电力系统自动化作业
- 格式:docx
- 大小:748.14 KB
- 文档页数:13
电力系统自动化第一次作业一、引言电力系统自动化是指利用先进的信息技术手段,对电力系统进行监控、控制和优化,以提高电力系统的可靠性、经济性和安全性。
本文旨在完成电力系统自动化第一次作业,主要包括以下几个方面的内容:电力系统概述、自动化系统的组成、自动化系统的功能以及自动化系统的应用。
二、电力系统概述电力系统是指由发电厂、输电网和配电网组成的一套系统,用于将电能从发电厂输送到用户终端。
电力系统主要包括三个层次:发电层、输电层和配电层。
发电层负责将能源转化为电能,输电层负责将发电厂产生的电能输送到不同地区,配电层负责将输送到用户终端的电能进行分配。
三、自动化系统的组成电力系统自动化主要由以下几个组成部分构成:1. 监控系统:用于实时监测电力系统的运行状态,包括发电机组、变电站、输电线路等。
监控系统通过传感器、数据采集设备等获取实时数据,并将数据传输给上层的控制系统。
2. 控制系统:根据监控系统获取的数据,对电力系统进行控制。
控制系统包括自动控制设备、执行机构等,能够实现对发电机组、变电站、输电线路等设备的自动控制。
3. 通信系统:用于实现监控系统与控制系统之间的数据传输。
通信系统可以采用有线或无线通信方式,确保监控系统和控制系统之间的实时数据传输和命令交互。
4. 数据存储与处理系统:用于存储和处理电力系统的历史数据和实时数据。
数据存储与处理系统可以采用数据库、云计算等技术,实现对电力系统数据的管理和分析。
四、自动化系统的功能电力系统自动化主要具有以下几个功能:1. 监测功能:实时监测电力系统的运行状态,包括电压、电流、频率等参数的测量和监测。
2. 控制功能:根据监测数据,对电力系统进行自动控制,包括发电机组的启停、负荷的调节、线路的切换等。
3. 保护功能:监测电力系统的异常情况,如短路、过载等,及时采取保护措施,确保电力系统的安全运行。
4. 优化功能:通过对电力系统的数据进行分析和处理,实现电力系统的优化调度,提高电力系统的经济性和可靠性。
电力系统自动化第一次作业1. 作业目的本次作业旨在加深对电力系统自动化的理解,掌握电力系统自动化的基本概念、原理和应用。
2. 作业要求请回答以下问题,并给出详细的解释和相关实例。
2.1 什么是电力系统自动化?电力系统自动化是利用计算机、通信和控制技术对电力系统进行监测、控制和保护的一种技术手段。
它通过实时数据采集、远程通信、智能控制等方式,提高电力系统的运行效率、可靠性和安全性。
2.2 电力系统自动化的主要功能有哪些?电力系统自动化的主要功能包括:监测与测量、通信与数据传输、控制与调度、保护与安全、故障诊断与恢复等。
其中,监测与测量功能用于实时获取电力系统各个节点的状态参数,通信与数据传输功能用于实现各个节点之间的信息交互,控制与调度功能用于实现对电力系统的远程控制和运行调度,保护与安全功能用于实时监测电力系统的故障和异常情况,并采取相应的保护措施,故障诊断与恢复功能用于快速诊断电力系统的故障原因,并进行故障恢复。
2.3 电力系统自动化的应用领域有哪些?电力系统自动化广泛应用于电力生产、输电、配电等领域。
在电力生产方面,电力系统自动化可以实现对发电机组的自动控制和调度,提高发电效率和负荷响应能力。
在输电方面,电力系统自动化可以实现对输电线路的实时监测和故障定位,提高输电可靠性和安全性。
在配电方面,电力系统自动化可以实现对配电网的自动化管理和故障诊断,提高供电可靠性和供电质量。
2.4 请举例说明电力系统自动化在实际应用中的效果。
举例一:电力系统自动化在电力生产中的应用。
通过电力系统自动化技术,发电厂可以实时监测各个发电机组的运行状态和负荷情况,根据电力需求进行自动调度,提高发电效率和负荷响应能力。
