4.4 函数y=Asin(ωx+φ)的图象与性质
- 格式:ppt
- 大小:745.50 KB
- 文档页数:35
4.4函数y =A sin(ωx +φ)的图像及三角函数模型的简单应用1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0), x ∈[0,+∞)表示一个振动量时振幅 周期 频率 相位 初相2、用五点法画y =A sin(ωx +φ)一个周期内的简图用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示:3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的步骤如下:1.函数图像变换要明确,要弄清楚是平移哪个函数的图像,得到哪个函数的图像;x -φω -φω+π2ωπ-φω 3π2ω-φω 2π-φω ωx +φy =A sin(ωx +φ)2.要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数;3.由y =A sin ωx 的图像得到y =A sin(ωx +φ)的图像时,需平移的单位数应为⎪⎪⎪⎪φω,而不是|φ|.[试一试]1.y =2sin ⎝⎛⎭⎫2x -π4的最小正周期、振幅、频率和初相分别为__________. 2.函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是________.3.设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值为________.4.设函数f (x )=3sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期是π,则下列说法正确的是________.(填序号) ①f (x )的图象过点(0,32);②f (x )在[π12,2π3]上是减函数;③f (x )的一个对称中心是(5π12,0);④将f (x )的图象向右平移|φ|个单位长度得到函数y =3sin ωx 的图象. 考点一 函数y =A sin(ωx +φ)的图象及变换例1 设函数f (x )=sin ωx +3cos ωx (ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换而得到的. 题型二 由图象求函数y =A sin(ωx +φ)的解析式例2 (1)已知函数f (x )=2sin(ωx +φ)(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则ω=________,φ=________.(2)已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示,则该函数的解析式为____________.类提通关:如图为y =A sin(ωx +φ)的图象的一段. (1)求其解析式;(2)若将y =A sin(ωx +φ)的图象向左平移π6个单位长度后得y =f (x ),求f (x )的对称轴方程.考点三 函数y =A sin(ωx +φ)的性质例3已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π. (1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.考点四、函数y =A sin(ωx +φ)的图像与性质的综合应用例4、如图是函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,0<φ<π2的部分图像,M ,N 是它与x 轴的两个交点,D ,C 分别为它的最高点和最低点,点F (0,1)是线段MD 的中点,MD ·MN =π218.(1)求函数f (x )的解析式; (2)求函数f (x )的单调递增区间.课堂练习1.已知ω>0,函数y =3sin ⎝⎛⎭⎫ωπx +π4的周期比振幅小1,则ω=________. 2.函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图像如图所示,则f (0)的值是________.3.函数f (x )=cosπx2cos π(x -1)2的最小正周期为________. 4.函数y =A sin(ωx +φ)(A 、ω、φ为常数,A >0,ω>0)在闭区间[-π,0]上的图像如图所示,则ω=________.4.4函数y =A sin(ωx +φ)的图像及三角函数模型的简单应用作业1.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的取值为________. 2.函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是________.3.已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f (x )的单调递增区间是________.4.已知函数f (x )=2sin ωx 在区间[-π3,π4]上的最小值为-2,则ω的取值范围是_____________.5.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为________.6.已知函数f (x )=cos x ·cos(x -π3).(1)求f (2π3)的值;(2)求使f (x )<14成立的x 的取值集合.7.已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.8.某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系: f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温? 9.已知函数f (x )=3sin ωx ·cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间[0,π2]上有且只有一个实数解,求实数k 的取值范围.第四节函数y=A sin(ωx+φ)的图像及三角函数模型的简单应用1.y=A sin(ωx+φ)的有关念y=A sin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示一个振动量时振幅周期频率相位初相A T=2πωf=1T=ω2πωx+φφ2.用五点法画y=A sin(ωx+φ)一个周期内的简图用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示:x -φω -φω+π2ωπ-φω 3π2ω-φω 2π-φω ωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ)A-A3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的步骤如下:1.函数图像变换要明确,要弄清楚是平移哪个函数的图像,得到哪个函数的图像; 2.要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数;3.由y =A sin ωx 的图像得到y =A sin(ωx +φ)的图像时,需平移的单位数应为⎪⎪⎪⎪φω,而不是|φ|.[试一试]1.1.y =2sin ⎝⎛⎭⎫2x -π4的最小正周期、振幅、频率和初相分别为__________. 答案:π,2,1π,-π42.把函数y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移π3个单位,那么所得函数的解析式为________.答案 y =-cos 2x解析 将y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y =sin(2x +π6);再将图象向右平移π3个单位,得到函数y =sin[2(x -π3)+π6]=sin(2x -π2)=-cos2x .3.设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值为________. 答案 6解析 由题意可知,nT =π3 (n ∈N *),∴n ·2πω=π3(n ∈N *),∴ω=6n (n ∈N *),∴当n =1时,ω取得最小值6.4.设函数f (x )=3sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期是π,则下列说法正确的是________.(填序号) ①f (x )的图象过点(0,32);②f (x )在[π12,2π3]上是减函数;③f (x )的一个对称中心是(5π12,0);④将f (x )的图象向右平移|φ|个单位长度得到函数y =3sin ωx 的图象. 答案 ①③解析 ∵周期为π,∴2πω=π⇒ω=2,∴f (x )=3sin(2x +φ),f (23π)=3sin(4π3+φ),则sin(4π3+φ)=1或-1.又φ∈(-π2,π2),4π3+φ∈(5π6,116π),∴4π3+φ=3π2⇒φ=π6, ∴f (x )=3sin(2x +π6).①:令x =0⇒f (x )=32,正确.②:令2k π+π2<2x +π6<2k π+3π2,k ∈Z⇒k π+π6<x <k π+2π3,k ∈Z .令k =0⇒π6<x <2π3,即f (x )在(π6,23π)上单调递减,而在(π12,π6)上单调递增,错误.③:令x =5π12⇒f (x )=3sin π=0,正确.④:应平移π12个单位长度,错误.考点一 函数y =A sin(ωx +φ)的图象及变换例1 设函数f (x )=sin ωx +3cos ωx (ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换而得到的. 解 (1)f (x )=sin ωx +3cos ωx=2(12sin ωx +32cos ωx )=2sin(ωx +π3),又∵T =π,∴2πω=π,即ω=2.∴f (x )=2sin(2x +π3).∴函数f (x )=sin ωx +3cos ωx 的振幅为2,初相为π3.(2)令X =2x +π3,则y =2sin ⎝⎛⎭⎫2x +π3=2sin X . 列表,并描点画出图象:x -π6 π12 π3 7π12 5π6 X 0 π2 π 3π2 2π y =sin X 0 1 0 -1 0 y =2sin ⎝⎛⎭⎫2x +π3 02-2(3)方法一 把y =sin x 的图象上所有的点向左平移π3个单位长度,得到y =sin ⎝⎛⎭⎫x +π3的图象,再把y =sin ⎝⎛⎭⎫x +π3的图象上的点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫2x +π3的图象,最后把y =sin ⎝⎛⎭⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 方法二 将y =sin x 的图象上每一点的横坐标x 缩短为原来的12倍(纵坐标不变),得到y =sin 2x 的图象;再将y =sin 2x 的图象向左平移π6个单位长度,得到y =sin 2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象;再将y =sin ⎝⎛⎭⎫2x +π3的图象上每一点的纵坐标伸长为原来的2倍(横坐标不变),得到y =2sin ⎝⎛⎭⎫2x +π3的图象.思维升华 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”. 考点二 由图象求函数y =A sin(ωx +φ)的解析式例2 (1)已知函数f (x )=2sin(ωx +φ)(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则ω=________,φ=________.(2)已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示,则该函数的解析式为____________. 答案 (1)2 π3(2)f (x )=2sin ⎝⎛⎭⎫2x +π6 解析 (1)∵f (x )(ω>0,|φ|<π2)的最小正周期为π,∴T =2πω=π,ω=2.∵f (0)=2sin φ=3,即sin φ=32(|φ|<π2),∴φ=π3. (2)观察图象可知:A =2且点(0,1)在图象上, ∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6.又∵1112π是函数的一个零点,且是图象递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2.∴f (x )=2sin ⎝⎛⎭⎫2x +π6. 