【推荐】北师大初中数学中考总复习:分式与二次根式---知识讲解(提高)
- 格式:doc
- 大小:303.50 KB
- 文档页数:10
2019中考数学代数学习辅导:分式与二次根式中考复习最忌心浮气躁,急于求成。
指导复习的教师,应给学生一种乐观、镇定、自信的精神面貌。
要扎扎实实地复习,一步一步地前进,下文为大家准备了2019中考数学代数学习辅导。
分式与分式方程1指数的扩充2分式和分式的基本性质设f,g是一元或多元多项式,g的次数高于零次,则称f,g 之比f/g为分式分式的基本性质分数的分子与分母都乘以或除以同一个不等于0的数,分数的值不变3分式的约分和通分分式的约分是将分子与分母的公因式约去,使分式化简如果一个分式的分子与分母没有一次或一次以上的公因式,且各系数没有大于1的公约数,则此分式成为既约分式既约分式也就是最简分式对于分母不相同的几个分式,将每个分式的分子与分母乘以适当的非零多项式,使各分式的分母相同,而各分式的值保持不变,这种运算叫做通分4分式的运算5分式方程方程的两遍都是有理式,这样的方程成为有理方程如果有理方程中含有分式,则称为分式方程二次根式1根式在实数范围内,如果n个x相乘等于a,n是大于1的整数,则称x为a的n次方根含有数字与变元的加,减,乘,除,乘方,开方运算,并一定含有变元开方运算的算式成为无理式2最简二次根式与同类根式具备下列条件的二次根式称为最简二次根式:(1)被开方式的每一个因式的指数都小于开方次数(2)根号内不含有分母如果几个二次根式化成最简根式以后,被开方式相同,那么这几个二次根式叫做同类根式3二次根式的运算4无理方程“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。
只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。
《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。
其实《国策》中本身就有“先生长者,有德之称”的说法。
专题05 二次根式☞2年中考【2015年题组】1.(2015贵港)计算35⨯的结果是() A .8 B .15 C .35 D .53 【答案】B .考点:二次根式的乘除法.2.(2015徐州)使1-x 有意义的x 的取值范围是( ) A .x≠1 B .x≥1 C .x >1 D .x≥0 【答案】B . 【解析】试题分析:∵1-x 有意义,∴x ﹣1≥0,即x≥1.故选B . 考点:二次根式有意义的条件. 3.(2015扬州)下列二次根式中的最简二次根式是( )A .30B .12C .8D .21【答案】A . 【解析】试题分析:A .符合最简二次根式的定义,故本选项正确;B 1223=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C 822=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D 122=故选A .考点:最简二次根式.4.(20153 )A 13B 3C 23 D 12【答案】C .考点:同类二次根式. 5.(2015宜昌)下列式子没有意义的是( )A .3-B .0C .2D .2(1)-【答案】A .【解析】试题分析:A .3-没有意义,故A 符合题意; B .0有意义,故B 不符合题意; C .2有意义,故C 不符合题意;D .2(1)-有意义,故D 不符合题意;故选A .考点:二次根式有意义的条件. 6.(2015潜江)下列各式计算正确的是( )A .235+=B .43331-=C . 363332=⨯D .2733÷= 【答案】D .考点:1.二次根式的乘除法;2.二次根式的加减法.7.(201526x +有意义,那么x 的取值范围在数轴上表示出来,正确的是( )A .B .C .D .【答案】C . 【解析】试题分析:由题意得,2x+6≥0,解得,x≥﹣3,故选C .考点:1.在数轴上表示不等式的解集;2.二次根式有意义的条件.8.(2015钦州)对于任意的正数m 、n 定义运算※为:m ※n=))m n m n m n m n ⎧-≥⎪⎨+<⎪⎩,计算(3※2)×(8※12)的结果为( )A .246-B .2C .25D .20 【答案】B .【解析】试题分析:∵3>2,∴3※32,∵8<12,∴8※81223),∴(3※2)×(8※12)=32)×23)=2.故选B . 考点:1.二次根式的混合运算;2.新定义.9.(2015孝感)已知23x =-,则代数式2(743)(23)3x x ++的值是( )A .0B 3C .23+D .23- 【答案】C .【解析】试题分析:把23x =代入代数式2(73)(23)3x x +++得:2(743)(23)(23)(23)3+-+-+=(743)(743)433+-+-+=494813-++23+.故选C .考点:二次根式的化简求值.10.(2015荆门)当12a <<2(2)10a a -+-=的值是( )A .1-B .1C .23a -D .32a - 【答案】B .考点:二次根式的性质与化简.11.(2015随州)若代数式11xx -有意义,则实数x 的取值范围是( )A .1x ≠B .0x ≥C .0x ≠D .0x ≥且1x ≠ 【答案】D . 【解析】试题分析:∵代数式11xx +-有意义,∴100x x -≠⎧⎨≥⎩,解得0x ≥且1x ≠.故选D .考点:1.二次根式有意义的条件;2.分式有意义的条件.12.(2015淄博)已知51-51+,则22x xy y ++的值为( )A .2B .4C .5D .7【答案】B . 【解析】 试题分析:原式=2()x y xy +-=251515151(-+-+=25)1-=51-=4.故选B .考点:二次根式的化简求值.13.(2015朝阳)估计18182的运算结果应在哪两个连续自然数之间( )A .5和6B .6和7C .7和8D .8和9【答案】B . 【解析】试题分析:原式18322⨯=232+,∵6<232+<7,∴18182的运算结果在6和7两个连续自然数之间,故选B .考点:1.估算无理数的大小;2.二次根式的乘除法.14.(20155153⨯ . 【答案】5.考点:二次根式的乘除法.15.(2015泰州)计算:21218-等于 .【答案】22.【解析】试题分析:原式=23222-⨯=32222-=.故答案为:22.考点:二次根式的加减法.16.(2015日照)若2(3)3x x -=-,则x 的取值范围是 .【答案】x≤3. 【解析】试题分析:∵2(3)3x x -=-,∴3﹣x≥0,解得:x≤3,故答案为:x≤3.考点:二次根式的性质与化简. 17.(2015攀枝花)若332y x x =-+-+,则y x = .【答案】9. 【解析】 试题分析:332y x x =-+-+有意义,必须30x -≥,30x -≥,解得:x=3,代入得:y=0+0+2=2,∴y x =23=9.故答案为:9.考点:二次根式有意义的条件.18.(2015毕节)实数a ,b 在数轴上的位置如图所示,则2a a b--= .【答案】b -.考点:1.实数与数轴;2.二次根式的性质与化简.19.(20151xx -有意义,则实数x 的取值范围是.【答案】x≥0且x≠1. 【解析】1xx -x≥0,x ﹣1≠0,∴实数x 的取值范围是:x≥0且x≠1.故答案为:x≥0且x≠1.考点:1.二次根式有意义的条件;2.分式有意义的条件.20.(2015陕西省)计算:()3212263-⎪⎭⎫⎝⎛+-+-⨯. 【答案】82-.【解析】试题分析:根据二次根式的乘法法则、绝对值的意义、负整数整数幂的意义化简后合并即可. 试题解析:原式=36228-⨯++=32228-++=82-. 考点:1.二次根式的混合运算;2.负整数指数幂.21.(2015大连)计算:1(31)(31)24()2+-+-. 【答案】126+.考点:1.二次根式的混合运算;2.零指数幂.22.(2015山西省)阅读与计算:请阅读以下材料,并完成相应的任务.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数. 【答案】1,1. 【解析】试题分析:分别把1、2代入式子化简即可.试题解析:第1个数,当n=1时,原式=11515()225+--=155⨯=1.第2个数,当n=2时,原式=2211515[()()]225+--=1625625[]445+--=155⨯=1.考点:1.二次根式的应用;2.阅读型;3.规律型;4.综合题.【2014年题组】1.(2014年四川甘孜中考)使代数式有意义的x的取值范围是()A.x≥0 B.﹣5≤x<5 C. x≥5 D. x≥﹣5【答案】D.【解析】试题分析:由题意得,x+5≥0,解得x≥﹣5.故选D.考点:二次根式有意义的条件.2.(2014年潍坊中考)若代数式2x1(x3)+-有意义,则实数x的取值范围是()A.x≥一1 B.x≥一1且x≠3 C.x>-l D.x>-1且x≠3【答案】D.考点:1.二次根式有意义的条件;2.分式有意义的条件.3.(2014年镇江中考)若x、y满足()22x12y10-+-=,则x y+的值等于()A.1B.32 C.2 D.52【答案】B.【解析】试题分析:∵()22x12y10-+-=,∴()212x10x22y10y1⎧-=⎧=⎪⎪⇒⎨⎨-=⎪⎪⎩=⎩∴13x y122+=+=.故选B.考点:1.二次根式被开方数和偶次幂的非负性质;2.求代数式的值.4.(2014年甘肃白银中考)下列计算错误的是()A. •=B. +=C. ÷=2D. =2【答案】B . 【解析】试题分析:A 、236=g ,计算正确;B 、23+,不能合并,原题计算错误;C 、12342÷==,计算正确;D 、822=,计算正确.故选B .考点:二次根式的混合运算.5.(2014年山东省聊城市中考)下列计算正确的是( ) A .2×3=6 B.+=C. 5﹣2=3D .÷=【答案】D . 【解析】试题分析:A 、233323318⨯=⨯⨯=,故A 错误;B 、不是同类二次根式,不能相加,故B 错误;C 、不是同类二次根式,不能相减,故C 错误;D 、262333÷==,故D 正确;故选D .考点:二次根式的加减法、乘除法.6.(2014年湖南常德中考)下列各式与3是同类二次根式的是( ) A .8 B .24 C .125D .12【答案】D .考点:同类二次根式.7.(2014年凉山中考)已知12x 32x 32==+,-,则x12+x22= . 【答案】10.【解析】试题分析:∵12x 32x 32==+,-,∴x12+x22=(x1+x2)2﹣2x1x2=()()()232322323212210+-=-=+-++.考点:二次根式的混合运算.8.(2014年哈尔滨中考)计算:=.【答案】3.【解析】试题分析:312-=23﹣3=3.考点:二次根式的加减法.9.(2014年湖南衡阳中考)化简:()282-=.【答案】2.考点:二次根式的乘除法.10.(2014年辽宁大连中考)3312(13)-1.【答案】3【解析】试题分析:分别进行二次根式的乘法运算,二次根式的化简,负整数指数幂的运算,然后合并即可求出答案.试题解析:原式333考点:1.二次根式的混合运算;2.负整数指数幂.☞考点归纳归纳1:二次根式的意义及性质基础知识归纳:二次根式有意义的条件是被开方数大于或等于0.注意问题归纳:1.