同时,电力系统自动化还可以实现对发电机组的自动故障诊断和恢复,提高发电设备的可靠性和安全性。
举例二:电力系统自动化在输电中的应用。
通过电力系统自动化技术,电力公司可以实时监测输电线路的电流、电压和温度等参数,及时发现线路故障和异常情况,并进行远程故障定位和恢复。
电力系统自动化作业第一篇:电力系统自动化作业电力系统自动化作业1、电力自动化SCADA 的功能是什么?2、什么是电力系统RTU 的四遥功能?如何实现?3、同步发电机以自动准同期方式并列时,说明产生冲击电流的原因。
又为何要检查并列合闸时的滑差?4、用什么方法来测量ZZQ-5 型装置中的导前时间?并分析准确度。
5、ZZQ-5型装置中,若频差要求控制在0.2Hz,试说明整定的方法、步骤。
6、ZZQ-5型装置中,若接入ug 时极性反接或者将ug 和us 两者接错,试分析装置的行为?此时会出现什么现象和结果?7、同步发电机励磁控制系统的主要任务有哪些?8、对同步发电机励磁控制系统的基本要求有哪些?9、简述交、直流励磁机励磁系统的基本构成、特点及使用范围。
10、何谓同步发电机励磁控制系统静态工作特性?何谓发电机端电压调差率?11、何谓滑差、滑差周期?与ug 和us 的相角差δ有什么关系?12、某电力系统总有功负荷为6000 MW(包括电网的有功损耗),系统的频率为50 Hz,若KL ∗ =1.8,求负荷频率调节效应系数KL的值。
13、某电力系统中,有40%的机组容量已被充分利用,其余40%为火电机组,有10%的备用容量,单位调节功率为20;20%为水电机组,有15%的备用容量,单位调节功率为30;系统的有功负荷的频率调节效应系数为1.5。
试求:(1)系统的单位调节功率;(2)当负荷功率增加5%时系统的稳态频率;(3)当系统频率降低到48 Hz 时,系统承担的负荷增量是多少?14、某电力系统有两台额定功率为200 MW的发电机,每台发电机的调速器的调差系数为0.04,额定频率为50 Hz,系统总负荷为320 MW,负荷的频率调节效应系数KL=20 MW/Hz,在额定频率运行时,若系统增加负荷60 MW,试计算下列两种情况下系统频率的变化值。
(1)两台机组原来平均承担负荷;(2)原来一台机组满载,另一台带120 MW 的负荷。
电力系统自动化第一次作业一、引言电力系统自动化是指利用先进的计算机技术和自动控制理论,对电力系统的运行、保护、控制和管理进行自动化处理和控制的技术体系。
本文将对电力系统自动化的第一次作业进行详细介绍和分析。
二、作业内容本次作业主要涉及以下几个方面的内容:1. 电力系统的基本概念和组成2. 电力系统的运行状态分析3. 电力系统的保护与控制4. 电力系统的自动化技术应用三、电力系统的基本概念和组成电力系统是由发电厂、变电站、输电线路和配电网组成的能量传输和分配系统。
发电厂通过发电机将机械能转化为电能,输送到变电站,然后经过变电站的变压器进行电压的升降,最终通过输电线路将电能传输到用户的配电网中。
四、电力系统的运行状态分析电力系统的运行状态分析是指对电力系统的电压、电流、功率等参数进行监测和分析,以保证电力系统的安全稳定运行。
通过对电力系统的运行状态进行分析,可以及时发现异常情况并采取相应的措施进行调整和修复。
五、电力系统的保护与控制电力系统的保护与控制是指通过各种保护装置和控制设备,对电力系统的设备和线路进行监测和控制,以确保电力系统的安全运行。
常见的保护装置包括过流保护、差动保护、接地保护等,控制设备包括开关、断路器等。
六、电力系统的自动化技术应用电力系统的自动化技术应用是指利用计算机技术和自动控制理论,对电力系统的运行、保护和控制进行自动化处理和控制。