思维升华 根据y =A sin(ωx +φ)+k 的图象求其解析式的问题,主要从以下四个方面来考虑:①A 的确定:根据图象的最高点和最低点,即A =最大值-最小值2;②k 的确定:根据图象的最高点和最低点,即k =最大值+最小值2;③ω的确定:结合图象,先求出周期T ,然后由T =2πω(ω>0)来确定ω;④φ的确定:由函数y =A sin(ωx +φ)+k 最开始与x 轴的交点(最靠近原点)的横坐标为-φω(即令ωx +φ=0,x =-φω)确定φ.类提通关:如图为y =A sin(ωx +φ)的图象的一段. (1)求其解析式;(2)若将y =A sin(ωx +φ)的图象向左平移π6个单位长度后得y =f (x ),求f (x )的对称轴方程.解 (1)由图象知A =3,以M ⎝⎛⎭⎫π3,0为第一个零点,N ⎝⎛⎭⎫5π6,0为第二个零点. 列方程组⎩⎨⎧ω·π3+φ=0,ω·5π6+φ=π,解得⎩⎪⎨⎪⎧ω=2,φ=-2π3.∴所求解析式为y =3sin ⎝⎛⎭⎫2x -2π3. (2)f (x )=3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-2π3 =3sin ⎝⎛⎭⎫2x -π3, 令2x -π3=π2+k π(k ∈Z ),则x =512π+k π2 (k ∈Z ),∴f (x )的对称轴方程为x =512π+k π2(k ∈Z ).[类题通法]确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法(1)求A ,b ,确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2; (2)求ω,确定函数的周期T ,则可得ω=2πT ;(3)求φ,常用的方法有:①代入法:把图像上的一个已知点代入(此时A ,ω,b 已知)或代入图像与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下: “第一点”(即图像上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图像的“峰点”)时ωx +φ=π2;“第三点”(即图像下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图像的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π.考点三 函数y =A sin(ωx +φ)的性质例3 (2014·重庆改编)已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π. (1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.解 (1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因f (x )的图象关于直线x =π3对称,所以2·π3+φ=k π+π2,k ∈Z , 由-π2≤φ<π2得k =0所以φ=π2-2π3=-π6.综上,ω=2,φ=-π6.(2)由(1)知f (x )=3sin(2x -π6),当x ∈[0,π2]时,-π6≤2x -π6≤56π,∴当2x -π6=π2,即x =π3时,f (x )最大=3;当2x -π6=-π6,即x =0时,f (x )最小=-32.思维升华 函数y =A sin(ωx +φ)(A >0,ω>0)的性质(1)奇偶性:φ=k π(k ∈Z )时,函数y =A sin(ωx +φ)为奇函数; φ=k π+π2(k ∈Z )时,函数y =A sin(ωx +φ)为偶函数.(2)周期性:y =A sin(ωx +φ)存在周期性,其最小正周期为T =2πω.(3)单调性:根据y =sin t 和t =ωx +φ(ω>0)的单调性来研究,由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )得单调增区间;由π2+2k π≤ωx +φ≤3π2+2k π(k ∈Z )得单调减区间.(4)对称性:利用y =sin x 的对称中心为(k π,0)(k ∈Z )来解,令ωx +φ=k π(k ∈Z ),求得其对称中心.利用y =sin x 的对称轴为x =k π+π2(k ∈Z )来解,令ωx +φ=k π+π2(k ∈Z )得其对称轴.教师选例考点四、函数y =A sin(ωx +φ)的图像与性质的综合应用例4、如图是函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,0<φ<π2的部分图像,M ,N 是它与x 轴的两个交点,D ,C 分别为它的最高点和最低点,点F (0,1)是线段MD 的中点,MD ·MN =π218.(1)求函数f (x )的解析式; (2)求函数f (x )的单调递增区间.[解] (1)由已知F (0,1)是线段MD 的中点,可知A =2, ∵MD ·MN =T 4·T 2=π218(T 为f (x )的最小正周期),∴T =2π3,ω=3,∴f (x )=2sin(3x +φ),设D 点的坐标为(x D,2),则由已知得点M 的坐标为(-x D ,0), ∴x D -(-x D )=14T =14×2π3,则x D =π12,则点M 的坐标为⎝⎛⎭⎫-π12,0, ∴sin ⎝⎛⎭⎫π4-φ=0. ∵0<φ<π2,∴φ=π4,∴函数f (x )的解析式为f (x )=2sin ⎝⎛⎭⎫3x +π4. (2)由2k π-π2≤3x +π4≤2k π+π2(k ∈Z ),得2k π-3π4≤3x ≤2k π+π4(k ∈Z ),得2k π3-π4≤x ≤2k π3+π12(k ∈Z ), ∴函数f (x )的单调递增区间为⎣⎡⎦⎤2k π3-π4,2k π3+π12(k ∈Z ). [类题通法]函数y =A sin(ωx +φ)(A >0,ω>0)的性质(1)奇偶性:φ=k π时,函数y =A sin(ωx +φ)为奇函数;φ=k π+π2(k ∈Z )时,函数y =A sin(ωx +φ)为偶函数.(2)周期性:y =A sin(ωx +φ)存在周期性,其最小周期为T =2πω.(3)单调性:根据y =sin t 和t =ωx +φ的单调性来研究,由-π2+2k π≤ωx +φ≤π2+2k π,k ∈Z 得单调增区间;由π2+2k π≤ωx +φ≤3π2+2k π,k ∈Z 得单调减区间.(4)对称性:利用y =sin x 的对称中心为(k π,0)(k ∈Z )求解,令ωx +φ=k π(k ∈Z ),求得x .利用y =sin x 的对称轴为x =k π+π2(k ∈Z )求解,令ωx +φ=k π+π2(k ∈Z )得其对称轴.课堂练习1.已知ω>0,函数y =3sin ⎝⎛⎭⎫ωπx +π4的周期比振幅小1,则ω=________. 解析:依题意周期为2πωπ=3-1=2,所以ω=1. 答案:12.函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图像如图所示,则f (0)的值是________.解析:由图像可得A =2,由7π12-π3=T 4,得T =π=2πω,所以ω=2,将点⎝⎛⎭⎫7π12,-2代入f (x )=2sin(2x +φ),得-2=2sin ⎝⎛⎭⎫2×7π12+φ,所以sin ⎝⎛⎭⎫7π6+φ=-1,所以7π6+φ=3π2+2k π(k ∈Z ),解得φ=π3+2k π(k ∈Z ),即f (x )=2sin ⎝⎛⎭⎫2x +π3,所以f (0)=2sin π3=2×32=62.答案:623.函数f (x )=cosπx 2cos π(x -1)2的最小正周期为________. 解析:因为f (x )=cos πx 2cos π(x -1)2=cos πx 2cos π2-πx 2=sin πx 2cos πx 2=12sin πx ,所以最小正周期为2ππ=2.答案:24.函数y =A sin(ωx +φ)(A 、ω、φ为常数,A >0,ω>0)在闭区间[-π,0]上的图像如图所示,则ω=________.解析:由函数y =A sin(ωx +φ)的图像可知:T2=⎝⎛⎭⎫-π3-⎝⎛⎭⎫-23π=π3, 则T =23π.∵T =2πω=23π,∴ω=3.答案:34.4函数y =A sin(ωx +φ)的图像及三角函数模型的简单应用作业1.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的取值为________. 答案 k π+π4,k ∈Z解析 把函数y =sin(2x +φ)沿x 轴向左平移π8个单位后得到函数y =sin 2⎝⎛⎭⎫x +φ2+π8=sin ⎝⎛⎭⎫2x +φ+π4为偶函数,则φ+π4=k π+π2,k ∈Z ,∴φ=k π+π4,k ∈Z . 2.函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是________. 答案 π,1解析 f (x )=sin x cos x +32cos 2x =12sin 2x +32cos 2x =sin ⎝⎛⎭⎫2x +π3. 所以最小正周期为π,振幅为1.3.已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f (x )的单调递增区间是________.答案 [k π-π12,k π+5π12],k ∈Z解析 由函数的图象可得14T =23π-512π,∴T =π,则ω=2.又图象过点(512π,2),∴2sin(2×512π+φ)=2,∴φ=-π3+2k π,k ∈Z ,∵|φ|<π2.∴取k =0,即得f (x )=2sin(2x -π3),其单调递增区间为[k π-π12,k π+5π12],k ∈Z .4.已知函数f (x )=2sin ωx 在区间[-π3,π4]上的最小值为-2,则ω的取值范围是_____________.答案 (-∞,-2]∪[32,+∞)解析 当ω>0时,-π3ω≤ωx ≤π4ω,由题意知-π3ω≤-π2,即ω≥32;当ω<0时,π4ω≤ωx ≤-π3ω,由题意知π4ω≤-π2,∴ω≤-2.综上可知,ω的取值范围是(-∞,-2]∪[32,+∞).5.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为________.答案34解析 取K ,L 中点N ,则MN =12, 因此A =12. 由T =2得ω=π.∵函数为偶函数,0<φ<π,∴φ=π2, ∴f (x )=12cos πx , ∴f (16)=12cos π6=34. 6.已知函数f (x )=cos x ·cos(x -π3). (1)求f (2π3)的值; (2)求使f (x )<14成立的x 的取值集合. 解 (1)f (2π3)=cos 2π3·cos π3=-cos π3·cos π3=-(12)2=-14. (2)f (x )=cos x cos(x -π3)=cos x ·(12cos x +32sin x ) =12cos 2x +32sin x cos x =14(1+cos 2x )+34sin 2x =12cos(2x -π3)+14. f (x )<14等价于12cos(2x -π3)+14<14, 即cos(2x -π3)<0, 于是2k π+π2<2x -π3<2k π+3π2,k ∈Z . 解得k π+5π12<x <k π+11π12,k ∈Z .故使f (x )<14成立的x 的取值集合为{x |k π+5π12<x <k π+11π12,k ∈Z }. 7.已知函数f (x )=cos x (sin x +cos x )-12. (1)若0<α<π2,且sin α=22,求f (α)的值; (2)求函数f (x )的最小正周期及单调递增区间.解 方法一 (1)因为0<α<π2,sin α=22, 所以cos α=22. 所以f (α)=22×(22+22)-12=12. (2)因为f (x )=sin x cos x +cos 2x -12=12sin 2x +1+cos 2x 2-12=12sin 2x +12cos 2x =22sin(2x +π4), 所以T =2π2=π. 由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得 k π-3π8≤x ≤k π+π8,k ∈Z . 所以f (x )的单调递增区间为[k π-3π8,k π+π8],k ∈Z . 方法二 f (x )=sin x cos x +cos 2x -12=12sin 2x +1+cos 2x 2-12=12sin 2x +12cos 2x=22sin(2x +π4). (1)因为0<α<π2,sin α=22,所以α=π4, 从而f (α)=22sin(2α+π4)=22sin 3π4=12. (2)T =2π2=π. 由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得 k π-3π8≤x ≤k π+π8,k ∈Z . 