首先考虑被开方数为非负数,其次还要考虑其他限制条件,这样就转化为解不等式或不等式组问题,如有分母时还要注意分式的分母不为0.2、利用二次根式性质时,如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简.【例1】函数()0xy x2=-中,自变量x的取值范围是.【答案】x≥0且x≠2且x≠3.考点:二次根式有意义的条件.归纳 2:最简二次根式与同类二次根式 基础知识归纳: 1.最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式. 2. 同类二次根式化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式. 注意问题归纳:最简二次根式的判断方法:1.最简二次根式必须同时满足如下条件:(1)被开方数的因数是整数,因式是整式(分母中不应含有根号);(2)被开方数中不含开方开得尽的因数或因式,即被开方数的因数或因式的指数都为1. 2.判断同类二次根式:先把所有的二次根式化成最简二次根式;再根据被开方数是否相同来加以判断.要注意同类二次根式与根号外的因式无关. 【例2】下列二次根式中,能与3合并的是( )A .18;B .31; C .-8; D .24【答案】B .考点:同类二次根式. 归纳 3:二次根式的运算 基础知识归纳: (1).二次根式的加减法:实质就是合并同类二次根式.合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式. (2).二次根式的乘除法 二次根式的乘法:ab b a =⋅(a ≥0,b ≥0). 二次根式的除法:b ab a =(a ≥0,b >0).注意问题归纳:正确把握运算法则是解题的关键【例3】如果ab>0,a+b<0,那么下面各式:①a ab b=,②1a bb a=g,③aab bb÷=-其中正确的是()①②B.②③C.①③D.①②③【答案】B.【解析】∵ab>0,a+b<0,∴a<0,b<0①a ab b=,被开方数应≥0a,b不能做被开方数,(故①错误),②1a bb a=g(故②正确),③aab bb÷=-(故③正确).故选B.考点:二次根式的运算.归纳4:二次根式混合运算基础知识归纳:先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号).注意问题归纳:注意运算顺序.【例4】计算:11244(12)38⨯-⨯⨯-【答案】2.考点:二次根式的运算.归纳5:二次根式运算中的技巧基础知识归纳:1.二次根式的被开方数是非负数;2.非负数的性质.注意问题归纳:【例5】若44x x-+--2,则(x+y)y=【答案】14.【解析】由题意得,x-4≥0且4-x≥0,解得x≥4且x≤4,∴x=4,y=-2,∴x+y)y=(4-2)-2=14.考点:二次根式的运算.☞1年模拟1.(2015届四川省成都市外国语学校中考直升模拟)要使1321 xx-+-有意义,则x 应满足()A.12≤x≤3 B.x≤3且x≠12C.12<x<3 D.12<x≤3【答案】D.考点:1.二次根式有意义的条件;2.分式有意义的条件.2.(2015届四川省成都市外国语学校中考直升模拟)已知0<a<b,a b b+,b b a-x,y的大小关系是()A.x>y B.x=y C.x<y D.与a、b的取值有关【答案】C.【解析】试题分析:x-y=a b b b b a a b b a+---=+-,∵0<a<b,∴22222a b b a b b a+-=+-<4b2a b b a b+--<0,∴x-y<0.故选C.考点:二次根式的化简.3.(2015届山东省潍坊市昌乐县中考一模)2()2x-2−x,那么x取值范)围是()A.x≤2 B.x<2 C.x≥2 D.x>2【答案】A.【解析】2()2x-=2−x,∴x-2≤0,解得:x≤2.故选A.考点:二次根式的性质与化简.4.(2015届山东省聊城市中考模拟)下列运算正确的是()A.2a2+3a2=6a2 B253=C 2632÷=D.1111b ba a---=--【答案】D.【解析】试题分析:A.2a2+3a2=5a2,故本选项错误;B.23+无法计算,故本选项错误;C2633÷=,故本选项错误;D.1111b ba a---=--,正确.故选D.考点:1.二次根式的加减法;2.合并同类项;3.分式的基本性质;4.二次根式的乘除法.5.(2015届山东省潍坊市昌乐县中考一模)如果2()2x-=2−x,那么x取值范)围是(A.x≤2 B.x<2 C.x≥2 D.x>2【答案】A.【解析】试题分析:∵2()2x-=2−x,∴x-2≤0,解得:x≤2.故选A.考点:二次根式的性质与化简.6.(2015届北京市门头沟区中考二模)在函数1y x=-中,自变量x的取值范围是.【答案】x≥1.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.7.(20152(x3)-,则x的取值范围是.【答案】x≤3.【解析】2(x3)-,∴3-x≥0,解得:x≤3.故答案为:x≤3.考点:二次根式的性质与化简.8.(20151x+x+1)0都有意义,则x的取值范围为.【答案】x>-1且x≠1.【解析】试题分析:根据题意得:101010 xxx+⎧≥-≠+≠⎪⎨⎪⎩解得:x>-1且x≠1.故答案为:x>-1且x≠1.考点:1.二次根式有意义的条件;2.分式有意义的条件;3.零指数幂.9.(2015届河北省沙河市二十冶第三中学九年级上学期第二次模拟数学)若∣b-1∣+4a-=0,且一元二次方程20kx ax b++=有实数根,则k的取值范围是.【答案】k≤4且k≠0.考点:1.根的判别式;2.绝对值;3.二次根式的性质.10.(2015届云南省剑川县九年级上学期第三次统一模拟考试数学试卷)已知x、y是实数,并且96132=+-++yyx,则2014)(xy的值是_______【答案】1.【解析】试题分析:先将式子变形,然后根据二次根式和偶次幂的性质求出x和y的值,再代入到所求式子中即可因为96132=+-++yyx,即0)3(132=-++yx,所以0313=-=+yx且,解得3,31=-=yx,所以1)1()331()(201420142014=-=⨯-=xy考点:1.二次根式的性质;2.偶次幂的性质;3.完全平方公式.11.(2015届湖北省咸宁市嘉鱼县城北中学中考模拟考试数学试卷)若3,m, 5为三角形三边,则22)8()2(---mm=.【答案】2m-10.【解析】试题分析:因为3,m, 5为三角形三边,所以5-3<m<5+3,即2<m<8,所以22)8()2(---mm=m-2-(8-m)=m-2-8+m=2m-10.考点:1.三角形的三边关系;2.二次根式的性质.12.(2015届四川省雅安中学九年级一诊数学试卷)观察下列各式:111233+=,112344+=,11355+=请你将发现的规律用含自然数(1)n n≥的等式表示出来 .【答案】11(1)22n n n n +=+++(1n ≥).【解析】试题分析:∵111(11)1212+=+++;112(21)2222+=+++;∴11(1)22n n n n +=+++(1n ≥).故答案为:11(1)22n n n n +=+++(1n ≥).考点:规律型.13.(2015届湖北省咸宁市嘉鱼县城北中学中考模拟考试数学试卷)(1)计算:312760tan 2)21(1--+--ο【答案】3.考点:1.负整数次方;2.特殊教的三角函数值;3.二次根式;4.绝对值. 14.(2015届云南省剑川县九年级上学期第三次统一模拟考试数学试卷)计算:24)32()21(801-+-+-【答案】1.【解析】试题分析:根据二次根式的性质及运算法则进行计算 试题解析:原式=1221222=--+. 考点:二次根式的混合运算.15.(2015届北京市门头沟区中考二模)计算:()1163tan 60()273--π-︒+.【答案】4.【解析】 试题分析:本题涉及零指数幂、特殊角的三角函数值、负指数幂、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:解:原式=133333-+=4.考点:1.实数的运算;2.零指数幂和负整数指数幂;3.特殊角的三角函数值和二次根式的化简.16.(2015届江苏省南京市建邺区中考一模)计算:(212-13)×6【答案】112.考点:二次根式的混合运算.。
中考数学复习3:分式与二次根式知识集结知识元分式知识讲解分式的概念及性质1.分式的定义一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式,A为分子,B 为分母.2.与分式有关的条件(1)分式有意义:分母不为0(B≠0)(2)分式无意义:分母为0(B=0)(3)分式值为0:分子为0且分母不为0(4)分式值为正或大于0:分子分母同号(5)分式值为负或小于0:分子分母异号(6)分式值为1:分子分母值相等(A=B)(7)分式值为-1:分子分母值互为相反数(A+B=0)3.分式的基本性质分式的分子和分母同时乘或除以同一个不等于0的整式,分式的值不变,即.拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.注意:在应用分式的基本性质时,要注意C≠0这个限制条件和隐含条件B≠0.4.分式的约分定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.步骤:把分式分子分母因式分解,然后约去分子与分母的公因式.【注意】①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂.②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式.5.分式的通分(1)分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分.(2)分式的通分最主要的步骤是最简公分母的确定.最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.确定最简公分母的一般步骤:①取各分母系数的最小公倍数;②单独出现的字母(或含有字母的式子)连同它的指数作为一个因式;③相同字母(或含有字母的式子)取指数最大的.④保证凡出现的字母(或含有字母的式子)都要取.注意:分式的分母为多项式时,一般应先因式分解.分式的运算1.分式的加减法则:(1)同分母分式加减法:分母不变,把分子相加减(2)异分母分式加减法:先通分,化为同分母的分式,然后再加减.(3)整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分.2.分式的乘除法法则:(1)分式乘分式:用分子的积作为积的分子,分母的积作为积的分母.式子表示为:(2)分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘.式子表示为3.分式的乘方与整数指数幂:(1)分式的乘方法则:把分子、分母分别乘方.(2)整数指数幂的运算性质:a m a n=a m+n(m,n都是整数)(a m)n=a mn(m,n都是整数)(a b)m=a m b m(m,n都是整数)a m÷a n=a m-n(a不等于0,m,n都是正整数)a0=1(a不等于0)(a不等于0,p是正整数)(3)乘法公式:(a+b)(a-b)=a2-b2(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b24.