通过自动化技术应用,可以提高电力系统的运行效率和可靠性,减少人工干预,提高系统的响应速度。
七、结论本次作业对电力系统自动化进行了详细的介绍和分析,包括电力系统的基本概念和组成、运行状态分析、保护与控制以及自动化技术应用等方面的内容。
电力系统自动化是提高电力系统运行效率和可靠性的重要手段,对于现代电力系统的发展具有重要意义。
电力系统自动化第一次作业一、引言电力系统自动化是指利用现代计算机、通信和控制技术对电力系统进行监测、控制和管理的一种综合应用技术。
本次作业旨在通过分析和解答一系列与电力系统自动化相关的问题,加深对电力系统自动化的理解和应用。
二、电力系统自动化概述1. 电力系统自动化的定义和意义电力系统自动化是指利用计算机、通信和控制技术对电力系统进行监测、控制和管理的一种综合应用技术。
它可以提高电力系统的可靠性、安全性和经济性,实现电力系统的自动化运行和管理。
2. 电力系统自动化的组成电力系统自动化由监测与测量系统、通信系统、控制与保护系统以及管理与决策支持系统组成。
监测与测量系统用于采集电力系统的运行数据;通信系统用于实时传输数据和命令;控制与保护系统用于对电力系统进行控制和保护;管理与决策支持系统用于对电力系统进行管理和决策支持。
三、问题分析与解答1. 请简要介绍电力系统自动化的发展历程。
电力系统自动化的发展经历了以下几个阶段:(1)早期阶段:主要采用机械与电气传动技术,实现对电力系统的基本监测和控制。
(2)计算机控制阶段:引入计算机技术,实现对电力系统的数字化监测和控制。
(3)通信技术应用阶段:引入通信技术,实现电力系统各个子系统之间的信息交互和协调控制。
(4)综合自动化阶段:引入现代控制理论、人工智能等技术,实现电力系统的综合自动化管理和优化控制。
2. 请列举电力系统自动化中常用的监测与测量系统,并简要介绍其功能。
常用的监测与测量系统包括:(1)SCADA系统:用于实时监测和控制电力系统的各个设备和参数,提供对电力系统运行状态的全面了解。
(2)PMU系统:用于测量和记录电力系统各个节点的相位和频率等参数,提供高精度的电力系统状态数据。
(3)GIS系统:用于对电力系统的地理信息进行管理和分析,提供对电力系统地理特征的全面了解。
(4)DMS系统:用于对电力系统进行动态监测和分析,提供对电力系统的故障诊断和故障恢复支持。
电力系统自动化作业指导书第一章:引言
在电力系统运行和维护过程中,自动化技术的应用越来越重要。
本指导书旨在提供一份详细的作业指导,以帮助操作人员正确地使用和维护电力系统自动化设备。
本章将介绍本指导书的目的和使用范围。
第二章:电力系统自动化概述
2.1 电力系统自动化的定义
2.2 电力系统自动化的优势
2.3 电力系统自动化设备概览
第三章:电力系统自动化作业要求
3.1 操作人员的资质要求
3.2 作业环境要求
3.3 作业前的准备工作
第四章:电力系统自动化设备的操作
4.1 开机和关机操作步骤
4.2 监控和控制操作流程
4.3 特殊操作示例:故障处理
第五章:电力系统自动化设备的维护和保养
5.1 日常巡检和保养要点
5.2 设备故障排除和维修方法
5.3 预防性维护措施
第六章:安全保障措施
6.1 电力系统自动化设备的安全操作规范
6.2 火灾和安全事故应急处理
第七章:常见问题解答
7.1 经常遇到的故障及处理方法
7.2 操作人员常见疑问解答
第八章:参考资料
8.1 相关标准和规范
8.2 相关技术文献和专业书籍
结语:
本作业指导书是操作人员进行电力系统自动化设备操作和维护的重要参考。
在使用本指导书时,请务必按照操作步骤进行,确保自动化设备的正常运行和安全性。
如果遇到问题,请参考常见问题解答部分或向相关专业人员咨询。
祝您工作顺利!