所以f (x )的单调递增区间为[k π-3π8,k π+π8],k ∈Z . 8.某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?解 (1)因为f (t )=10-2(32cos π12t +12sin π12t ) =10-2sin(π12t +π3), 又0≤t <24,所以π3≤π12t +π3<7π3, -1≤sin(π12t +π3)≤1. 当t =2时,sin(π12t +π3)=1; 当t =14时,sin(π12t +π3)=-1. 于是f (t )在[0,24)上的最大值为12,最小值为8.故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃.(2)依题意,当f (t )>11时实验室需要降温.由(1)得f (t )=10-2sin(π12t +π3), 故有10-2sin(π12t +π3)>11, 即sin(π12t +π3)<-12. 又0≤t <24,因此7π6<π12t +π3<11π6, 即10<t <18.故在10时至18时实验室需要降温.9.已知函数f (x )=3sin ωx ·cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2. (1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间[0,π2]上有且只有一个实数解,求实数k 的取值范围.解 (1)f (x )=3sin ωx ·cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin(2ωx +π6), 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2, 所以ω=2,所以f (x )=sin(4x +π6). (2)将f (x )的图象向右平移π8个单位长度后,得到y =sin(4x -π3)的图象;再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin(2x -π3)的图象,所以g (x )=sin(2x -π3),因为0≤x ≤π2,所以-π3≤2x -π3≤2π3, 所以g (x )∈[-32,1] 又g (x )+k =0在区间[0,π2]上有且只有一个实数解,即函数y =g (x )与y =-k 在区间[0,π2]上有且只有一个交点,由正弦函数的图象可知-32≤-k <32或-k =1, 解得-32<k ≤32或k =-1,所以实数k 的取值范围是(-32,32]∪{-1}.。
尊敬的各位评委各位老师:大家好,我是高中数学组号考生,今天我说课的题目是《函数y=Asin(ωx+φ)的图像与性质》。
下面我将从说教材、说学情、说教学目标、说教学过程等几个方面来展开我的说课。
首先来说说教材。
本课是北师大版高中数学必修四第一章第8节第1课时,三角函数是中学数学的重要内容之一,它既是解决生产实际问题的工具,又是学习高等数学及其它学科的基础.本节课是在学习了任意角的三角函数,正、余弦函数的图象和性质后,进一步研究函数y=Asin(ωx+φ)的简图的画法,由此揭示这类函数的图象与正弦曲线的关系,以及A、ω、φ的物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的一个延伸,也是研究函数性质的一个直观反映。
分析完了教材,再来说说学情。
高二年级的学生,学生在前面章节已经学习了任意角的三角函数,正、余弦函数的图象和性质,已经具有用数学知识解决这类实际问题的能力。
但由于我们的学生认识问题还不够深入,其思维能力和判断分析能力尚在培养形成之中。
鉴于此种情况,教师要充分利用他们的兴趣引导学生进入特定的教学意境,如何学好函数y=Asin(ωx+φ)的图像与性质,就是摆在师生面前的一个亟待解决的问题。
因此,本节内容的学习是学生认知发展和知识构建的一个生长点。
基于以上教材地位、学情特点以及新课标的要求,我确定了以下三维教学目标:1、通过“五点作图法”正确找出函数y =sin x 到y =sin(ωx+φ) 的图象变换规律,能用五点作图法和图象变换法画出函数y =Asin(ωx+φ)的简图,这是本课教学的重点。
2、通过引导学生对函数y =sin x 到 y =sin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂,特殊到一般的化归思想,能够认识图象变换与函数解析式变换的内在联系,也是本课教学的难点。
3、通过本节课的学习,激发学生学习数学的兴趣和善于发现、勇于探索的精神,体会学习的快乐。
1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈R振幅 周期 频率 相位 初相 AT =2πωf =1T =ω2πωx +φφ2.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点 如下表所示:x0-φω π2-φω π-φω 3π2-φω 2π-φω ωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ)A-A3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ) (A >0,ω>0)的图象的步骤如下:【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( × ) (2)y =sin ⎝⎛⎭⎫x -π4的图象是由y =sin ⎝⎛⎭⎫x +π4的图象向右平移π2个单位得到的.( √ )(3)由图象求解析式时,振幅A 的大小是由一个周期内的图象中的最高点的值与最低点的值确定的.( √ ) (4)函数f (x )=A sin(ωx +φ)的图象的两个相邻对称轴间的距离为一个周期.( × )(5)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( √ )1.y =2sin ⎝⎛⎭⎫2x -π4的振幅、频率和初相分别为( ) A .2,1π,-π4.2,12π,-π4C .2,1π,-π8.2,12π,-π8答案 A2.为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( ) A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 答案 A解析 y =sin 2x 的图象向左平移12个单位长度得到函数y =sin 2(x +12)的图象,即函数y =sin(2x +1)的图象.3.(2015·湖南)将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后得到函数g (x )的图象,若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ等于( )A.5π12B.π3 C.π4 D.π6答案 D解析 因为g (x )=sin 2(x -φ)=sin(2x -2φ), 所以|f (x 1)-g (x 2)|=|sin 2x 1-sin(2x 2-2φ)|=2. 因为-1≤sin 2x 1≤1,-1≤sin(2x 2-2φ)≤1,所以sin 2x 1和sin(2x 2-2φ)的值中,一个为1,另一个为-1,不妨取sin 2x 1=1,sin(2x 2-2φ)=-1,则2x 1=2k 1π+π2,k 1∈Z,2x 2-2φ=2k 2π-π2,k 2∈Z,2x 1-2x 2+2φ=2(k 1-k 2)π+π,(k 1-k 2)∈Z ,得|x 1-x 2|=⎪⎪⎪⎪(k 1-k 2)π+π2-φ. 因为0<φ<π2,所以0<π2-φ<π2,故当k 1-k 2=0时,|x 1-x 2|min =π2-φ=π3,则φ=π6,故选D.4.(教材改编)如图,某地一天从6~14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b ,则这段曲线的函数解析式为________________________________.答案 y =10sin ⎝⎛⎭⎫π8x +3π4+20,x ∈[6,14] 解析 从图中可以看出,从6~14时的是函数 y =A sin(ωx +φ)+b 的半个周期, 所以A =12×(30-10)=10,b =12×(30+10)=20, 又12×2πω=14-6, 所以ω=π8.又π8×10+φ=2π, 解得φ=3π4,所以y =10sin ⎝⎛⎭⎫π8x +3π4+20,x ∈[6,14].5.(2014·安徽)若将函数f (x )=sin(2x +π4)的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________. 答案3π8解析 ∵函数f (x )=sin(2x +π4)的图象向右平移φ个单位得到g (x )=sin[2(x -φ)+π4]=sin(2x +π4-2φ),又∵g (x )是偶函数,∴π4-2φ=k π+π2(k ∈Z ).∴φ=-k π2-π8(k ∈Z ).当k =-1时,φ取得最小正值3π8.题型一 函数y =A sin(ωx +φ)的图象及变换 例1 已知函数y =2sin ⎝⎛⎭⎫2x +π3. (1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y =2sin ⎝⎛⎭⎫2x +π3的图象可由y =sin x 的图象经过怎样的变换而得到. 解 (1)y =2sin ⎝⎛⎭⎫2x +π3的振幅A =2, 周期T =2π2=π,初相φ=π3.(2)令X =2x +π3,则y =2sin ⎝⎛⎭⎫2x +π3=2sin X . 列表如下:x -π6 π12 π3 7π12 5π6 X 0 π2 π 3π2 2π y =sin X 0 1 0 -1 0 y =2sin ⎝⎛⎭⎫2x +π3 02-2描点画出图象,如图所示:(3)方法一 把y =sin x 的图象上所有的点向左平移π3个单位长度,得到y =sin ⎝⎛⎭⎫x +π3的图象; 再把y =sin ⎝⎛⎭⎫x +π3的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫2x +π3的图象; 最后把y =sin ⎝⎛⎭⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 方法二 将y =sin x 的图象上所有点的横坐标缩短为原来的12倍(纵坐标不变),得到y =sin 2x 的图象;再将y =sin 2x 的图象向左平移π6个单位长度,得到y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象; 再将y =sin ⎝⎛⎭⎫2x +π3的图象上所有点的纵坐标伸长为原来的2倍(横坐标不变),即得到y =2sin ⎝⎛⎭⎫2x +π3的图象.思维升华 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.(1)把函数y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移π3个单位长度,那么所得图象的一条对称轴方程为( ) A .x =-π2B .x =-π4C .x =π8D .x =π4(2)设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( ) A.13B .3C .6D .9 答案 (1)A (2)C解析 (1)将y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y =sin(2x +π6);再将图象向右平移π3个单位长度,得到函数y =sin[2(x -π3)+π6]=sin(2x -π2),故x =-π2是其图象的一条对称轴方程.(2)由题意可知,nT =π3 (n ∈N +),∴n ·2πω=π3(n ∈N +),∴ω=6n (n ∈N +),∴当n =1时,ω取得最小值6. 题型二 由图象确定y =A sin(ωx +φ)的解析式例2 (1)将函数f (x )=sin(2x +θ)⎝⎛⎭⎫-π2<θ<π2的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P ⎝⎛⎭⎫0,32,则φ的值可以是( ) A.5π3 B.5π6 C.π2D.π6(2)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为__________.答案 (1)B (2)f (x )=2sin(2x +π3)解析 (1)∵P ⎝⎛⎭⎫0,32在f (x )的图象上, ∴f (0)=sin θ=32. ∵θ∈⎝⎛⎭⎫-π2,π2, ∴θ=π3,∴f (x )=sin ⎝⎛⎭⎫2x +π3. ∴g (x )=sin ⎣⎡⎦⎤2(x -φ)+π3. ∵g (0)=32, ∴sin ⎝⎛⎭⎫π3-2φ=32. 