分式的加、减、乘、除、乘方的混合运算和化简运算法则:先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活计算,提高解题质量.【注意】在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对有无错误或分析出错的原因.运算后得出的结果一定要化成最简分式(或整式).例题精讲分式例1.化简(a-)÷的结果是()A.a-b B.a+b C.D.例2.化简:-=()A.a-1B.a+1C.D.例3.'先化简,再求值(-)÷,其中a满足a2+3a-2=0.'例4.'先化简,再选一个合适的数代入求值:(-)÷(-1).'例5.'先化简,再求值:(-1)÷,其中x=y+2019.'例6.'先化简,再求值:(a-9+)÷(a-1-),其中a=.'例7.要使分式有意义,则x的取值范围是______.二次根式知识讲解二次根式1.二次根式:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.注:根指数必须是2.2.二次根式有意义的条件:被开方数为非负数;被开方数可以是数,也可以是代数式.3.被开方数为正或0时,其平方根为实数.二次根式的乘除1.二次根式的性质与化简:(1)(a≥0)是一个非负数,即≥0;(2)非负数的算术平方根再平方仍得这个数,即:()2=a(a≥0);(3)某数的平方的算术平方根等于某数的绝对值,即=|a|(4)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.2.二次根式的乘除:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(1)非负数的积的算术平方根等于积中各因式的算术平方根的积,即=·(a≥0,b≥0).(2)非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即(a≥0,b>0).3.最简二次根式(1)二次根式()中的称为被开方数.满足下面条件的二次根式我们称为最简二次根式:①被开放数的因数是整数,因式是整式(被开方数不能存在小数、分数形式);②被开方数中不含能开得尽方的因数或因式;③分母中不含二次根式.二次根式的计算结果要写成最简根式的形式.(2)同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.如,,就是同类二次根式,因为=2,=3,它们与的被开方数均为2.4.分母有理化:即把二次根式的分母化成有理数,通常运用平方差公式乘以分母的有理化因式化简.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式.二次根式的加减1.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.2.二次根式的加减法则:同类二次根式可以合并,合并时,只合并二次根式前边的倍数,被开方数不变.合并同类二次根式:.同类二次根式才可加减合并.3.二次根式的混合运算(1)六种运算:加、减、乘、除、乘方、开方;(2)运算顺序;先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的;(3)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.4.二次根式的化简求值.例题精讲二次根式例1.'计算:(1-π)0+|-|-+()-1.'例2.'计算:(-2)2++6'例3.下列二次根式:中,是最简二次根式的有()A.2个B.3个C.4个D.5个例4.若有意义,则x的取值范围是()A.x≥2B.x≥-2C.x>2D.x>-2例5.等式成立的条件是()A.x≥1B.x≥-1C.-1≤x≤1D.x≥1或x≤-1例6.将a根号外的因式移到根号内,得()A.B.-C.-D.例7.-=___.例8.观察下列各式:=1+=1+(1-),=1+=1+(-),=1+=1+(-),…请利用你发现的规律,计算:+++…+,_.其结果为______例9.计算(+1)(-1)的结果等于___.例10.计算:(2+3)(2-3)=___.分式方程知识讲解分式方程的认识分式方程:分母中含有未知数的方程叫做分式方程.分式方程的重要特征:①是方程;②分母中含有未知数.在此之前我们学过的方程,分母中都不含有未知数,都是整式方程.解分式方程1.解分式方程的一般步骤:(1)去分母---转化为整式方程;(2)解整式方程;(3)验根,把整式方程的根代入最简公分母或原分式方程.2.换元法解分式方程:用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.分式方程的解1.分式方程的解:能使分式方程左右两边相等的未知数的值.2.增根产生的原因:方程两边同乘以值为零的整式造成的.解分式方程时可能产生增根,因此,求得的结果必须检验.分式方程的实际应用1.列分式方程解应用题的一般步骤题为:①设未知数:若把题目中要求的未知数直接用字母表示出来,则称为直接设未知数,否则称间接设未知数;②列代数式:用含未知数的代数式把题目中有关的量表示出来,必要时作出示意图或列成表格,帮助理顺各个量之间的关系;③列出方程:根据题目中明显的或者隐含的相等关系列出方程;④解方程并检验;⑤写出答案.注意:由于列方程解应用题是对实际问题的解答,所以检验时除从数学方面进行检验外,还应考虑题目中的实际情况,凡不符合条件的一律舍去.2.分类:①行程问题;②工程问题;③营销问题;④行船问题.例题精讲分式方程例1.为提高市民的环保意识,某市发出“节能减排,绿色出行”的倡导,某企业抓住机遇投资20万元购买并投放一批A型“共享单车”,因为单车需求量增加,计划继续投放B型单车,B型单车的投放数量与A型单车的投放数量相同,投资总费用减少20%,购买B型单车的单价比购买A型单车的单价少50元,则A型单车每辆车的价格是多少元?设A型单车每辆车的价格为x元,根据题意,列方程正确的是()A.=B.=C.=D.=例2.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=例3.关于x的方程-1=的解为正数,则k的取值范围是()A.k>-4B.k<4C.k>-4且k≠4D.k<4且k≠-4例4.分式方程:-=1的解为______.例5.方程+1=的解是_____。
2025年中考数学考点分类专题归纳二次根式知识点一、二次根式的相关概念和性质1. 二次根式形如(0)a a ≥的式子叫做二次根式. 备注:二次根式a 有意义的条件是0a ≥ ,即只有被开方数0a ≥时,式子a 才是二次根式,a 才有意义.2.二次根式的性质;;.3. 最简二次根式1)被开方数是整数或整式;2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.4. 同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式.备注:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.知识点二、二次根式的运算1. 乘除法(1)乘除法法则:备注:⋅= . (1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如a b c d ac bd-⨯-≠-⨯- .(2)被开方数a、b一定是非负数(在分母上时只能为正数).如(4)(9)492.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式.1.(2024•达州)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣22.(2024•绥化)若y有意义,则x的取值范围是()A.x且x≠0 B.x C.x D.x≠03.(2024•兰州)下列二次根式中,是最简二次根式的是()A.B.C.D.4.(2024•无锡)下列等式正确的是()A.()2=3 B. 3 C. 3 D.()2=﹣35.(2024•盘锦)若式子有意义,则x的取值范围是_______.6.(2024•绵阳)等式成立的x的取值范围在数轴上可表示为()A.B.C.D.7.(2024•临安区)下列各式计算正确的是()A.a12÷a6=a2B.(x+y)2=x2+y2C.D.8.(2024•郴州)下列运算正确的是()A.a3•a2=a6B.a﹣2C.32D.(a+2)(a﹣2)=a2+4 9.(2024•孝感)下列计算正确的是()A.a﹣2÷a5B.(a+b)2=a2+b2C.22D.(a3)2=a510.(2024•德阳)下列计算或运算中,正确的是()A.2B.C.623D.﹣3 11.(2024•陇南)使得代数式有意义的x的取值范围是_____.12.(2024•巴中)已知|sinA|0,那么∠A+∠B=_____.13.(2024•广州)如图,数轴上点A表示的数为a,化简:a___.14.(2024•山西)计算:(31)(31)=____.15.(2024•镇江)计算:___.16.(2024•烟台)与最简二次根式5是同类二次根式,则a=___.17.(2024•哈尔滨)计算610的结果是__ .18.(2024•武汉)计算的结果是__________.19.(2024•盘锦)计算:_ _.20.(2024•滨州)观察下列各式:1,1,1,……请利用你所发现的规律,计算,其结果为__ .21.(2024•莱芜)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是___.22.(2024•大连)计算:(2)22﹣223.(2024•陕西)计算:()×()+|1|+(5﹣2π)0。
北师大版八年级上册数学重难点突破知识点梳理及重点题型巩固练习二次根式的加减--知识讲解(提高)【学习目标】1、理解并掌握同类二次根式的概念和二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似)要点诠释:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式.要点二、二次根式的加减1.二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.要点诠释:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.(2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;3)合并同类二次根式.要点三、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果要写成最简形式.【典型例题】类型一、同类二次根式1. (2016春•寿光市期末)若最简二次根式与是同类二次根式,则a= .【思路点拨】根据同类二次根式的定义列出方程求解即可.【答案】±1.【解析】解:∵最简二次根式与是同类二次根式, ∴4a 2+1=6a 2﹣1,∴a 2=1,解得a=±1.【总结升华】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.举一反三:【变式】(2014春•射阳县校级期末)若最简二次根式与是同类二次根式,则a= .【答案】±1.提示:∵最简二次根式与是同类二次根式,∴4a 2+1=6a 2﹣1,∴a 2=1,解得a=±1. 类型二、二次根式的加减运算2.计算:(1)4832315311312--+ 【答案与解析】4832315311312--+== =0【总结升华】一定要注意二次根式的加减要做到先化简,再合并.举一反三:【变式】计算 .【答案】类型三、二次根式的混合运算3.(2015•苏州模拟)计算:.【思路点拨】二次根式的混合运算最好是先将每个因式化简,再合并.【答案与解析】解:原式=﹣+2=4﹣+2 =4+. 【总结升华】先进行二次根式的乘除运算,再把各二次根式化为最简二次根式,然后进行二次根式的加减运算.举一反三:【变式】)753)(753(-++-【答案】原式=⎤⎤⎦⎦=23-=94.计算:已知2310,x x -+=.【答案与解析】221x x +==又因为2310,x x -+=所以0x ≠,130x x ∴-+=,即13x x+=即原式=【总结升华】数学运算包含着很多技巧性的东西,技巧运用得好计算就会很简便.。