注:本指导书仅适用于电力系统自动化设备的操作和维护,对于其他设备的操作和维护请参考相应的作业指导书。
电力系统自动化第一次作业一、任务背景电力系统自动化是指利用计算机、通信、控制等技术手段对电力系统进行监控、运行、控制和保护的一种技术体系。
为了提高电力系统的可靠性、经济性和安全性,电力系统自动化成为电力行业的重要发展方向。
本次作业旨在加深对电力系统自动化的理解,提高对电力系统自动化技术的应用能力。
二、任务要求根据所学知识,回答以下问题:1. 请简述电力系统自动化的定义和作用。
2. 请列举电力系统自动化的主要技术应用领域,并简要介绍每个领域的应用。
3. 请描述电力系统自动化的关键技术,如远动、保护、调度等,并解释其原理和作用。
4. 请分析电力系统自动化在提高电力系统可靠性、经济性和安全性方面的优势。
5. 请结合实际案例,说明电力系统自动化在电力行业中的应用效果和价值。
三、任务回答1. 电力系统自动化的定义和作用电力系统自动化是利用计算机、通信、控制等技术手段对电力系统进行监控、运行、控制和保护的一种技术体系。
其作用主要体现在以下几个方面:- 提高电力系统的可靠性:自动化系统可以实时监测电力系统的运行状态,及时发现故障并采取措施进行处理,从而提高电力系统的可靠性。
- 提高电力系统的经济性:自动化系统可以对电力系统进行优化调度,合理分配电力资源,降低电力系统的运行成本,提高电力系统的经济性。
- 提高电力系统的安全性:自动化系统可以实时监测电力系统的运行状态,及时发现异常情况并采取措施进行处理,确保电力系统的安全运行。
2. 电力系统自动化的主要技术应用领域及应用介绍- 远动技术:远动技术是指利用通信技术实现对电力设备的远程监控和控制。
通过远动技术,可以实现对电力系统各个设备的状态监测、操作控制、故障诊断等功能,提高电力系统的运行效率和可靠性。
- 保护技术:保护技术是指利用自动化技术对电力系统进行故障检测和故障隔离,保护电力设备和电力系统的安全运行。
通过保护技术,可以快速准确地判断电力系统中的故障,并采取措施隔离故障,以保护电力设备和电力系统的安全。
电力系统自动化第一次作业一、作业背景和目的电力系统自动化是指利用先进的信息技术和自动控制技术对电力系统进行监控、控制和管理的一种系统。
本次作业旨在加深对电力系统自动化的理解,提高学生对电力系统自动化相关知识的掌握程度。
二、作业要求根据所学知识,回答以下问题:1. 请简要介绍电力系统自动化的定义和作用。
2. 电力系统自动化中常用的通信方式有哪些?请分别介绍其特点和应用场景。
3. 请简述电力系统自动化中常见的保护装置及其作用。
4. 请说明电力系统自动化中常见的监控与控制系统,并简要介绍其功能和应用。
5. 请列举电力系统自动化中常见的数据采集设备,并说明其作用和应用领域。
三、作业回答1. 电力系统自动化的定义和作用电力系统自动化是指利用先进的信息技术和自动控制技术对电力系统进行监控、控制和管理的一种系统。
它通过实时监测电力系统的运行状态,采集各种数据,并利用自动控制技术对电力系统进行调度和控制,以提高电力系统的运行效率、可靠性和安全性。
2. 电力系统自动化中常用的通信方式(1)光纤通信:光纤通信具有传输速度快、抗干扰能力强、传输距离远等优点。
在电力系统自动化中,光纤通信常用于远程通信和数据传输。
(2)微波通信:微波通信具有传输速度快、传输距离远等特点,适用于电力系统远程通信和数据传输。
(3)电力载波通信:电力载波通信利用电力线路作为传输介质,具有传输成本低、传输距离远等优点,适用于电力系统内部通信和数据传输。
