包中,此时背包中的总价值为dp[i-1][j-wi]+vi,即考虑前i-1个物品放入承重为j-wi的背包中所能达到的最大价值,再加上第i个物品的价值vi。
若第i个物品的重量wi大于j,则无法选择将物品i放入背包中,此时背包中的总价值仍然为dp[i-1][j]。
最终,dp中的最后一个元素dp[n][m](n为物品个数,m为背包的最大承重)即为所求的最优解。
对于给定的例题,可以得到以下dp数组:0 0 0 0 0 0 0 0 0 0 00 0 3 3 3 3 3 3 3 3 30 0 3 4 4 7 7 7 7 7 70 0 3 4 5 7 8 9 9 12 120 0 3 4 5 7 8 9 10 12 13其中,dp[4][10]为最终的最大价值,即13。
根据dp数组的构造过程,我们还可以知道选择的物品为1、3、4,其总重量为11,总价值为13。
这就是背包问题的一个简单例题的解答过程。
在实际应用中,背包问题可以有更多的约束条件和变种形式,需要根据具体情况选择合适的算法和策略来解决。
P01: 01背包问题题目有N件物品和一个容量为V的背包。
第i件物品的费用是c[i],价值是w[i]。
求解将哪些物品装入背包可使价值总和最大。
基本思路这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。
则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。
所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。
如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
优化空间复杂度以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。
那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。
01背包问题python解法
01背包问题是一个经典的动态规划问题,其解法如下:
```python
def knapsack(wt, val, W):
n = len(wt)
dp = [[0] * (W + 1) for _ in range(n + 1)]
for i in range(1, n + 1):
for w in range(1, W + 1):
if wt[i - 1] <= w:
dp[i][w] = max(val[i - 1] + dp[i - 1][w - wt[i - 1]], dp[i - 1][w])
else:
dp[i][w] = dp[i - 1][w]
return dp[n][W]
```
在上述代码中,`wt`是物品的重量列表,`val`是物品的价值列表,`W`是背包的最大承重量。
`dp`是一个二维数组,
`dp[i][w]`表示前`i`个物品在背包承重量为`w`时的最大价值。
代码中使用两个嵌套的循环来遍历所有的物品和背包承重量,根据当前物品的重量和价值以及之前计算出的最大价值,动态地更新`dp`数组。
最终返回`dp[n][W]`,即前`n`个物品在背包承重量为`W`时的最大价值。
这个解法的时间复杂度和空间复杂度都是`O(nW)`,其中`n`是物品的数量,`W`是背包的最大承重量。
0/1 背包问题动态规划详解及C代码动态规划是用空间换时间的一种方法的抽象。
其关键是发现子问题和记录其结果。
然后利用这些结果减轻运算量。
比如01背包问题。
/* 一个旅行者有一个最多能用M公斤的背包,现在有N件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为P1,P2,...,Pn.若每种物品只有一件求旅行者能获得最大总价值。
输入格式:M,NW1,P1W2,P2......输出格式:X*/因为背包最大容量M未知。
所以,我们的程序要从1到M一个一个的试。
比如,开始任选N 件物品的一个。
看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。
怎么能保证总选择是最大价值呢?看下表。
测试数据:10,33,44,55,6c[i][j]数组保存了1,2,3号物品依次选择后的最大价值.这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。
加谁??很显然是7-4=3的时候.上一排 c3的最佳方案是4.所以。
总的最佳方案是5+4为9.这样.一排一排推下去。
最右下放的数据就是最大的价值了。
(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.)从以上最大价值的构造过程中可以看出。
f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?下面是实际程序(在VC 6.0环境下通过):#include<stdio.h>int c[10][100];/*对应每种情况的最大价值*/int knapsack(int m,int n){int i,j,w[10],p[10];printf("请输入每个物品的重量,价值:\n");for(i=1;i<=n;i++)scanf("%d,%d",&w[i],&p[i]);for(i=0;i<10;i++)for(j=0;j<100;j++)c[i][j]=0;/*初始化数组*/for(i=1;i<=n;i++)for(j=1;j<=m;j++){if(w[i]<=j) /*如果当前物品的容量小于背包容量*/{if(p[i]+c[i-1][j-w[i]]>c[i-1][j])/*如果本物品的价值加上背包剩下的空间能放的物品的价值*//*大于上一次选择的最佳方案则更新c[i][j]*/c[i][j]=p[i]+c[i-1][j-w[i]];elsec[i][j]=c[i-1][j];}else c[i][j]=c[i-1][j];}return(c[n][m]);}int main(){int m,n;int i,j;printf("请输入背包的承重量,物品的总个数:\n");scanf("%d,%d",&m,&n);printf("旅行者背包能装的最大总价值为%d",knapsack(m,n)); printf("\n");return 0;}。