中考总复习:一元二次方程、分式方程的解法及应用—知识讲解(提高)【考纲要求】1.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程;2.会解分式方程,解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.【知识网络】【考点梳理】考点一、一元二次方程 1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程. 它的一般形式为20ax bx c ++=(a ≠0). 2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x m =±;当m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+= ⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20a x b x c ++=,当240b ac -≥时,它的解为242b b acx a-±-=.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.要点诠释:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.易错知识辨析:(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.3.一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆. △>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边. 要点诠释:△≥0⇔方程有实数根.4.一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么ac x x a b x x 2121=⋅-=+,.要点诠释:(1)对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. (2)解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.(3)一元二次方程0c bx ax 2=++(a ≠0)的根的判别式正反都成立.利用其可以①不解方程判定方程根的情况;②根据参系数的性质确定根的范围;③解与根有关的证明题.(4)一元二次方程根与系数的应用很多:①已知方程的一根,不解方程求另一根及参数系数;②已知方程,求含有两根对称式的代数式的值及有关未知数系数;③已知方程两根,求作以方程两根或其代数式为根的一元二次方程.考点二、分式方程1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程.要点诠释:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.考点三、一元二次方程、分式方程的应用1.应用问题中常用的数量关系及题型(1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.(2)体积变化问题关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%.明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题重点是寻找到多个等量关系,使能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.(6)和、差、倍、分问题增长量=原有量×增长率;现有量=原有量+增长量;现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数; (3)找出相等关系,并用它列出方程; (4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.要点诠释:方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.【典型例题】 类型一、一元二次方程1.阅读材料:为解方程222(1)5(1)40x x ---+=,我们可以将21x - 看作一个整体,然后设21x y -=,那么原方程可化为2540y y -+=……①,解得11y =,24y =,当1y =时,211x -=,22x ∴=,2x ∴=±;当4y =时,214x -=,25x ∴=,5x ∴=±,故原方程的解为12x =,22x =-,35x =,45x =-.解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用________法达到了解方程的目的,体现了转化的数学思想;(2)请利用以上知识解方程4260x x --=.【思路点拨】此题考查了学生学以致用的能力,解题的关键是掌握换元思想. 【答案与解析】 (1)换元法;(2)设2x y =,那么原方程可化为260y y --= 解得13y =;22y =-当3y =时,23x =;3x ∴=±当2y =-时,22x =-不符合题意,舍去. 所以原方程的解为13x =,23x =-.【总结升华】应用换元法解方程,体现了转化的数学思想. 举一反三:【变式】设m 是实数,求关于x 的方程2320x mx x m --++=的根. 【答案】x 1=1,x 2=m+2.2.(2015•肇庆二模)设x 1、x 2是方程2x 2+4x ﹣3=0的两个根,利用根与系数关系,求下列各式的值:(1)(x 1﹣x 2)2; (2).【思路点拨】先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可. 【答案与解析】解:根据根与系数的关系可得:x 1+x 2=﹣2,x 1•x 2=.(1)(x 1﹣x 2)2=x 12+x 22﹣2x 1x 2=x 12+x 22+2x 1x 2﹣4x 1x 2=(x 1+x 2)2﹣4x 1x 2 ==10.(2)=x 1x 2+1+1+==.【总结升华】将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.举一反三:【变式】(2015•潜江)已知关于x 的一元二次方程x 2﹣4x+m=0. (1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根为x 1,x 2,且满足5x 1+2x 2=2,求实数m 的值. 【答案】解:(1)∵方程有实数根,∴△=(﹣4)2﹣4m=16﹣4m≥0,∴m≤4;(2)∵x1+x2=4,∴5x1+2x2=2(x1+x2)+3x1=2×4+3x1=2,∴x1=﹣2,把x1=﹣2代入x2﹣4x+m=0得:(﹣2)2﹣4×(﹣2)+m=0,解得:m=﹣12.类型二、分式方程3.解方程:【思路点拨】把原方程右边化为代入原方程求解较为简单. 【答案与解析】原方程变为经检验,是原方程的根.【总结升华】因为,,所以最简公分母为:,若采用去分母的通常方法,运算量较大,可采用上面的方法较好.举一反三:【变式1】解方程:【答案】原方程化为方程两边通分,得化简得解得经检验:是原方程的根. 【变式2】解方程:7643165469222x x x x x x ----+=--+ 【答案】 设,则原方程可化为:k x x =-+265793144k k k --=-+ 去分母化简得:20147111602k k --= ∴()()k k -+=1220930∴,k k ==-129320 当时,k x x =--=126702()()x x -+=710解之得:,x x 1217=-= 当时,k x x =--+=-93206593202 2012019302x x -+= 解此方程此方程无解.1217x x =-=经检验:,是原分式方程的根.4.m 为何值时,关于x 的方程会产生增根?【思路点拨】先把原方程化为整式方程,使分母为0的根是增根,代入整式方程求出m 的值. 【答案与解析】方程两边都乘以,得整理,得【总结升华】分式方程的增根,一定是使最简公分母为零的根.举一反三:【变式】当m为何值时,方程会产生增根( )A. 2B. -1C. 3D.-3【答案】分式方程,去分母得,将增根代入,得m=3.所以,当m=3时,原分式方程会产生增根.故选C.类型三、一元二次方程、分式方程的应用5.要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天.现在甲、乙两人合作2天后,再由乙单独做,正好按期完成.问规定日期是多少天?【思路点拨】设规定日期是x天,则甲的工作效率为,乙的工作效率为,工作总量为1.【答案与解析】设规定日期为x天根据题意,得解得经检验是原方程的根答:规定日期是6天.【总结升华】工程问题涉及的量有三个,即每天的工作量、工作的天数、工作的总量.它们之间的基本关系是:工作总量=每天的工作量×工作的天数.举一反三:【变式】据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.【答案】设一片国槐树叶一年的平均滞尘量为x毫克,由题意得1000550 240x x=-,解得:x=22,经检验:x=22是原分式方程的解,且符合题意.答:一片国槐树叶一年的平均滞尘量为22毫克.6.某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队工程费共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队工程费共9500元,甲、丙两队合做5天完成全部工程的,厂家需付甲、丙两队工程费共5500元.⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.【思路点拨】第一问是工程问题,工程问题中有三个量:工作总量,工作效率,工作时间,这三个量之间的关系是:工作总量=工作效率×工作时间第二问只要求出每天应各付甲、乙、丙各队多少钱,并由第一问求出甲、乙、丙各队单独完成这项工作所需的天数,即可求出在规定时间内单独完成此项工程哪个队花钱最少.【答案与解析】⑴设甲队单独做需天完成,乙队单独做需天完成,丙队单独做需天完成,依题意,得①×+②×+③×,得++=.④④-①×,得=,即z= 30,④-②×,得=,即x = 10,④-③×,得=,即y= 15.经检验,x= 10,y= 15,z = 30是原方程组的解.⑵设甲队做一天厂家需付元,乙队做一天厂家需付元,丙队做一天厂家需付元,根据题意,得由⑴可知完成此工程不超过工期只有两个队:甲队和乙队.此工程由甲队单独完成需花钱元;此工程由乙队单独完成需花钱元.所以,由甲队单独完成此工程花钱最少.【总结升华】这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队单独完成这项工程所需时间分别为天,天,天,可列出分式方程组.在求解时,把,,分别看成一个整体,就可把分式方程组转化为整式方程组来解.。