3. 电力系统自动化中常见的保护装置及其作用(1)差动保护装置:用于检测电力系统中的电流差异,当电流差异超过设定值时,触发保护装置动作,切断故障电路,保护电力设备的安全运行。
(2)过电流保护装置:用于检测电力系统中的过电流情况,当电流超过设定值时,触发保护装置动作,切断故障电路,保护电力设备的安全运行。
(3)接地保护装置:用于检测电力系统中的接地故障,当接地故障发生时,触发保护装置动作,切断故障电路,保护电力设备的安全运行。
电力系统自动化第一次作业引言概述:
电力系统自动化是一种将现代信息技术与电力系统相结合的技术,通过自动化设备和系统的应用,实现对电力系统的监控、控制和保护。
本文将就电力系统自动化的第一次作业进行详细介绍和分析。
一、作业目的
1.1 熟悉电力系统自动化的基本概念和原理
1.2 掌握电力系统自动化的基本设备和系统
1.3 了解电力系统自动化在电力系统运行中的作用和意义
二、作业内容
2.1 学习电力系统自动化的相关知识和技术
2.2 实践操作电力系统自动化设备和系统
2.3 分析电力系统自动化在实际运行中的应用案例
三、作业步骤
3.1 准备相关资料和学习材料
3.2 进行理论学习和实际操作
3.3 总结和分析作业过程中遇到的问题和解决方法
四、作业要求
4.1 完成作业内容并按时提交
4.2 确保作业过程中的安全和准确性
4.3 主动学习和积极探索电力系统自动化的相关知识和技术
五、作业总结
5.1 总结作业过程中的收获和体味
5.2 提出对电力系统自动化的未来发展和应用的建议
5.3 深化对电力系统自动化的理解和认识,为未来的学习和实践奠定基础
通过本次电力系统自动化的第一次作业,不仅可以加深对电力系统自动化的理解和认识,还可以提升实际操作能力和解决问题的能力,为未来的学习和工作打下坚实基础。
希翼每位同学都能认真对待这次作业,取得优异的成绩。
电力系统自动化第一次作业引言概述:电力系统自动化是指将信息技术与电力系统相结合,通过自动控制和智能化管理,提高电力系统运行的效率、可靠性和安全性。
在电力系统自动化的学习过程中,第一次作业是一个重要的环节,它涉及到电力系统的基础知识和自动化技术的应用。
本文将从四个方面详细阐述电力系统自动化第一次作业的内容。
一、电力系统基础知识1.1 电力系统概述:介绍电力系统的组成和功能,包括发电、输电、配电和用电等环节。
1.2 电力系统的拓扑结构:讲解电力系统的拓扑结构,包括发电厂、变电站、输电路线和配电路线等组成部份。
1.3 电力系统的运行模式:介绍电力系统的运行模式,包括平衡运行、稳定运行和暂态运行等。
二、电力系统自动化技术2.1 自动化控制系统:详细介绍电力系统自动化控制系统的组成和功能,包括传感器、执行器、控制器和通信设备等。
2.2 自动化调度系统:讲解电力系统自动化调度系统的作用和功能,包括负荷调度、发机电组调度和输电路线调度等。
2.3 自动化保护系统:介绍电力系统自动化保护系统的原理和应用,包括过电流保护、过电压保护和短路保护等。
三、电力系统自动化的应用3.1 自动化监控:详细介绍电力系统自动化监控的内容,包括实时监测、数据采集和故障诊断等。
3.2 自动化调度:讲解电力系统自动化调度的应用,包括负荷预测、发机电组优化和输电路线优化等。
3.3 自动化保护:介绍电力系统自动化保护的实现方式,包括故障检测、故障隔离和故障恢复等。
四、电力系统自动化的挑战与发展4.1 挑战:分析电力系统自动化面临的挑战,包括数据安全、系统可靠性和技术更新等方面。
4.2 发展:展望电力系统自动化的发展趋势,包括智能化、可持续发展和协同控制等方面的发展。