验证φ=56π时,sin ⎝⎛⎭⎫π3-2φ=sin ⎝⎛⎭⎫π3-53π=sin ⎝⎛⎭⎫-43π=32成立. (2)由题图可知A =2, T 4=7π12-π3=π4, 所以T =π,故ω=2, 因此f (x )=2sin(2x +φ), 又⎝⎛⎭⎫712π,-2为最小值点, ∴2×712π+φ=2k π+3π2,k ∈Z ,∴φ=2k π+π3,k ∈Z ,又|φ|<π, ∴φ=π3.故f (x )=2sin(2x +π3).思维升华 确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法: (1)求A ,b ,确定函数的最大值M 和最小值m , 则A =M -m 2,b =M +m 2.(2)求ω,确定函数的最小正周期T ,则可得ω=2πT .(3)求φ,常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时ωx +φ=π2;“最小值点”(即图象的“谷点”)时ωx +φ=3π2.函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<π2的部分图象如图所示,则φ=________.答案 -π3解析 ∵T 2=1112π-512π,∴T =π.又T =2πω(ω>0),∴2πω=π, ∴ω=2.由五点作图法可知当x =512π时,ωx +φ=π2,即2×512π+φ=π2,∴φ=-π3.题型三 三角函数图象性质的应用 命题点1 三角函数模型的应用例3 如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置P (x ,y ).若初始位置为P 0⎝⎛⎭⎫32,12,当秒针从P 0(注:此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系式为( )A .y =sin ⎝⎛⎭⎫π30t +π6B .y =sin ⎝⎛⎭⎫-π60t -π6 C .y =sin ⎝⎛⎭⎫-π30t +π6 D .y =sin ⎝⎛⎭⎫-π30t -π3 答案 C解析 由题意可得,函数的初相位是π6,排除B 、D.又函数周期是60(秒)且秒针按顺时针旋转,即T =⎪⎪⎪⎪2πω=60,所以|ω|=π30,即ω=-π30. 命题点2 方程根(函数零点问题)例4 已知关于x 的方程2sin 2x -3sin 2x +m -1=0在⎝⎛⎭⎫π2,π上有两个不同的实数根,则m 的取值范围是________. 答案 (-2,-1)解析 方程2sin 2x -3sin 2x +m -1=0可转化为 m =1-2sin 2x +3sin 2x =cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x +π6,x ∈⎝⎛⎭⎫π2,π. 设2x +π6=t ,则t ∈⎝⎛⎭⎫76π,136π, ∴题目条件可转化为m2=sin t ,t ∈⎝⎛⎭⎫76π,136π,有两个不同的实数根. ∴y =m2和y =sin t ,t ∈⎝⎛⎭⎫76π,136π的图象有两个不同交点,如图:由图象观察知,m 2的范围为(-1,-12),故m 的取值范围是(-2,-1). 引申探究例4中,“有两个不同的实数根”改成“有实根”,则m 的取值范围是__________. 答案 [-2,1)解析 由例4知,m2的范围是⎣⎡⎭⎫-1,12,∴-2≤m <1, ∴m 的取值范围是[-2,1).命题点3 图象性质综合应用例5 已知函数f (x )=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为π2.(1)求f ⎝⎛⎭⎫π8的值;(2)求函数y =f (x )+f ⎝⎛⎭⎫x +π4的最大值及对应的x 的值. 解 (1)f (x )=3sin(ωx +φ)-cos(ωx +φ) =2⎣⎡⎦⎤32sin (ωx +φ)-12cos (ωx +φ) =2sin ⎝⎛⎭⎫ωx +φ-π6. 因为f (x )是偶函数, 则φ-π6=π2+k π(k ∈Z ),所以φ=2π3+k π(k ∈Z ),又因为0<φ<π,所以φ=2π3,所以f (x )=2sin ⎝⎛⎭⎫ωx +π2=2cos ωx . 由题意得2πω=2·π2,所以ω=2. 故f (x )=2cos 2x . 因此f ⎝⎛⎭⎫π8=2cos π4= 2. (2)y =2cos 2x +2cos 2⎝⎛⎭⎫x +π4 =2cos 2x +2cos ⎝⎛⎭⎫2x +π2 =2cos 2x -2sin 2x =22sin ⎝⎛⎭⎫π4-2x=-22sin ⎝⎛⎭⎫2x -π4 令2x -π4=2k π-π2(k ∈Z )时,y 有最大值22,所以当x =k π-π8(k ∈Z )时,y 有最大值2 2.思维升华 (1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型再利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.设函数f (x )=3sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期是π,则下列说法正确的是________.(填序号) ①f (x )的图象过点(0,32);②f (x )在[π12,2π3]上是减函数;③f (x )的一个对称中心是(5π12,0);④将f (x )的图象向右平移|φ|个单位长度得到函数y =3sin ωx 的图象. 答案 ①③解析 ∵周期为π,∴2πω=π⇒ω=2,∴f (x )=3sin(2x +φ),f (2π3)=3sin(4π3+φ),则sin(4π3+φ)=1或-1.又φ∈(-π2,π2),4π3+φ∈(5π6,116π),∴4π3+φ=3π2⇒φ=π6, ∴f (x )=3sin(2x +π6).①:令x =0⇒f (x )=32,正确.②:令2k π+π2<2x +π6<2k π+3π2,k ∈Z⇒k π+π6<x <k π+2π3,k ∈Z .令k =0⇒π6<x <2π3,即f (x )在(π6,2π3)上单调递减,而在(π12,π6)上单调递增,错误.③:令x =5π12⇒f (x )=3sin π=0,正确. ④:应平移π12个单位长度,错误. 4.三角函数图象与性质的综合问题典例 (12分)已知函数f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π). (1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.思维点拨 (1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期;(2)将f (x )解析式中的x 换成x -π6,得g (x ),然后利用整体思想求最值. 规范解答解 (1)f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π)=3cos x +sin x [3分] =2sin(x +π3),[5分] 于是T =2π1=2π.[6分] (2)由已知得g (x )=f (x -π6)=2sin(x +π6),[8分] ∵x ∈[0,π],∴x +π6∈[π6,7π6], ∴sin(x +π6)∈[-12,1],[10分] ∴g (x )=2sin(x +π6)∈[-1,2].[11分] 故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[12分]解决三角函数图象与性质的综合问题的一般步骤:第一步:(化简)将f (x )化为a sin x +b cos x 的形式;第二步:(用辅助角公式)构造f (x )=a 2+b 2·(sin x ·a a 2+b 2+cos x ·b a 2+b 2); 第三步:(求性质)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质;第四步:(反思)反思回顾,查看关键点、易错点和答题规范.温馨提醒 (1)在第(1)问的解法中,使用辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=b a ),或a sin α+b cos α=a 2+b 2cos(α-φ)(其中tan φ=a b),在历年高考中使用频率是相当高的,几乎年年使用到、考查到,应特别加以关注.(2)求g (x )的最值一定要重视定义域,可以结合三角函数图象进行求解.[方法与技巧]1.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化.2.由图象确定函数解析式由图象确定y =A sin(ωx +φ)时,φ的确定是关键,尽量选择图象的最值点代入;若选零点代入,应根据图象升降找“五点法”作图中第一个零点.3.对称问题函数y =A sin(ωx +φ)的图象与x 轴的每一个交点均为其对称中心,经过该图象上坐标为(x ,±A )的点与x 轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻对称中心的距离).[失误与防范]1.由函数y =sin x 的图象经过变换得到y =A sin(ωx +φ)的图象,如先伸缩,再平移时,要把x 前面的系数提取出来.2.复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看做一个整体.若ω<0,要先根据诱导公式进行转化.3.函数y =A sin(ωx +φ)在x ∈[m ,n ]上的最值可先求t =ωx +φ的范围,再结合图象得出y =A sin t 的值域.A 组 专项基础训练(时间:35分钟)1.函数y =cos ⎝⎛⎭⎫2x -π3的部分图象可能是( )答案 D解析 ∵y =cos ⎝⎛⎭⎫2x -π3,∴当2x -π3=0, 即x =π6时,函数取得最大值1,结合图象看,可使函数在x =π6时取得最大值的只有D. 2.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A.3π4B.π4 C .0 D .-π4答案 B解析 把函数y =sin(2x +φ)沿x 轴向左平移π8个单位后得到函数y =sin 2⎝⎛⎭⎫x +φ2+π8=sin ⎝⎛⎭⎫2x +φ+π4为偶函数,则φ的一个可能取值是π4. 3.已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是( )A .[-7π12,5π12] B .[-7π12,-π12] C .[-π12,7π12] D .[-π12,5π12] 答案 D解析 由函数的图象可得14T =23π-512π, ∴T =π,则ω=2.又图象过点(512π,2),∴2sin(2×512π+φ)=2, ∴φ=-π3+2k π,k ∈Z , ∵|φ|<π2,∴取k =0,则φ=-π3,即得f (x )=2sin(2x -π3), 其单调递增区间为[k π-π12,k π+5π12],k ∈Z ,取k =0,即得选项D. 4.已知曲线f (x )=sin ωx +3cos ωx (ω>0)相邻的两条对称轴之间的距离为π2,且曲线关于点(x 0,0)中心对称,若x 0∈⎣⎡⎦⎤0,π2,则x 0等于( ) A.π12B.π6C.π3D.5π12答案 C解析 f (x )=sin ωx +3cos ωx=2⎝⎛⎭⎫12sin ωx +32cos ωx =2sin ⎝⎛⎭⎫ωx +π3. ∵曲线f (x )=2sin ⎝⎛⎭⎫ωx +π3相邻的两条对称轴之间的距离为π2, ∴最小正周期T =π=2πω, ∴ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x +π3. ∵曲线关于点(x 0,0)中心对称;∴2x 0+π3=k π(k ∈Z ), ∴x 0=k π2-π6(k ∈Z ), 又x 0∈⎣⎡⎦⎤0,π2,∴x 0=π3. 5.函数f (x )=sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象向左平移π6个单位后所得函数图象的解析式是奇函数,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为( ) A .-32 B .-12 C.12D.32答案 A解析 由函数f (x )的图象向左平移π6个单位得g (x )=sin ⎝⎛⎭⎫2x +φ+π3的图象,因为是奇函数,所以φ+π3=k π,k ∈Z , 又因为|φ|<π2,所以φ=-π3, 所以f (x )=sin ⎝⎛⎭⎫2x -π3. 又x ∈⎣⎡⎦⎤0,π2,所以2x -π3∈⎣⎡⎦⎤-π3,2π3, 所以当x =0时,f (x )取得最小值为-32. 6.