中考总复习:分式与二次根式—巩固练习(提高)【巩固练习】 一、选择题1.(2015春•合水县期末)二次根式、、、、、中,最简二次根式有( )个.A .1 个B .2 个C .3 个D .4个 2.分式(1)(2)(2)(1)x x x x +---有意义的条件是( )A .x ≠2 B.x ≠1 C.x ≠1或x ≠2 D.x ≠1且x ≠2 3.使分式224x x +-等于0的x 的值是( ) A.2 B.-2 C.±2 D.不存在4.计算20122013(21)(21)+-的结果是( ) ZXDEF VEDRGFHYJUIL ’P/Hjkolp;[‘ ]’;lkjhxdgb /k,.”A. 1B. -1C. 2 1D. 21+-5.小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设小玲步行的平均速度为x 米/分,根据题意,下面列出的方程正确的是( ) A .28002800304-=x xB .28002800304-=x xC .28002800305-=x xD .2800280030-=5x x6.化简甲,乙两同学的解法如下:甲:= 乙:=对他们的解法,正确的判断是( )zx A .甲、乙的解法都正确 B .甲的解法正确,乙的解法不正确 C .乙的解法正确,甲的解法不正确 D .甲、乙的解法都不正确二、填空题7.若a 2-6a+9与│b-1│互为相反数,则式子a bb a-÷(a+b )的值为_______________. 8.若m=201120121-,则54322011m m m --的值是 .9. 下列各式:①a a b b =;②3344--=--;③5593=;④216(0,0).33b ab a b a a =>≥其中正确的是 (填序号). 10.当x =__________时,分式33x x -+的值为0.11.(1)若211()x x x y --=+-,则x y -的值为 .(2)若5,3,x y xy +==则xyy x+的值为 . 12.(2015•科左中旗校级一模)观察下列等式: ①==﹣1 ②==﹣ ③==﹣…回答下列问题: (1)化简:= ;(n 为正整数)(2)利用上面所揭示的规律计算:+++…++= .三、解答题13.(1)已知13x x +=,求2421x x x -+的值. (2)已知2510x x -+=和0x ≠,求441x x+的值.14.(2015春•东莞期末)设a=,b=2,c=.(1)当a 有意义时,求x 的取值范围.(2)若a 、b 、c 为Rt △ABC 三边长,求x 的值.15.一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲、乙公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司施工费较少?16.阅读下列材料,然后回答问题. 在进行二次根式化简时,我们有时会碰上如5223331+,,一样的式子,其实我们可以将其进一步化简.553533333⨯==⨯;(一) 22363333⨯==⨯;(二)2222(31)2(31)3131(31)(31)(3)1⨯--===-++--;(三) 以上这种化简的步骤叫做分母有理化.231+还可以用以下方法化简:22231(3)1(31)(31)3 1.31313131--+-====-++++(四); (1)请用不同的方法化简 ①参照(三)式得253+= ;②参照(四)式得253+= ;(2)化简1111.3153752121n n +++++++++-…【答案与解析】 一、选择题 1.【答案】C ; 【解析】二次根式、、、、、中,最简二次根式有、、共3个.故选:C .2.【答案】D ;【解析】分式有意义,则20x -≠且10x -≠. 3.【答案】D ;【解析】令20x +=得2x =-,而当2x =-时,240x -=,所以该分式不存在值为0的情形. 4.【答案】D ;【解析】本题可逆用公式(ab )m=a m b m及平方差公式,将原式化为 2012(21)(21)(21)2 1.⎡⎤+--=-⎣⎦故选D.5.【答案】A ;【解析】设小玲步行的平均速度为x 米/分,则骑自行车的速度为4x 米/分,依题意,得28002800304-=x x.故选A .6.【答案】A ;【解析】甲是分母有理化了,乙是 把3化为 (52)(52)+-了.二、填空题 7.【答案】23 ; 【解析】由已知得2269(3)0a a a -+=-=且10b -=,解得3a =,1b =,再代入求值.8.【答案】0;【解析】此题主要考查了二次根式的化简,得出m= 2012+1,以及 5433222011[(1)2012]m m m m m --=--是解决问题的关键.∵m=201120121-=2012+1,∴543323222011(22011)[(1)2012]0m m m m m m m m --=--=--=,故答案为:0.9.【答案】③④;【解析】提示:①0a ≥,0b >;②3,4--无意义. 10.【答案】3;【解析】由30x -=得x =±3.当3x =时,360x +=≠,当3x =-时,3330x +=-+=,所以当3x =时,分式的值为0.11.【答案】(1)2; (2)533 ; 【解析】(1)由11x x ---,知x =1,∴(x +y )2=0,∴y =-1,∴x -y =2.(2)55,3,0,0, 3.3xy xy x y x y xy x y xy y x xy ++==∴∴=+==>>原式12.【答案】;【解析】(1)=;故答案为:;20101-.(2)+++…++ =…+=20101-.三、解答题 13.【答案与解析】(1)因为0x ≠,所以用2x 除所求分式的分子、分母.原式22221111113361()21x x x x ====--++--. (2)由2510x x -+= 和0x ≠ ,提15x x +=, 所以24242112x x x x ⎛⎫+=+- ⎪⎝⎭ 2222122(52)2527x x ⎡⎤⎛⎫=+--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=--=14.【答案与解析】 解:(1)∵a 有意义, ∴8﹣x≥0, ∴x≤8;(2)方法一:分三种情况:①当a 2+b 2=c 2,即8﹣x+4=6,得x=6, ②当a 2+c 2=b 2,即8﹣x+6=4,得x=10, ③当b 2+c 2=a 2,即4+6=8﹣x ,得x=﹣2, 又∵x≤8, ∴x=6或﹣2;方法二:∵直角三角形中斜边为最长的边,c>b∴存在两种情况,①当a2+b2=c2,即8﹣x+4=6,得x=6,②当b2+c2=a2,即4+6=8﹣x,得x=﹣2,∴x=6或﹣2.15.【答案与解析】(1)设甲公司单独完成此工程x天,则乙公司单独完成此项工程1.5x天,根据题意,得1111.512x x+=,解之得,x=20,经检验知x=20是方程的解且符合题意,1.5x=30,答:甲乙两公司单独完成此工程各需要20天,30天.(2)设甲公司每天的施工费y元,则乙公司每天的施工费(y-1500)元,根据题意,得12(y+y-1500)=102000, 解之得,y=5000.甲公司单独完成此工程所需施工费:20×5000=100000(元),乙公司单独完成此工程所需施工费:30×(5000-1500)=105000 (元),故甲公司的施工费较少.16.【答案与解析】(1)①22(53)5 3. 53(53)(53)-==-++-②22253(5)(3)(53)(53)5 3. 53535353--+-====-++++(2)111315375+++++++…12121n n=++-1(315372-+-+-152121)(211)2n n n+++--=+-.。
中考总复习:分式与二次根式—知识讲解(提高)【考纲要求】1. 了解分式的概念,会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会解简单的可化为一元一次方程的分式方程;2. 利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算.【知识网络】【考点梳理】考点一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点诠释:分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B≠0时,分式有意义;当分式有意义时,B≠0.②当B=0时,分式无意义;当分式无意义时,B=0.③当B≠0且A = 0时,分式的值为零.考点二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算错误!未找到引用源。
±错误!未找到引用源。
=错误!未找到引用源。
同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.约分需明确的问题:(1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;(2)约分的关键是确定分式的分子和分母的公因式,其思考过程与分解因式中提取公因式时确定公因式的思考过程相似;在此,公因式是分子、分母系数的最大公约数和相同字母最低次幂的积.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.通分注意事项:(1)通分的关键是确定最简公分母;最简公分母应为各分母系数的最小公倍数与所有因式的最高次幂的积.(2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.(3)确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积.要点诠释:分式运算的常用技巧(1)顺序可加法:有些异分母式可加,最简公分母很复杂,如果采用先通分再可加的方法很繁琐.如果先把两个分式相加减,把所得结果与第三个分式可加减,顺序运算下去,极为简便.(2)整体通分法:当整式与分式相加减时,一般情况下,常常把分母为1的整式看做一个整体进行通分,依此方法计算,运算简便.(3)巧用裂项法:对于分子相同、分母是相邻两个连续整数的积的分式相加减,分式的项数是比较多的,无法进行通分,因此,常用分式111(1)1n n n n=-++进行裂项.(4)分组运算法: 当有三个以上的异分母分式相加减时,可考虑分组,原则是使各组运算后的结果能出现分子为常数,且值相同或为倍数关系,这样才能使运算简便.(5)化简分式法:有些分式的分子、分母都异常时如果先通分,运算量很大.应先把每一个分别化简,再相加减.