通过以上四个部份的详细阐述,我们可以更全面地了解电力系统自动化第一次作业的内容。
电力系统自动化的学习和应用是电力行业的重要组成部份,它不仅能提高电力系统的运行效率和可靠性,还能为电力行业的可持续发展做出贡献。
1.简述电力系统自动化的作用、发展阶段及特征电力系统及其自动化对电网的作用:电网:在电力系统中,联系发电和用电的设施和设备的统称。
属于输送和分配电能的中间环节。
通常,电力系统中电力网是由不同电压等级的电力线路和变电所组成。
电力网简称电网。
电力网按其供电范围的大小和电压等级的高低可分为地区电力网、区域电力网以及超高压远距离输电网络等类型。
按电力网的功能又常常将其分为传输网和配电网。
电力系统自动化对电网的作用:1、对电网安全运行状态实现监控电网正常运行时,通过调度人员监视和控制电网的周波、电压、潮流、负荷与出力;主设备的位置状况及水、热能等方面的工况指标,使之符合规定,保证电能质量和用户计划用电、用水和用汽的要求。
2、对电网运行实现经济调度在对电网实现安全监控的基础上,通过调度自动化的手段实现电网的经济调度,以达到降低损耗、节省能源,多发电、多供电的目的。
3、对电网运行实现安全分析和事故处理导致电网发生故障或异常运行的因素非常复杂,且过程十分迅速,如不能及时预测、判断或处理不当,不但可能危及人身和设备安全,甚至会使电网瓦解崩溃,造成大面积停电,给国民经济带来严重损失。
为此,必须增强调度自动化手段,实现电网运行的安全分析,提供事故处理对策和相应的监控手段,防止事故发生以便及时处理事故,避免或减少事故造成的重大损失。
20世纪50年代以前,电力系统容量在几百万千瓦左右,单机容量不超过10万千瓦,电力系统自动化多限于单项自动装置,且以安全保护和过程自动调节为主。
例如,电网和发电机的各种继电保护,汽轮机的危急保护器,锅炉的安全阀,汽轮机转速和发电机电压的自动调节,并网的自动同期装置等。
50至60年代,电力系统规模发展到上千万千瓦,单机容量超过20万千瓦,并形成区域联网,在系统稳定、经济调度和综合自动化方面提出了新的要求。
厂内自动化方面开始采用机、炉、电单元式集中控制。
各种新型自动装置如晶体管保护装置、可控硅励磁调节器、电气液压式调速器等得到推广使用。
70至80年代,以计算机为主体配有功能齐全的整套软硬件的电网实时监控系统(SCADA)开始出现。
20万千瓦以上大型火力发电机组开始采用实时安全监控和闭环自动起停全过程控制。
水力发电站的水库调度、大坝监测和电厂综合自动化的计算机监控开始得到推广。
各种自动调节装置和继电保护装置中广泛采用微型计算机。
2.简述电压无功综合控制系统的结构和功能。
(10)电压无功综合控制以维持电压波动范围和优化无功补偿为控制目标,实现对有载调压变压器分接头和无功补偿装置(并联电容器组CB)的综合调节,是综合自动化系统的控制功能之一。
电压无功综合控制装置(简称VQC装置)的主要控制对象是变压器有载分接开关和并联补偿电容器。
VQC的功能主要是按照预先设制定的控制策略,合理地控制分接开关的档位(改变变压器变比)和控制电容器的投切状态(调整系统无功潮流分布),使监测点的电压保持在合格的范围,并且提供适宜的无功补偿量,使功率因数保持在目标范围内。
作为枢纽变电站,通常需要按照逆调压的方式控制母线电压,即重负荷时适当升高电压,轻负荷时适当降低电压,以保持负荷侧电压的基本稳定。
但是,受到发电机端电压的限制,输电距离较近或者负荷变动不大时,也可以采用顺调压和常调压方式,VQC应能够满足上述不同的要求。