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如右图所示,则当t =1100秒时,电流强度是________安.答案 -5解析 由图象知A =10,T 2=4300-1300=1100, ∴ω=2πT=100π.∴I =10sin(100πt +φ). ∵图象过点⎝⎛⎭⎫1300,10, ∴10sin(100π×1300+φ)=10, ∴sin(π3+φ)=1,π3+φ=2k π+π2,k ∈Z , ∴φ=2k π+π6,k ∈Z , 又∵0<φ<π2,∴φ=π6. ∴I =10sin ⎝⎛⎭⎫100πt +π6, 当t =1100秒时,I =-5安. 7.若函数f (x )=sin(ωx +φ) (ω>0且|φ|<π2)在区间⎣⎡⎦⎤π6,2π3上是单调递减函数,且函数从1减小到-1,则f ⎝⎛⎭⎫π4=________.答案 32解析 由题意可得,函数的周期为2×⎝⎛⎭⎫2π3-π6=π,即2πω=π,∴ω=2,∴f (x )=sin(2x +φ). 由sin ⎝⎛⎭⎫2×π6+φ=1,|φ|<π2可得φ=π6, ∴f (x )=sin ⎝⎛⎭⎫2x +π6, ∴f ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π2+π6=cos π6=32. 8.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示.若方程f (x )=m 在区间[0,π]上有两个不同的实数x 1,x 2,则x 1+x 2的值为________.答案 π3或43π 解析 由图象可知y =m 和y =f (x )图象的两个交点关于直线x =π6或x =23π对称, ∴x 1+x 2=π3或43π. 9.(2015·天津)已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 解 (1)由已知,有f (x )=1-cos 2x 2-1-cos ⎝⎛⎭⎫2x -π32 =12⎝⎛⎭⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎫2x -π6. 所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数,在区间⎣⎡⎦⎤-π6,π4上是增函数,且f ⎝⎛⎭⎫-π3=-14, f ⎝⎛⎭⎫-π6=-12,f ⎝⎛⎭⎫π4=34, 所以f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值为34, 最小值为-12.10.设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值.解 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3×1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx=-sin ⎝⎛⎭⎫2ωx -π3.依题意知2π2ω=4×π4,ω>0,所以ω=1.(2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3. 所以-32≤sin ⎝⎛⎭⎫2x -π3≤1.所以-1≤f (x )≤32.故f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值分别为32,-1.B 组 专项能力提升(时间:25分钟)11.已知函数f (x )=2sin ωx 在区间[-π3,π4]上的最小值为-2,则ω的取值范围是() A .(-∞,-92]∪[6,+∞)B .(-∞,-92]∪[32,+∞)C .(-∞,-2]∪[6,+∞)D .(-∞,-2]∪[32,+∞)答案 D解析 当ω>0时,-π3ω≤ωx ≤π4ω, 由题意知-π3ω≤-π2,即ω≥32;当ω<0时,π4ω≤ωx ≤-π3ω, 由题意知π4ω≤-π2,∴ω≤-2. 综上可知,ω的取值范围是(-∞,-2]∪[32,+∞). 12.(2014·天津)已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( ) A.π2B.2π3 C .πD .2π答案 C解析 f (x )=3sin ωx +cos ωx =2sin(ωx +π6)(ω>0). 由2sin(ωx +π6)=1得sin(ωx +π6)=12, ∴ωx +π6=2k π+π6或ωx +π6=2k π+56π(k ∈Z ). 令k =0,得ωx 1+π6=π6,ωx 2+π6=56π, ∴x 1=0,x 2=2π3ω. 由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2. 故f (x )的最小正周期T =2π2=π. 13.已知函数f (x )=cos ⎝⎛⎭⎫3x +π3,其中x ∈⎣⎡⎦⎤π6,m ,若f (x )的值域是⎣⎡⎦⎤-1,-32,则m 的取值范围是______. 答案 ⎣⎡⎦⎤2π9,5π18解析 画出函数的图象.由x ∈⎣⎡⎦⎤π6,m ,可知5π6≤3x +π3≤3m +π3, 因为f ⎝⎛⎭⎫π6=cos 5π6=-32, 且f ⎝⎛⎭⎫2π9=cos π=-1,要使f (x )的值域是⎣⎡⎦⎤-1,-32, 所以π≤3m +π3≤76π,则2π9≤m ≤5π18, 即m ∈⎣⎡⎦⎤2π9,5π18.14.已知f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=________________________________________________________________________.答案 143解析 依题意,x =π6+π32=π4时,y 有最小值, ∴sin ⎝⎛⎭⎫π4ω+π3=-1, ∴π4ω+π3=2k π+3π2(k ∈Z ), ∴ω=8k +143(k ∈Z ), ∵f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,∴π3-π4<πω,即ω<12,令k =0,得ω=143. 15.已知函数f (x )=3sin ωx cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2. (1)求f (x )的表达式; (2)将函数f (x )的图象向右平移π8个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间[0,π2]上有且只有一个实数解,求实数k 的取值范围. 解 (1)f (x )=3sin ωx cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin(2ωx +π6), 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2, 所以ω=2,所以f (x )=sin(4x +π6). (2)将f (x )的图象向右平移π8个单位长度后,得到y =sin(4x -π3)的图象;再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin(2x -π3)的图象,所以g (x )=sin(2x -π3),因为0≤x ≤π2,所以-π3≤2x -π3≤2π3, 所以g (x )∈[-32,1]. 又g (x )+k =0在区间[0,π2]上有且只有一个实数解,即函数y =g (x )与y =-k 在区间[0,π2]上有且只有一个交点,由正弦函数的图象可知-32≤-k <32或-k =1, 解得-32<k ≤32或k =-1, 所以实数k 的取值范围是(-32,32]∪{-1}.。
《函数y=Asin(ωx+φ)的图象》的说课稿今天我说课的课题是“函数y=Asin(ωx+φ)的图象”, 现在我就教材、教法、学法、教学过程和板书五个方面来陈述我对本节课的设计方案。
【一】说教材一、教材分析本节课所讲的内容是高中数学必修4第一章《三角函数》第五节的内容, 三角函数是中学数学的重要内容之一, 它的基础是几何中的相似形和圆, 研究方法主要是代数中的式子变形和图形分析, 因此三角函数的研究已经初步把几何与代数联系起来了。
高等数学以及其他应用技术学科, 都要经常用到三角函数及其性质, 因此这些内容既是解决生产实际问题的工具, 又是学习高等数学等学科的基础, 也是我们要着重学习和加强的环节。
在本章第四节“三角函数的图象和性质”的内容中, 教材通过正余弦曲线的形状特点的研究得到了正余弦函数的性质, 进一步得出函数y=Asin(ωx+φ)的图象, 由此揭示这类函数的图象和正弦函数曲线的关系以及 A.ω、φ的物理意义, 使学生根据周期函数和最小正周期的意义, 以及从图象变化的过程中, 进一步了解正余弦函数的性质, 从而向学生揭示了得到函数y=Asin(ωx+φ)的图象的一种思维过程: 即由正弦曲线变换得到, 这一思维过程并不表示实际画图方法, 但充分体现了由简单到复杂、特殊到一般的化归的数学思想, 所以本节承载着三角函数这一章中的重要作用。
三角函数中许多化简、求值题以及研究函数性质的问题都涉及到Asin(ωx+φ) 的形式, 研究它的图象能使学生将已有的知识形成体系, 有助于培养学生利用数形结合的思想解决问题。
同时, 本节课在教学中力图向学生展示尝试观察、归纳、类比、联想等数学思想方法。
二、教学目标根据《课程标准》关于本节课的教学要求, 以贯穿创新意识和实践能力的培养为宗旨, 以教材的特点和所教学生的实际为出发点, 设定教学目标如下:1、知识目标: ①掌握φ、ω、Α的变化对函数图象的形状及位置的影响;②进一步研究由φ变换、ω变换、Α变换构成的综合变换。
考点十八 函数y =A sin(ωx +φ)的图象和性质知识梳理1.五点法作y =A sin(ωx +φ)一个周期内的简图用“五点法”作图,就是令ωx +φ取下列5个特殊值:0, π2, π, 3π2, 2π,通过列表,计算五点的坐标,描点得到图象 2.三角函数图象变换3.函数y =A sin(ωx +φ)的几个概念若函数y =A sin(ωx +φ) (A >0,ω>0,x ∈(-∞,+∞))表示一个振动量时,则A 叫做振幅,T =2πω叫做周期,f =1T叫做频率,ωx +φ叫做相位,φ叫做初相.典例剖析题型一 三角函数的图象变换例1 (2015山东文)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象________.(填序号)① 向左平移π12个单位 ②向右平移π12个单位 ③向左平移π3个单位 ④向右平移π3个单位答案 ②解析 ∵y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12, ∴要得到y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位.变式训练 把函数y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移π3个单位长度,那么所得图象的一条对称轴方程为________.答案 x =-π2解析 将y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y =sin(2x+π6);再将图象向右平移π3个单位长度,得到函数y =sin[2(x -π3)+π6]=sin(2x -π2),故x =-π2是其图象的一条对称轴方程.解题要点 图象平移时要注意平移量的求解,由y =sin x 的图象变换到y =A sin(ωx +φ)的图象,两种变换区别在于:先相位变换再周期变换(伸缩变换),平移量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 题型二 三角函数的五点法作图 例2 设函数y =2sin ⎝⎛⎭⎫2x +π3 (1)用五点法作出它在长度为一个周期的闭区间上的图象;(2)说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换而得到的. 解析 (1) 列表,描点画出图象:(2) 方法一 把y =sin x 的图象上所有的点向左平移π3个单位长度,得到y =sin ⎝⎛⎭⎫x +π3的图象,再把y =sin ⎝⎛⎭⎫x +π3的图象上的点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫2x +π3的图象,最后把y =sin ⎝⎛⎭⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 方法二 将y =sin x 的图象上每一点的横坐标x 缩短为原来的12倍,纵坐标不变,得到y =sin2x 的图象;再将y =sin 2x 的图象向左平移π6个单位长度,得到y =sin 2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象;再将y =sin ⎝⎛⎭⎫2x +π3的图象上每一点的横坐标保持不变,纵坐标伸长为原来的2倍,得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 解题要点 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”. 