(6)倒数法求值(取倒数法).(7)活用分式变形求值.(8)设k求值法(参数法)(9)整体代换法.(10)消元代入法.考点三、分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题(1)增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根;(2)验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.要点诠释:解分式方程注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤:(1)审——仔细审题,找出等量关系;(2)设——合理设未知数;(3)列——根据等量关系列出方程;(4)解——解出方程;(5)验——检验增根;(6)答——答题.考点四、二次根式的主要性质 1.0(0)a a ≥≥; 2.()2(0)aa a =≥; 3.2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;4. 积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;5. 商的算术平方根的性质:(00)a a a b b b=≥>,. 6.若0a b >≥,则a b >.要点诠释:与的异同点:(1)不同点:与表示的意义是不同的,表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根;在中,而中a 可以是正实数,0,负实数.但与都是非负数,即,.因而它的运算的结果是有差别的,,而(2)相同点:当被开方数都是非负数,即时,=;时,无意义, 而. 考点五、二次根式的运算1.二次根式的乘除运算(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意知道每一步运算的算理;(3)乘法公式的推广:123123123(0000)n n n a a a a a a a a a a a a ⋅⋅⋅⋅=⋅⋅⋅⋅≥≥≥≥,,,,2.二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质;3.二次根式的混合运算(1)对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;(2)二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.要点诠释:怎样快速准确地进行二次根式的混合运算.1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.(1)加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于理解和掌握.在运算过程中,对于各个根式不一定要先化简,可以先乘除,进行约分,达到化简的目的,但最后结果一定要化简. 例如82627⎛⎫+⨯ ⎪ ⎪⎝⎭,没有必要先对827进行化简,使计算繁琐,可以先根据乘法分配律进行乘法运算,884266262327273⎛⎫+⨯=⨯+⨯=+ ⎪ ⎪⎝⎭,通过约分达到化简目的; (2)多项式的乘法法则及乘法公式在二次根式的混合运算中同样适用. 如:()()()()223232321+-=-=,利用了平方差公式.所以,在进行二次根式的混合运算时,借助乘法公式,会使运算简化.4.分母有理化把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:(1)a a 与互为有理化因式;(2)a b a b +-与互为有理化因式;一般地a c b a c b +-与互为有理化因式;(3)a b a b +-与互为有理化因式;一般地c a d b a d b +-与c 互为有理化因式.【典型例题】类型一、分式的意义1.若分式211x x -+的值为0,则x 的值等于 . 【答案】1;【解析】由分式的值为零的条件得2x ﹣1=0,x +1≠0,由2x ﹣1=0,得x =﹣1或x =1,由x +1≠0,得x ≠﹣1,∴x =1,故答案为1.【总结升华】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.举一反三: 【变式1】如果分式23273x x --的值为0,则x 的值应为 . 【答案】由分式的值为零的条件得3x 2-27=0且x-3≠0,由3x 2-27=0,得3(x+3)(x-3)=0,∴x=-3或x=3,由x-3≠0,得x≠3. 综上,得x=-3,分式23273x x --的值为0.故答案为:-3. 【高清课程名称:分式与二次根式 高清ID 号:399347关联的位置名称(播放点名称):例1】【变式2】若分式mx x +-212不论x 取何实数总有意义,则m 的取值范围是 . 【答案】若分式m x x +-212不论x 取何实数总有意义,则分母22x x m -+≠0, 设22y x x m =-+,当△<0即可,440,1m m -<>.答案m >1.类型二、分式的性质2.已知,b c c a a b a b c +++==求()()()abc a b b c c a +++的值. 【答案与解析】设b c c a a b k a b c+++===, 所以,,b c ak c a bk a b ck +=+=+=所以,b c c a a b ak bk ck +++++=++所以2()(),()(2)0,a b c k a b c a b c k ++=++++-=即2k =或()0,a b c ++=当2k =,所求代数式33118abc abck k ===, 当0a b c ++=,所求代数式1=-. 即所求代数式等于18或1-. 【总结升华】当已知条件以此等式出现时,可用设k 法求解.举一反三:【变式】已知111111111,,,6915a b b c a c +=+=+=求abc ab bc ac++的值. 【答案】因为 111111111,,,6915a b b c a c +=+=+= 各式可加得1111112,6915a b c ⎛⎫++⨯=++⎪⎝⎭ 所以11131180a b c ++=, 所以()1180.111()()31abc abc abc ab bc ac ab bc ac abc c a b÷===++++÷++类型三、分式的运算3.已知1,x y z y z z x x y++=+++且0x y z ++≠,求222x y z y z x z x y +++++的值. 【答案与解析】因为0x y z ++≠,所以原等式两边同时乘以x y z ++,得:()(().x x y z y x y z z x y z x y z y z z x x y++++++++=+++++) 即222()()(),x x y z y y z x z z x y x y z y z y z z x z x x y x y++++++++=++++++++ 所以222(),x y z x y z x y z y z z x x y+++++=+++++ 所以2220.x y z y z z x x y++=+++ 【总结升华】 条件分式的求值,如需把已知条件或所示条件分式变形,必须依据题目自身的特点,这样才能到事半功倍的效果,条件分式的求值问题体现了整体的数学思想和转化的数学思想.举一反三:【变式1】已知,,,x y z a b c y z x z x y ===+++且abc o ≠,求111a b c a b c +++++的值. 【答案】 由已知得1,y z a x+= 所以111,y z x y z a x x ++++=+=即1a x y z a x +++=,所以1a x a x y z=+++, 同理,,11b y c z b x y z c x y z==++++++ 所以1111a b c x y z x y z a b c x y z x y z x y z x y z ++++=++==+++++++++++. 【高清课程名称:分式与二次根式 高清ID 号:399347关联的位置名称(播放点名称):例2】【变式2】已知x +y=-4,xy=-12,求+++11x y 11++y x 的值. 【答案】原式)1)(1()1()1(22+++++=y x x y =1121222++++++++y x xy x x y y 1)(2)(22)(2++++++-+=y x xy y x xy y x 将x +y =-4,xy =-12代入上式, ∴原式⋅-=+--+-⨯++-=153414122)4(224)4(2类型四、分式方程及应用4.a 何值时,关于x 的方程223242ax x x x +=--+会产生增根? 【答案与解析】方程两边都乘以(2)(2)x x +-,得2(2)3(2).x ax x ++=-整理得(1)10a x -=-.当a = 1 时,方程无解.当1a ≠时,101x a =--. 如果方程有增根,那么(2)(2)0x x +-=,即2x =或2x =-.当2x =时,1021a -=-,所以4a =-; 当2x =-时,1021a -=--,所以a = 6 . 所以当4a =-或a = 6原方程会产生增根.【总结升华】 因为所给方程的增根只能是2x =或2x =-,所以应先解所给的关于x 的分式方程,求出其根,然后求a 的值.5.甲.乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲.乙 共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?【答案与解析】(1)设乙单独整理x 分钟完工,根据题意得:120204020=++x解得x =80,经检验x =80是原分式方程的解.答:乙单独整理80分钟完工.(2)设甲整理y 分钟完工,根据题意,得1408030≥+y 解得:y ≥25答:甲至少整理25分钟完工.【总结升华】分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.(1)将总的工作量看作单位1,根据本工作分两段时间完成列出分式方程解之即可;(2)设甲整理y 分钟完工,根据整理时间不超过30分钟,列出一次不等式解之即可.举一反三:【变式】小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得( )A .00253010(18060x x -=+)B .00253010(180x x -=+)C .00302510(18060x x -=+)D .00302510(180x x -=+)【答案】设走路线一时的平均速度为x 千米/小时,00253010(18060x x -=+)故选A .类型五、二次根式的定义及性质6.要使式子aa 2+有意义,则a 的取值范围为 . 【答案】a≥-2且a≠0.【解析】根据题意得:a+2≥0且a≠0,解得:a≥-2且a≠0.故答案为:a≥-2且a≠0.【总结升华】本题考查的考点为:分式有意义,分母不为0;二次根式的被开方数是非负数.可以求出x的范围.类型六、二次根式的运算【高清课程名称:分式与二次根式高清ID号:399347关联的位置名称(播放点名称):例3】7.(2015春•泗阳县期末)已知m是的小数部分.(1)求m2+2m+1的值;(2)求的值.【答案与解析】解:依题意得21m=-,则121 m=+(1)原式=(m+1)2=2;(2)原式=|1mm-|=|﹣1﹣(21+)|=2.【总结升华】此题考查二次根式的化简求值,掌握完全平方公式和无理数的估算是解决问题的关键.举一反三:【变式】(2015•苏州模拟)计算:.【答案与解析】解:原式=﹣+2=4﹣+2=4+.。