电压无功综合控制装置的功能结构示意图1.采样环节VQC的输入量有两大类:模拟量主要有被监测点的电压、电流、相位等:开关量主要有主变有载调压分接档位、电容器开关的分、合闸位置信号、主变高中低压侧开关、母线联络开关以及外部闭锁信号等。
采样环节的功能是将上述模拟量和开关量转换为VQC所需的数据。
模拟量的采样一般采取继电保护装置的采样技术,即将电压、电流通过交流变换器转换为交流小信号后用电压,频率变换器(VFC)与记数器来实现。
独立组屏的VQC需要自带采样设备和敷设相应的电缆,综合自动化系统的VQC和利用RTU实现的VQC则可以共享测控单元或RTU 提供的信息。
2逻辑环节逻辑环节的功能是根据输入环节提供的数据来判断系统的运行状态(主变是否并列运行、是否转供负荷、电压无功是否越限等)和设定的条件(电压上限、电压下限、无功上限、无功下限、有载调压分接开关动作次数限制等),按照预先给定的控制策略进行逻辑判别,决定下一步的动作(升降分接开关或投切电容器组)。
逻辑环节的硬件载体通常是单片机、微机或工控机,也有用PLC的。
3.执行环节执行环节根据逻辑环节发出的指令,驱动被控设备执行相应的命令。
集中组屏的VQC可以直接经继电器来控制电容器组断路器的分合闸线圈或变压器有载调压分接开关的驱动电机。
嵌入综合自动化系统的VQC通过总线系统向间隔层的测控单元发出指令来实现。
利用RTU实现的VQC则通过遥控中间继电器来实现。
3.简述分布式电源并网对电力系统自动化的需求(20分)答:分布式电源指小型(容量一般小于50 MW)、向当地负荷供电、可直接连到配电网上的电源装置。
它包括分布式发电装置与分布式储能装置。
分布式电源对电网的影响:1)电压调整问题。
原有的调压方案不能满足接入分布式电源后的配电网电压调节要求。
因此必须评估分布式电源对配电网电压的影响,研究新的调压策略。
2)继电保护问题在线路发生故障后,继电保护以及重合闸的动作行为都会受到光伏发电系统的影响。
对基于断路器的三段式电流保护的影响最为显著。
①导致本线路保护的灵敏度降低及拒动;②导致本线路保护误动;③导致相邻线路的瞬时速断保护误动并失去选择性;④导致重合闸不成功。
3)非正常孤岛问题孤岛引起的安全问题:①线路维护人员人身安全受到威胁;②与孤岛地区相连的用户供电质量受影响(频率和电压偏出正常运行范围);③孤岛内部的保护装置无法协调;④电网供电恢复后会造成相位不同步;⑤孤岛电网与主网非同步重合闸造成操作过电压;⑥单相分布式发电系统会造成系统三相负载欠相供电。
4)电能质量问题分布式发电通过电力电子逆变器并网,易产生谐波、三相电流不平衡;输出功率随机性易造成电网电压波动、闪变;分布式电源直接在用户侧接入电网,电能质量问题直接影响用户的电器设备安全。
解决分布式电源并网关键技术:①对电网的支撑能力:故障时保持并网。
在电压跌落到0时,至少要坚持150ms不脱网。
②对电网的支撑能力:故障时通过发出无功支撑电网电压。
当电压跌落超过10%时,每1%的电压跌落,至少要提供2%的无功电流。
响应速度应在20ms之内,必要时,必须能够提供100%的无功电流。
③对电网的支撑能力:有功功率控制。
电站必须能够以10%的步长限制其有功出力(目前常用的设置点有100%, 60%, 30%, 和0%)频率高于50.2Hz时,功率必须以40%额定功率/Hz的速率降低仅当频率恢复到50.05Hz以下时,才允许提高输出功率;频率高于51.5Hz或低于47.5Hz时必须脱网④对电网的支撑能力:通过无功功率控制为电网提供静态支撑。
电站的功率因数必须能够在0.95(感性)至0.95(容性)之间任意可调。
发电计划往往根据需要在几分钟内达到协议规定的无功功率的要求。