题型三 由图象求y =A sin(ωx +φ)的解析式例3 函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,-π2<φ<π2,x ∈R 的部分图象如图所示. (1)求函数y =f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-π,-π6时,求f (x )的取值范围.解析 (1)由题中图象得A =1,T 4=2π3-π6=π2,所以T =2π,则ω=1.将点⎝⎛⎭⎫π6,1代入得sin ⎝⎛⎭⎫π6+φ=1,又-π2<φ<π2,所以φ=π3,因此函数f (x )=sin ⎝⎛⎭⎫x +π3. (2)由于-π≤x ≤-π6,-2π3≤x +π3≤π6,所以-1≤sin ⎝⎛⎭⎫x +π3≤12, 所以f (x )的取值范围是⎣⎡⎦⎤-1,12. 解题要点 确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法 (1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT ;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下: “第一点”(即图象上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图象的“峰点”)时ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图象的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π.题型四 函数y =A sin(ωx +φ)的对称性、周期性、奇偶性 例4 函数f (x )=cos(2x -π6)的最小正周期是________.答案 π解析 最小正周期为T =2πω=2π2=π.变式训练 已知函数f (x )=sin ⎝⎛⎭⎫2x +3π2(x ∈R ),下面结论错误的是________.(填序号) ① 函数f (x )的最小正周期为π ② 函数f (x )是偶函数③ 函数f (x )的图象关于直线x =π4对称④ 函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数 答案 ③解析 f (x )=sin ⎝⎛⎭⎫2x +3π2=-cos 2x ,故其最小正周期为π,故①正确;易知函数f (x )是偶函数,②正确;由函数f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,③错误;由函数f (x )的图象易知,函数f (x )在⎣⎡⎦⎤0,π2上是增函数,④正确,故选③. 解题要点 1.三角函数的奇偶性的判断技巧:首先要知道基本三角函数的奇偶性,再根据题目去判断所求三角函数的奇偶性;也可以根据图象做判断.2.求三角函数周期的方法: ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.③利用图象. 3.三角函数的对称性:正、余弦函数的图象既是中心对称图形,又是轴对称图形,正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.另外函数y =A sin(ωx +φ)、余弦函数y =A cos(ωx +φ)在对称轴处必取极值±A ,在对称轴处必取0,借助这一性质可快速解题.当堂练习1.函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是________.答案 2,-π3解析 由图象可得,3T 4=5π12-⎝⎛⎭⎫-π3=3π4, ∴T =π,则ω=2ππ=2,再将点⎝⎛⎭⎫5π12,2代入f (x )=2sin(2x +φ)中得,sin ⎝⎛⎭⎫5π6+φ=1, 令5π6+φ=2k π+π2,k ∈Z , 解得,φ=2k π-π3,k ∈Z ,又∵φ∈⎝⎛⎭⎫-π2,π2,则取k =0,∴φ=-π3. 2.(2014·辽宁卷) 将函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移π2个单位长度,所得图象对应的函数________.(填序号)①在区间⎣⎡⎦⎤π12,7π12上单调递减 ②在区间⎣⎡⎦⎤π12,7π12上单调递增③在区间⎣⎡⎦⎤-π6,π3上单调递减 ④在区间⎣⎡⎦⎤-π6,π3上单调递增 答案 ②解析 由题可知,将函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移π2个单位长度得到函数y =3sin ⎝⎛⎭⎫2x -23π的图象,令-π2+2k π≤2x -23π≤π2+2k π,k ∈Z ,即π12+k π≤x ≤7π12+k π,k ∈Z 时,函数单调递增,即函数y =3sin ⎝⎛⎭⎫2x -23π的单调递增区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z ,可知当k =0时,函数在区间⎣⎡⎦⎤π12,7π12上单调递增.3. (2014·四川卷)为了得到函数y =sin (2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点________.(填序号)①向左平行移动12个单位长度 ②向右平行移动12个单位长度③向左平行移动1个单位长度 ④向右平行移动1个单位长度 答案 ①解析 因为y =sin(2x +1)=sin2⎝⎛⎭⎫x +12,所以为得到函数y =sin(2x +1)的图象,只需要将y =sin 2x 的图象向左平行移动12个单位长度.4.(2014·安徽卷)若将函数f (x )=sin ⎝⎛⎭⎫2x +π4的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________. 答案3π8解析 将f (x )=sin ⎝⎛⎭⎫2x +π4的图象向右平移φ个单位,得到y =sin ⎝⎛⎭⎫2x +π4-2φ的图象,由该函数的图象关于y 轴对称,可知sin ⎝⎛⎭⎫π4-2φ=±1,即sin ⎝⎛⎭⎫2φ-π4=±1,故2φ-π4=k π+π2,k ∈Z ,即φ=k π2+3π8,k ∈Z ,所以当φ>0时,φmin =3π8.5.(2015新课标Ⅰ文)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为________.答案 ⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析 由已知图象可求得ω与φ的值,然后利用余弦函数的单调区间求解. 由图象知,周期T =2⎝⎛⎭⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎫πx +π4. 由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z . 课后作业一、 填空题1.将函数f (x )=sin 2x 的图象向左平移π12个单位,得到函数g (x )=sin(2x +φ)0<φ<π2的图象,则φ等于________. 答案 π6解析 由题意g (x )=sin 2(x +π12)=sin(2x +π6),又g (x )=sin(2x +φ),0<φ<π2,∴φ=π6.2.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为________. 答案 π4解析 由函数横向平移规律“左加右减”则y =sin(2x +φ)向左平移π8个单位得y =sin(2x +π4+φ).由y =sin(2x +π4+φ)为偶函数得π4+φ=π2+k π,k ∈Z ,则φ=π4+k π,k ∈Z ,则φ的一个可能值为π4.3.下列函数中,周期为π,且在[π4,π2]上为减函数的是________.①y =sin(2x +π2) ②y =cos(2x +π2) ③y =sin(x +π2) ④y =cos(x +π2)答案 ①解析 对于选项①,注意到y =sin(2x +π2)=cos2x 的周期为π,且在[π4,π2]上是减函数,故选①.4.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为________. 答案 -sin x解析 由图象的平移得g (x )=cos ⎝⎛⎭⎫x +π2=-sin x . 5.已知函数y =cos(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,则________.① ω=1,φ=2π3② ω=1,φ=-2π3③ ω=2,φ=2π3④ ω=2,φ=-2π3答案 ④解析 由题图可知14T =7π12-π3=π4,∴T =π,又T =2πω,∴ω=2,又f (x )的图象过点⎝⎛⎭⎫π3,1,∴cos ⎝⎛⎭⎫2×π3+φ=1,∴2π3+φ=2k π,令k =0,得φ=-23π. 6.要得到函数y =sin(x -π6)的图象可将函数y =sin(x +π6)的图象上的所有点________.答案 向右平移π3个长度单位解析 由y =sin[(x -π3)+π6]=sin(x -π6)知应向右平移π3个长度单位.7.(2015陕西理)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为________.答案 8解析 由图易得y min =k -3=2,则k =5. ∴y max =k +3=8.8.将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝⎛⎭⎫3π4,0,则ω的最小值是________. 答案 2解析 ∵y =sin ω(x -π4)过点(34π,0),∴sin π2ω=0,∴π2ω=k π,ω=2k ,当k =1时,ω最小值为2.9.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则f (x )=________.答案 2sin(π8x +π4)解析 依题意得,A =2,2πω=2×(6+2)=16,ω=π8, sin(π8×2+φ)=1,又|φ|<π2,因此φ=π4,f (x )=2sin(π8x +π4). 10.设y =sin(ωx +φ)(ω>0,φ<(-π2,π2))的最小正周期为π,且其图象关于直线x =π12对称,则在下面四个结论中:①图象关于点(π4,0)对称; ②图象关于点(π3,0)对称;③在[0,π6]上是增函数; ④在[-π6,0]上是增函数.正确结论的编号为________. 答案 ②④解析 ∵T =π,∴ω=2,∴y =sin(2x +φ),∵图象关于直线x =π12对称,∴π6+φ=π2+k π,(k ∈Z ),∴φ=π3+k π(k ∈Z ),又∵φ∈(-π2,π2),∴φ=π3. ∴y =sin(2x +π3).当x =π4时,y =sin(π2+π3)=12,故①不正确.当x =π3时,y =0,故②正确;当x ∈[0,π6]时,2x +π3∈[π3,2π3],y =sin(2x +π3)不是增函数,即③不正确;当x ∈[-π6,0]时,2x +π3∈[0,π3]⊆[0,π2],故④正确.11. (2015湖南文)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________. 答案 π2解析 由⎩⎪⎨⎪⎧y =2sin ωx ,y =2cos ωx得sin ωx =cos ωx ,∴tan ωx =1,ωx =k π+π4 (k ∈Z ).∵ω>0,∴x =k πω+π4ω(k ∈Z ).设距离最短的两个交点分别为(x 1,y 1),(x 2,y 2),不妨取x 1=π4ω,x 2=5π4ω,则|x 2-x 1|=⎪⎪⎪⎪5π4ω-π4ω=πω.又结合图形知|y 2-y 1|=⎪⎪⎪⎪2×⎝⎛⎭⎫-22-2×22=22, 且(x 1,y 1)与(x 2,y 2)间的距离为23, ∴(x 2-x 1)2+(y 2-y 1)2=(23)2, ∴⎝⎛⎭⎫πω2+(22)2=12,∴ω=π2. 二、解答题12. 已知函数f (x )=2sin ⎝⎛⎭⎫2x -π4+1. (1)求它的振幅、最小正周期、初相; (2)画出函数y =f (x )在⎣⎡⎦⎤-π2,π2上的图象.解析 (1)振幅为2,最小正周期T =π,初相为-π4.(2)图象如图所示.13.(2015湖北文)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1) f (x )的解析式; (2) 将y =f (x )图象上所有点向左平行移动π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.解析 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数表达式为f (x )=5sin ⎝⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 因此g (x )=5sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6=5sin ⎝⎛⎭⎫2x +π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为⎝⎛⎭⎫k π2-π12,0,k ∈Z ,其中离原点O 最近的对称中心为⎝⎛⎭⎫-π12,0.。