北师大版八年级上册数学重难点突破知识点梳理及重点题型巩固练习《实数和二次根式》全章复习与巩固(提高)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.5.理解并掌握二次根式、最简二次根式、同类二次根式的定义和性质.6.熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关实数的四则运算.7.了解代数式的概念,进一步体会代数式在表示数量关系方面的作用.【知识网络】【要点梳理】要点一、平方根和立方根要点二、无理数与实数有理数和无理数统称为实数. 1.实数的分类实数⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数零有限小数或无限循环小数负有理数正无理数无理数无限不循环小数负无理数 要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.2.实数与数轴上的点一 一对应数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质在实数范围内,正数和零统称为非负数。
我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(30≥ (0a ≥). 非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里. 5.实数的大小的比较有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法. 要点三、二次根式的相关概念和性质 1. 二次根式0)a ≥的式子叫做二次根式,都叫做二次根式.要点诠释:有意义的条件是0a ≥,即只有被开方数0a ≥时,才才有意义.2.二次根式的性质(1); (2);(3).要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的形式,即a 2=(0a ≥),如22212;;3x ===(0x ≥).(2)a 的取值范围可以是任意实数,即不论a 意义.(3a ,再根据绝对值的意义来进行化简.(42的异同a 可以取任何实数,而2中的a 必须取非负数;a,2=a (0a ≥).相同点:被开方数都是非负数,当a2.3. 最简二次根式(1)被开方数是整数或整式;(2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.二次根式.要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2.4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式. 要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.式.要点四、二次根式的运算 1. 乘除法(1)乘除法法则:类型 法则逆用法则二次根式的乘法0,0)a b =≥≥积的算术平方根化简公式:0,0)a b =≥≥二次根式的除法商的算术平方根化简公式:0,0)a b =≥> 要点诠释:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如=(2)被开方数a b 、一定是非负数(在分母上时只能为正数).2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式.要点诠释:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.(13=+-=【典型例题】类型一、有关方根的问题1、已知31233-+-+-=x x x y ,求y x 2的值.【思路点拨】由被开方数是非负数,分母不为0得出x 的值,从而求出y 值,及y x 2的值. 【答案与解析】 解:由题意得303030x x x ⎧-≥⎪-≥⎨⎪-≠⎩,解得x =-3 31233-+-+-=x x x y =-2∴y x 2=()()23218-⨯-=-.【总结升华】根据使式子有意义的条件列出方程,解方程,从而得到y x 2的值.2、(2016春•南昌期末)已知实数x 、y 满足,求2x ﹣的立方根.【答案与解析】解:由非负数的性质可知:2x ﹣16=0,x ﹣2y +4=0, 解得:x=8,y=6.∴2x ﹣y=2×8﹣×6=8. ∴2x ﹣的立方根是2.【总结升华】本题主要考查的是非负数的性质、立方根的定义,求得x 、y 的值是解题的关键.类型二、与实数有关的问题3、已知ab 是它的小数部分,求()()323a b -++的值. 【思路点拨】一个数是由整数部分+小数部分构成的.3,那么3,再代入式子求值. 【答案与解析】解:∵ab是它的小数部分,34<<∴3,3a b ==∴()()())23233333271017a b -++=-++=-+=-.【总结升华】方.这个数减去它的整数部分后就是它的小数部分. 举一反三:【变式】 已知5+11的小数部分为a ,5-11的小数部分为b ,则a +b 的值是 ;a -b 的值是_______.【答案】1;7a b a b +=-=;提示:由题意可知3a =,4b =4、阅读理解,回答问题.在解决数学问题的过程中,有时会遇到比较两数大小的问题,解决这类问题的关键是根据命题的题设和结论特征,采用相应办法,其中巧用“作差法”是解决此类问题的一种行之有效的方法:若a -b >0,则a >b ;若a -b =0,则a =b ;若a -b <0,则a <b .例如:在比较21m +与2m 的大小时,小东同学的作法是: ∵()()2222111m m m m +-=+-= ∴221m m +>请你参考小东同学的作法,比较2(2+的大小.【思路点拨】仿照例题,做差后经过计算判断差与0的关系,从而比较大小. 【答案与解析】解:∵(22(43)70=+=-<∴2(2+【总结升华】实数比较大小常用的有作差法和作商法,根据具体情况加以选择. 举一反三:【变式】实数a 在数轴上的位置如图所示,则2,1,,a aa a -的大小关系是: ; -1a【答案】21a a a a<<<-; 类型三、实数综合应用5、阅读材料:. 小明的方法:<<3k =+(01k <<).∴22(3)k =+.∴21396k k =++.∴1396k ≈+.解得 46k ≈43 3.676≈+≈.问题:(1(2a 、b 、m ,若1a a <<+,且2m a b =+≈_________________(用含a 、b 的代数式表示);(3)请用(2的近似值. 【答案与解析】解:(1<6k =+(01k <<).∴22(6)k =+.∴2413612k k =++.∴413612k ≈+.解得 512k ≈.∴56 6.4212≈+≈.(2)∵1a a <+a k =+(01k <<).∴22()a k =+.∴222m a ak k =++. ∴22m a ak ≈+.对比2m a b =+,2,2b b ak k a≈≈2b a a≈+(3)23761,=+∴6,1a b ==,1612≈+≈6.083.【总结升华】此题比较新颖,关键是通过阅读材料快速掌握估值的方法.(2)问中要对比式子,找准a和b,表示出2bka≈.类型四、二次根式概念及运算6、(2015春•石林县期末)计算:5+﹣×+÷.【思路点拨】先二次根式化为最简二次根和根据二次根式的乘除法得到原式=+﹣+3÷=2﹣1+3,然后合并即可.【答案与解析】解:原式=+﹣+3÷=2﹣1+3=2+2.【总结升华】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.举一反三:5(03)x x-<<.【答案】34x-.7、已知a b c、、为△ABC的三边长,化简【答案与解析】解:∵a b c、、为△ABC的三边长,∴原式【总结升华】利用三角形任意两边之和大于第三边和进行化简.8、 若0x >___________=.【答案与解析】【总结升华】把分子分母分别分解因式,然后约分,可以简化化简步骤. 举一反三:【变式】当22121a a a a a a -+=---. 【答案】解:210.a a ==--<由得2(1)1=11a a a a-=-+-∴原式,将2a ==-=3.。
中考总复习:分式与二次根式—知识讲解(提高)【考纲要求】1. 了解分式的概念,会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会解简单的可化为一元一次方程的分式方程;2. 利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算.【知识网络】【考点梳理】考点一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点诠释:分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B≠0时,分式有意义;当分式有意义时,B≠0.②当B=0时,分式无意义;当分式无意义时,B=0.③当B≠0且A = 0时,分式的值为零.考点二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算错误!未找到引用源。
±错误!未找到引用源。
=错误!未找到引用源。
同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.约分需明确的问题:(1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;(2)约分的关键是确定分式的分子和分母的公因式,其思考过程与分解因式中提取公因式时确定公因式的思考过程相似;在此,公因式是分子、分母系数的最大公约数和相同字母最低次幂的积.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.通分注意事项:(1)通分的关键是确定最简公分母;最简公分母应为各分母系数的最小公倍数与所有因式的最高次幂的积.(2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.(3)确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积.要点诠释:分式运算的常用技巧(1)顺序可加法:有些异分母式可加,最简公分母很复杂,如果采用先通分再可加的方法很繁琐.如果先把两个分式相加减,把所得结果与第三个分式可加减,顺序运算下去,极为简便.(2)整体通分法:当整式与分式相加减时,一般情况下,常常把分母为1的整式看做一个整体进行通分,依此方法计算,运算简便.(3)巧用裂项法:对于分子相同、分母是相邻两个连续整数的积的分式相加减,分式的项数是比较多的,无法进行通分,因此,常用分式111(1)1n n n n=-++进行裂项.(4)分组运算法: 当有三个以上的异分母分式相加减时,可考虑分组,原则是使各组运算后的结果能出现分子为常数,且值相同或为倍数关系,这样才能使运算简便.(5)化简分式法:有些分式的分子、分母都异常时如果先通分,运算量很大.