如果电力公司提供了在线参数,那么要求在10秒之内完成自动整定。
4.简述配网自动化的主要功能、设备及其实现方式。
(20)配网自动化包括:SCADA功能、变电站自动化SA、馈线自动化。
SCADA系统会包括以下的子系统:人机界面(human machine interface,简称HMI)是一个可以显示程序状态的设备,操作员可以依此设备监控及控制程序。
(电脑)监控系统可以采集数据,也可以提交命令监控程序的进行。
远程终端控制系统(Remote Terminal Unit,简称RTU)连接许多程序中用到的传感器,数据采集(Data acquisition)后将数字的数据传送给监控系统。
可编程逻辑控制器(programmable logic controller,简称PLC)因为其价格便宜,用途广泛,也常用作现场设备,取代特殊功能的远程终端控制系统。
通信网络:则是提供监控系统及RTU(或PLC)之间传输数据的管道。
SA:以数字信号处理为基础,将保护自动重合闸、故障录波等各种自动化装置以及测量、控制结合在一起的系统。
变电站自动化(SA)的主要功能;测量表计功能(运行工况监视,遥测)自动控制功能(遥控及综合调节)继电保护功能(输配电线路及主设备保护)与继电保护有关的功能:远动功能(与控制中心或调度交换信息)接口功能(与其他控制及信息系统联接)系统功能:第一阶段:在RTU的基础上+当地监控系统,未涉及继电保护,控制仍保留第二阶段:变电站控制室设置计算机系统,另设置数据采集和控制部件。
集中采集数据、几种计算与处理、再完成微机保护、监控和自动控制等。
第三阶段:按每个电网元件为对象,采用分散式系统,安装现场输入输出单元部件,完成保护和监控功能,构成智能化开关柜,与变电站控制室内计算机系统通信。
采用串口或者网络技术。
馈线自动化FA(Feeder Automation)的故障隔离和供电恢复功能是配网自动化的重点功能之一,其主要作用是通过SCADA功能为运行人员定位故障点、并为隔离故障和恢复供电提供有用的实时信息、为隔离故障和恢复供电提供遥控手段。
馈线自动化的实现方式:1:当地控制方式:a)电压型实现方式开关:重合器、重合分段器当地控制方式: b)重合器配合开关:重合器当地控制方式: c)重合器和分段器配合开关:重合器、分段器2:远方控制方式:以环网柜为例开关:负荷设备、FTU、重合器或者断路器开关:断路器、通信5.详细介绍一种电力系统安全评估算法及其应用。
(20)电力系统可靠性评估方法可分为确定性方法和概率性方法两类。
确定性方法主要是对几种确定的运行方式和故障状态进行分析,校验系统的可靠性水平。
电力系统是一个具有随机特性的系统,负荷水平的波动、元件故障等都具有随机性,确定性方法难以考虑各种状态的概率分布特性,评估结果存在较大偏差,因此概率性方法在电力系统的可靠性评估领域得到更加广泛应用,并在理论和实践方面取得很大的进展。
概率性可靠性评估方法主要有解析法和模拟法两大类,后者一般又被称作蒙特卡罗法(MCS--Monte Carlo Simulation)。
蒙特卡罗方法又被称作统计试验方法(Statistical Test Method)或随机抽样技术(Random Sampling Technique),其提出可以追溯到19世纪末期,20世纪40年代中期之后随着科学技术的发展和电子计算机的发明,该方法得到了快速的发展和应用。
1946年美国学者Von Neumann 和S.Ulam首先用这种方法在数字电子计算机上模拟中子链式反应,并把第一个这样的程序命名为“Monte Carlo"程序。