函数y =Asin(ωx+φ)的图象与性质1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示.x -φω-φω+π2ωπ-φω3π2ω-φω 2π-φωωx +φ 0 π2π 3π2 2π y =A sin(ωx +φ)A-A2.函数y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)表示一个振动量时振幅 周期 频率 相位 初相A T =2πω f =1T =ω2πωx +φ φ3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的两种途径强化训练1.判断下列结论正误(在括号内打“√”或“×”)(1)将函数y =3sin 2x 的图象左移π4个单位长度后所得图象的解析式是y =3sin ⎝ ⎛⎭⎪⎫2x +π4.( )(2)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( )(3)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( )(4)由图象求解析式时,振幅A 的大小是由一个周期内图象中最高点的值与最低点的值确定的.( )2.(必修4P56T3改编)y =2sin ⎝ ⎛⎭⎪⎫12x -π3的振幅、频率和初相分别为( )A.2,4π,π3B.2,14π,π3C.2,14π,-π3D.2,4π,-π33.(必修4P62例4改编)某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现.下表是今年前四个月的统计情况:月份x 1 2 3 4 收购价格y (元/斤)6765选用一个正弦型函数来近似描述收购价格(元/斤)与相应月份之间的函数关系为________________________.4.(2019·北京通州区模拟)函数y =2cos ⎝⎛⎭⎪⎫2x +π6的部分图象是( )5.(2016·全国Ⅰ卷)若将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( ) A.y =2sin ⎝ ⎛⎭⎪⎫2x +π4 B.y =2sin ⎝ ⎛⎭⎪⎫2x +π3 C.y =2sin ⎝ ⎛⎭⎪⎫2x -π4 D.y =2sin ⎝ ⎛⎭⎪⎫2x -π36.(2018·济南模拟改编)y =cos(x +1)图象上相邻的最高点和最低点之间的距离是________.考点一 函数y =A sin(ωx +φ)的图象及变换【例1】 某同学用“五点法”画函数f (x )=A sin(ωx +φ) ⎝⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝ ⎛⎭⎪⎫5π12,0,求θ的最小值.【训练1】 (1)(2017·全国Ⅰ卷)已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎪⎫2x +2π3,则下面结论正确的是( )A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2(2)(2018·青岛调研)若把函数y =sin ⎝ ⎛⎭⎪⎫ωx -π6的图象向左平移π3个单位长度,所得到的图象与函数y =cos ωx 的图象重合,则ω的一个可能取值是( )A.2B.32C.23D.12考点二 求函数y =A sin(ωx +φ)的解析式【例2】 (1)(一题多解)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为________.(2)(2019·长郡中学、衡阳八中联考)函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,已知A ⎝ ⎛⎭⎪⎫5π12,1,B ⎝ ⎛⎭⎪⎫11π12,-1,则f (x )图象的对称中心为( )A.⎝ ⎛⎭⎪⎫k π2+5π6,0(k ∈Z)B.⎝ ⎛⎭⎪⎫k π+5π6,0(k ∈Z)C.⎝ ⎛⎭⎪⎫k π2+π6,0(k ∈Z)D.⎝ ⎛⎭⎪⎫k π+π6,0(k ∈Z)【训练2】 (1)(2019·衡水中学一模)已知函数f (x )=-2cos ωx (ω>0)的图象向左平移φ⎝ ⎛⎭⎪⎫0<φ<π2个单位,所得的部分函数图象如图所示,则φ的值为( )A.π6 B.5π6 C.π12 D.5π12(2)(2019·山东省重点中学质检)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,|φ|<π2,ω>0的图象的一部分如图所示,则f (x )图象的对称轴方程是________.考点三 y =A sin(ωx +φ)图象与性质的应用 角度1 三角函数模型的应用【例3-1】 如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O 离地面1米,点O 在地面上的射影为A .风车圆周上一点M 从最低点O 开始,逆时针方向旋转40秒后到达P 点,则点P 到地面的距离是________米.角度2 三角函数性质与图象的综合应用【例3-2】 已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π. (1)求函数f (x )的单调递增区间; (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值.【训练3】 (1)某城市一年中12个月的平均气温与月份的关系可近似地用函数y =a +A cos ⎣⎢⎡⎦⎥⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高为28 ℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃.(2)已知函数f (x )=5sin x cos x -53cos 2x +523(其中x ∈R),求: ①函数f (x )的最小正周期; ②函数f (x )的单调区间; ③函数f (x )图象的对称轴和对称中心.类型1 三角函数的周期T 与ω的关系【例1】 为了使函数y =sin ωx (ω>0)在区间[0,1]上至少出现50次最大值,则ω的最小值为( ) A.98π B.1972π C.1992π D.100π类型2 三角函数的单调性与ω的关系【例2】 若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω的取值范围是( )A.0≤ω≤23B.0≤ω≤32C.23≤ω≤3D.32≤ω≤3类型3 三角函数对称性、最值与ω的关系【例3】 (1)(2019·枣庄模拟)已知f (x )=sin ωx -cos ωx ⎝ ⎛⎭⎪⎫ω>23,若函数f (x )图象的任何一条对称轴与x 轴交点的横坐标都不属于区间(π,2π),则ω的取值范围是________.(结果用区间表示) (2)已知函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是________.【基础巩固题组】 一、选择题1.函数y =A sin(ωx +φ)的部分图象如图所示,则( )A.y =2sin ⎝ ⎛⎭⎪⎫2x -π6B.y =2sin ⎝ ⎛⎭⎪⎫2x -π3C.y =2sin ⎝ ⎛⎭⎪⎫x +π6D.y =2sin ⎝ ⎛⎭⎪⎫x +π3 2.(2019·杭州期中)将函数y =sin ⎝⎛⎭⎪⎫x +φ2·cos ⎝⎛⎭⎪⎫x +φ2的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的取值不可能是( )A.-3π4B.-π4C.π4D.5π43.(2019·咸阳模拟)已知点P (32,-332)是函数y =A sin(ωx +φ)(ω>0)图象上的一个最低点,M ,N 是与点P 相邻的两个最高点,若∠MPN =60°,则该函数的最小正周期是( ) A.3 B.4 C.5 D.64.(2018·天津卷)将函数y =sin ⎝⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( ) A.在区间⎣⎢⎡⎦⎥⎤-π4,π4上单调递增 B.在区间⎣⎢⎡⎦⎥⎤-π4,0上单调递减C.在区间⎣⎢⎡⎦⎥⎤π4,π2上单调递增D.在区间⎣⎢⎡⎦⎥⎤π2,π上单调递减5.(2019·张家界模拟)将函数f (x )=3sin 2x -cos 2x 的图象向左平移t (t >0)个单位后,得到函数g (x )的图象,若g (x )=g ⎝ ⎛⎭⎪⎫π12-x ,则实数t 的最小值为( )A.5π24B.7π24C.5π12D.7π12二、填空题6.将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是________________.7.(2018·沈阳质检)函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则f ⎝ ⎛⎭⎪⎫π4=________.8.已知f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3上有最小值,无最大值,则ω=____________________________________.三、解答题9.某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sinπ12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.10.已知函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻最高点的距离为π.(1)求f ⎝ ⎛⎭⎪⎫π4的值;(2)将函数y =f (x )的图象向右平移π12个单位后,得到y =g (x )的图象,求g (x )的单调递减区间.11.(2019·天津和平区调研)已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π4个单位长度后得到函数g (x )的图象,则函数g (x )在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( )A.-2B.-1C.- 2D.- 312.函数f (x )=220sin 100πx -220sin ⎝⎛⎭⎪⎫100πx +2π3,且已知对任意x ∈R,有f (x 1)≤f (x )≤f (x 2)恒成立,则|x 2-x 1|的最小值为( ) A.50π B.1100π C.1100D.44013.(2019·广东省际名校联考)将函数f (x )=1-23·cos 2x -(sin x -cos x )2的图象向左平移π3个单位,得到函数y =g (x )的图象,若x ∈⎣⎢⎡⎦⎥⎤-π2,π2,则函数g (x )的单调递增区间是________.14.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)将函数y =f (x )的图象上各点的纵坐标保持不变,横坐标缩短到原来的12倍,再把所得的函数图象向左平移π6个单位长度,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎢⎡⎦⎥⎤0,π8上的最小值.15.(多填题)已知函数f (x )=23sinωx2cosωx2+2cos2ωx2-1(ω>0)的最小正周期为π,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,方程f (x )=m 恰有两个不同的实数解x 1,x 2,则x 1+x 2=________,f (x 1+x 2)=________.答 案 1.判断下列结论正误(在括号内打“√”或“×”) 【答案】 (1)× (2)× (3)√ (4)√【解析】 (1)将函数y =3sin 2x 的图象向左平移π4个单位长度后所得图象的解析式是y =3cos 2x .