应先把每一个分别化简,再相加减.(6)倒数法求值(取倒数法).(7)活用分式变形求值.(8)设k求值法(参数法)(9)整体代换法.(10)消元代入法.考点三、分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题(1)增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根;(2)验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.要点诠释:解分式方程注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤:(1)审——仔细审题,找出等量关系;(2)设——合理设未知数;(3)列——根据等量关系列出方程;(4)解——解出方程;(5)验——检验增根;(6)答——答题.考点四、二次根式的主要性质 1.0(0)a a ≥≥; 2.()2(0)aa a =≥; 3.2(0)||(0)a a a a a a ≥⎧==⎨-<⎩; 4. 积的算术平方根的性质:(00)ab a b a b =⋅≥≥,; 5. 商的算术平方根的性质:(00)a a a b b b=≥>,.6.若0a b >≥,则a b >. 要点诠释:与的异同点:(1)不同点:与表示的意义是不同的,表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根;在中,而中a 可以是正实数,0,负实数.但与都是非负数,即,.因而它的运算的结果是有差别的,,而 (2)相同点:当被开方数都是非负数,即时,=;时,无意义, 而. 考点五、二次根式的运算1.二次根式的乘除运算(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意知道每一步运算的算理;(3)乘法公式的推广:123123123(0000)n n n a a a a a a a a a a a a ⋅⋅⋅⋅=⋅⋅⋅⋅≥≥≥≥,,,,2.二次根式的加减运算 先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质;3.二次根式的混合运算(1)对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;(2)二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用. 要点诠释:怎样快速准确地进行二次根式的混合运算.1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.(1)加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于理解和掌握.在运算过程中,对于各个根式不一定要先化简,可以先乘除,进行约分,达到化简的目的,但最后结果一定要化简. 例如82627⎛⎫+⨯⎪ ⎪⎝⎭,没有必要先对827进行化简,使计算繁琐,可以先根据乘法分配律进行乘法运算,884266262327273⎛⎫+⨯=⨯+⨯=+ ⎪ ⎪⎝⎭,通过约分达到化简目的; (2)多项式的乘法法则及乘法公式在二次根式的混合运算中同样适用.如:()()()()223232321+-=-=,利用了平方差公式.所以,在进行二次根式的混合运算时,借助乘法公式,会使运算简化.4.分母有理化把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:(1)a a 与互为有理化因式;(2)a b a b +-与互为有理化因式;一般地a c b a c b +-与互为有理化因式;(3)a b a b +-与互为有理化因式;一般地c a d b a d b +-与c 互为有理化因式.【典型例题】类型一、分式的意义1.若分式211x x -+的值为0,则x 的值等于 . 【答案】1;【解析】由分式的值为零的条件得2x ﹣1=0,x +1≠0,由2x ﹣1=0,得x =﹣1或x =1,由x +1≠0,得x ≠﹣1,∴x =1,故答案为1.【总结升华】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.举一反三: 【变式1】如果分式23273x x --的值为0,则x 的值应为 . 【答案】由分式的值为零的条件得3x 2-27=0且x-3≠0,由3x 2-27=0,得3(x+3)(x-3)=0,∴x=-3或x=3,由x-3≠0,得x≠3. 综上,得x=-3,分式23273x x --的值为0.故答案为:-3. 【变式2】若分式mx x +-212不论x 取何实数总有意义,则m 的取值范围是 . 【答案】若分式m x x +-212不论x 取何实数总有意义,则分母22x x m -+≠0, 设22y x x m =-+,当△<0即可,440,1m m -<>.答案m >1.类型二、分式的性质2.已知,b c c a a b a b c +++==求()()()abc a b b c c a +++的值. 【答案与解析】设b c c a a b k a b c+++===, 所以,,b c ak c a bk a b ck +=+=+= 所以,b c c a a b ak bk ck +++++=++所以2()(),()(2)0,a b c k a b c a b c k ++=++++-=即2k =或()0,a b c ++=当2k =,所求代数式33118abc abck k ===, 当0a b c ++=,所求代数式1=-. 即所求代数式等于18或1-. 【总结升华】当已知条件以此等式出现时,可用设k 法求解.举一反三:【变式】已知111111111,,,6915a b b c a c +=+=+=求abc ab bc ac++的值. 【答案】 因为111111111,,,6915a b b c a c +=+=+= 各式可加得1111112,6915a b c ⎛⎫++⨯=++ ⎪⎝⎭ 所以11131180a b c ++=, 所以()1180.111()()31abc abc abc ab bc ac ab bc ac abc c a b ÷===++++÷++类型三、分式的运算3.已知1,x y z y z z x x y++=+++且0x y z ++≠,求222x y z y z x z x y +++++的值. 【答案与解析】因为0x y z ++≠,所以原等式两边同时乘以x y z ++,得:()(().x x y z y x y z z x y z x y z y z z x x y++++++++=+++++)即222()()(),x x y z y y z x z z x y x y z y z y z z x z x x y x y++++++++=++++++++ 所以222(),x y z x y z x y z y z z x x y+++++=+++++ 所以2220.x y z y z z x x y++=+++ 【总结升华】 条件分式的求值,如需把已知条件或所示条件分式变形,必须依据题目自身的特点,这样才能到事半功倍的效果,条件分式的求值问题体现了整体的数学思想和转化的数学思想.举一反三:【变式1】已知,,,x y z a b c y z x z x y ===+++且abc o ≠,求111a b c a b c +++++的值. 【答案】 由已知得1,y z a x+= 所以111,y z x y z a x x ++++=+=即1a x y z a x+++=, 所以1a x a x y z =+++, 同理,,11b y c z b x y z c x y z ==++++++ 所以1111a b c x y z x y z a b c x y z x y z x y z x y z++++=++==+++++++++++. 【变式2】已知x +y=-4,xy=-12,求+++11x y 11++y x 的值. 【答案】原式)1)(1()1()1(22+++++=y x x y =1121222++++++++y x xy x x y y 1)(2)(22)(2++++++-+=y x xy y x xy y x 将x +y =-4,xy =-12代入上式, ∴原式⋅-=+--+-⨯++-=153414122)4(224)4(2类型四、分式方程及应用4.a 何值时,关于x 的方程223242ax x x x +=--+会产生增根? 【答案与解析】方程两边都乘以(2)(2)x x +-,得2(2)3(2).x ax x ++=-整理得(1)10a x -=-.当a = 1 时,方程无解.当1a ≠时,101x a =--. 如果方程有增根,那么(2)(2)0x x +-=,即2x =或2x =-. 当2x =时,1021a -=-,所以4a =-; 当2x =-时,1021a -=--,所以a = 6 . 所以当4a =-或a = 6原方程会产生增根. 【总结升华】 因为所给方程的增根只能是2x =或2x =-,所以应先解所给的关于x 的分式方程,求出其根,然后求a 的值.5.甲.乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲.乙 共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?【答案与解析】(1)设乙单独整理x 分钟完工,根据题意得:120204020=++x解得x =80,经检验x =80是原分式方程的解.答:乙单独整理80分钟完工.(2)设甲整理y 分钟完工,根据题意,得1408030≥+y 解得:y ≥25答:甲至少整理25分钟完工.【总结升华】分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.(1)将总的工作量看作单位1,根据本工作分两段时间完成列出分式方程解之即可;(2)设甲整理y 分钟完工,根据整理时间不超过30分钟,列出一次不等式解之即可.举一反三:【变式】小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得( )A .00253010(18060x x -=+) B .00253010(180x x -=+) C .00302510(18060x x -=+) D .00302510(180x x -=+)【答案】设走路线一时的平均速度为x 千米/小时,00253010(18060x x -=+)故选A .类型五、二次根式的定义及性质6.要使式子aa 2+有意义,则a 的取值范围为 . 【答案】a≥-2且a≠0.【解析】根据题意得:a+2≥0且a≠0,解得:a≥-2且a≠0.故答案为:a≥-2且a≠0.【总结升华】本题考查的考点为:分式有意义,分母不为0;二次根式的被开方数是非负数.可以求出x 的范围.类型六、二次根式的运算7.(2015春•泗阳县期末)已知m 是的小数部分. (1)求m 2+2m+1的值;(2)求的值. 【答案与解析】 解:依题意得21m =-, 则121m=+ (1)原式=(m+1)2=2;(2)原式=|1m m -|=|﹣1﹣(21+)|=2.【总结升华】此题考查二次根式的化简求值,掌握完全平方公式和无理数的估算是解决问题的关键.举一反三:【变式】(2015•苏州模拟)计算:. 【答案与解析】解:原式=﹣+2 =4﹣+2 =4+.。