(2)“先平移,后伸缩”的平移单位长度为|φ|,而“先伸缩,后平移”的平移单位长度为⎪⎪⎪⎪⎪⎪φω.故当ω≠1时平移的长度不相等.2. 【答案】 C【解析】 由题意知A =2,f =1T =ω2π=14π,初相为-π3.3. 【答案】 y =6-cosπ2x 【解析】 设y =A sin(ωx +φ)+B (A >0,ω>0), 由题意得A =1,B =6,T =4,因为T =2πω,所以ω=π2,所以y =sin ⎝ ⎛⎭⎪⎫π2x +φ+6.因为当x =2时,y =7,所以sin(π+φ)+6=7,即sin φ=-1,则φ=-π2+2k π(k ∈Z),可取φ=-π2. 所以y =sin ⎝ ⎛⎭⎪⎫π2x -π2+6=6-cos π2x .4. 【答案】 A【解析】 由y =2cos ⎝⎛⎭⎪⎫2x +π6可知,函数的最大值为2,故排除D ;又因为函数图象过点⎝ ⎛⎭⎪⎫π6,0,故排除B ;又因为函数图象过点⎝ ⎛⎭⎪⎫-π12,2,故排除C. 5. 【答案】 D【解析】 函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的周期为π,将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期即π4个单位,所得函数为y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π4+π6=2sin ⎝⎛⎭⎪⎫2x -π3,故选D. 6. 【答案】π2+4【解析】 相邻最高点与最低点的纵坐标之差为2,横坐标之差恰为半个周期π,故它们之间的距离为π2+4.【例1】【答案】见解析【解析】(1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎪⎫2x -π6, 得g (x )=5sin ⎝ ⎛⎭⎪⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0)(k ∈Z).令2x +2θ-π6=k π,k ∈Z,解得x =k π2+π12-θ(k ∈Z). 由于函数y =g (x )的图象关于点⎝ ⎛⎭⎪⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12(k ∈Z),解得θ=k π2-π3(k ∈Z). 由θ>0可知,当k =1时,θ取得最小值π6. 【训练1】【答案】 (1)D (2)A【解析】 (1)易知C 1:y =cos x =sin ⎝⎛⎭⎪⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π2=sin ⎝ ⎛⎭⎪⎫2x +2π3的图象,即曲线C 2,因此D 项正确. (2)y =sin ⎝⎛⎭⎪⎫ωx +ω3π-π6和函数y =cos ωx 的图象重合,可得ω3π-π6=π2+2k π,k ∈Z,则ω=6k +2,k ∈Z.∴2是ω的一个可能值.【例2】【答案】 (1)f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 (2)C 【解析】 (1)由题图可知A =2,法一 T 4=7π12-π3=π4, 所以T =π,故ω=2,因此f (x )=2sin(2x +φ),又⎝ ⎛⎭⎪⎫π3,0对应五点法作图中的第三个点, 因此2×π3+φ=π+2k π(k ∈Z),所以φ=π3+2k π(k ∈Z). 又|φ|<π2,所以φ=π3.故f (x )=2sin ⎝⎛⎭⎪⎫2x +π3. 法二 以⎝ ⎛⎭⎪⎫π3,0为第二个“零点”,⎝ ⎛⎭⎪⎫7π12,-2为最小值点, 列方程组⎩⎪⎨⎪⎧ω·π3+φ=π,ω·7π12+φ=3π2,解得⎩⎪⎨⎪⎧ω=2,φ=π3, 故f (x )=2sin ⎝⎛⎭⎪⎫2x +π3. (2)T =2⎝ ⎛⎭⎪⎫11π12-5π12=π=2πω,∴ω=2, 因此f (x )=sin(2x +φ).由五点作图法知A ⎝ ⎛⎭⎪⎫5π12,1是第二点,得2×5π12+φ=π2, 2×5π12+φ=π2+2k π(k ∈Z),所以φ=-π3+2k π(k ∈Z),又|φ|<π2,所以φ=-π3,∴f (x )=sin ⎝⎛⎭⎪⎫2x -π3. 由2x -π3=k π(k ∈Z),得x =k π2+π6(k ∈Z). ∴f (x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2+π6,0(k ∈Z). 【训练2】【答案】 (1)C (2)x =k π2+π6(k ∈Z) 【解析】 (1)由题图知,T =2⎝ ⎛⎭⎪⎫11π12-5π12=π, ∴ω=2πT=2,∴f (x )=-2cos 2x , ∴f (x +φ)=-2cos(2x +2φ),则由图象知,f ⎝ ⎛⎭⎪⎫512π+φ=-2cos ⎝ ⎛⎭⎪⎫56π+2φ=2. ∴5π6+2φ=2k π+π(k ∈Z),则φ=π12+k π(k ∈Z). 又0<φ<π2,所以φ=π12. (2)由图象知A =2,又1=2sin(ω×0+φ),即sin φ=12, 又|φ|<π2,∴φ=π6. 又11π12×ω+π6=2π,∴ω=2, ∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π6, 令2x +π6=π2+k π(k ∈Z),得x =k π2+π6(k ∈Z). ∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π6的对称轴方程为x =k π2+π6(k ∈Z). 【例3-1】【答案】 4【解析】 以圆心O 1为原点,以水平方向为x 轴方向,以竖直方向为y 轴方向建立平面直角坐标系,则根据大风车的半径为2米,圆上最低点O 离地面1米,12秒转动一周,设∠OO 1P =θ,运动t (秒)后与地面的距离为f (t ),又周期T =12,所以θ=π6t , 则f (t )=3+2sin ⎝ ⎛⎭⎪⎫θ-π2=3-2cos π6t (t ≥0), 当t =40 s 时,f (t )=3-2cos ⎝ ⎛⎭⎪⎫π6×40=4. 【例3-2】【答案】见解析【解析】(1)f (x )=2sin ωx cos ωx +3(2sin 2ωx -1)=sin 2ωx -3cos 2ωx =2sin ⎝⎛⎭⎪⎫2ωx -π3. 由最小正周期为π,得ω=1,所以f (x )=2sin ⎝⎛⎭⎪⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z), 整理得k π-π12≤x ≤k π+5π12(k ∈Z),所以函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z). (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到y =2sin 2x +1的图象; 所以g (x )=2sin 2x +1.令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z), 所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可.所以b 的最小值为4π+11π12=59π12. 【训练3】【答案】 20.5【解析】 因为当x =6时,y =a +A =28;当x =12时,y =a -A =18,所以a =23,A =5,所以y =f (x )=23+5cos ⎣⎢⎡⎦⎥⎤π6(x -6), 所以当x =10时,f (10)=23+5cos ⎝ ⎛⎭⎪⎫π6×4 =23-5×12=20.5. 【答案】见解析【解析】①因为f (x )=52sin 2x -532(1+cos 2x )+532=5(12sin 2x -32cos 2x )=5sin ⎝⎛⎭⎪⎫2x -π3, 所以函数的最小正周期T =2π2=π. ②由2k π-π2≤2x -π3≤2k π+π2(k ∈Z), 得k π-π12≤x ≤k π+5π12(k ∈Z), 所以函数f (x )的递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z). 由2k π+π2≤2x -π3≤2k π+3π2(k ∈Z), 得k π+5π12≤x ≤k π+11π12(k ∈Z), 所以函数f (x )的递减区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12(k ∈Z). ③由2x -π3=k π+π2(k ∈Z),得x =k π2+5π12(k ∈Z), 所以函数f (x )的对称轴方程为x =k π2+5π12(k ∈Z). 由2x -π3=k π(k ∈Z),得x =k π2+π6(k ∈Z), 所以函数f (x )的对称中心为⎝⎛⎭⎪⎫k π2+π6,0(k ∈Z). 【例1】【答案】 B 【解析】 由题意,至少出现50次最大值即至少需用4914个周期,所以1974T =1974·2πω≤1,所以ω≥1972π.【例2】【答案】 D【解析】 令π2+2k π≤ωx ≤32π+2k π(k ∈Z),得π2ω+2k πω≤x ≤3π2ω+2k πω,因为f (x )在⎣⎢⎡⎦⎥⎤π3,π2上单调递减,所以⎩⎪⎨⎪⎧π2ω+2k πω≤π3,π2≤3π2ω+2k πω,得6k +32≤ω≤4k +3. 又ω>0,所以k ≥0,又6k +32<4k +3,得0≤k <34,所以k =0. 故32≤ω≤3. 【例3】【答案】 (1)⎣⎢⎡⎦⎥⎤34,78 (2)⎩⎨⎧⎭⎬⎫ω|ω≤-2或ω≥32 【解析】 (1)f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4, 令ωx -π4=π2+k π(k ∈Z),解得x =3π4ω+k πω(k ∈Z). 当k =0时,3π4ω≤π,即34≤ω, 当k =1时,3π4ω+πω≥2π,即ω≤78. 综上,34≤ω≤78. (2)显然ω≠0,分两种情况:若ω>0,当x ∈⎣⎢⎡⎦⎥⎤-π3,π4时,-π3ω≤ωx ≤π4ω. 因函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,所以-π3ω≤-π2,解得ω≥32. 若ω<0,当x ∈⎣⎢⎡⎦⎥⎤-π3,π4时,π4ω≤ωx ≤-π3ω, 因函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,所以π4ω≤-π2,解得ω≤-2. 综上所述,符合条件的实数ω≤-2或ω≥32. 【基础巩固题组】1. 【答案】 A【解析】 由题图可知,A =2,T =2⎣⎢⎡⎦⎥⎤π3-⎝ ⎛⎭⎪⎫-π6=π, 所以ω=2,由五点作图法知2×π3+φ=π2+2k π(k ∈Z), 所以φ=-π6,所以函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x -π6. 2. 【答案】 B【解析】 将y =sin ⎝ ⎛⎭⎪⎫x +φ2cos ⎝⎛⎭⎪⎫x +φ2=12sin(2x +φ)的图象向左平移π8个单位后得到的图象对应的函数为y =12sin ⎝ ⎛⎭⎪⎫2x +π4+φ,由题意得π4+φ=k π+π2(k ∈Z),∴φ=k π+π4(k ∈Z),当k =-1,0,1时,φ的值分别为-3π4,π4,5π4,φ的取值不可能是-π4. 3. 【答案】 D【解析】 由P 是函数y =A sin(ωx +φ)(ω>0)图象上的一个最低点,M ,N 是与P 相邻的两个最高点,知|MP |=|NP |,又∠MPN =60°,所以△MPN 为等边三角形.由P (32,-332),得|MN |=2×3323×2=6. ∴该函数的最小正周期T =6.4. 【答案】 A【解析】 y =sin ⎝ ⎛⎭⎪⎫2x +π5=sin 2⎝ ⎛⎭⎪⎫x +π10,将其图象向右平移π10个单位长度,得到函数y =sin 2x 的图象.由2k π-π2≤2x ≤2k π+π2,k ∈Z,得k π-π4≤x ≤k π+π4,k ∈Z.令k =0,可知函数y =sin 2x 在区间⎣⎢⎡⎦⎥⎤-π4,π4上单调递增. 5. 【答案】 B【解析】 由题意得,f (x )=2sin ⎝⎛⎭⎪⎫2x -π6, 则g (x )=2sin ⎝⎛⎭⎪⎫2x +2t -π6, 从而2sin ⎝ ⎛⎭⎪⎫2x +2t -π6=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π12-x +2t -π6=-2sin(2x -2t )=2sin(2x -2t +π),又t >0, 所以当2t -π6=-2t +π+2k π(k ∈Z)时,即t =7π24+k π2(k ∈Z),实数t min =724π.6. 【答案】 y =sin ⎝ ⎛⎭⎪⎫12x -π10―————————―→横坐标伸长到原来的2倍y =sin ⎝ ⎛⎭⎪⎫12x -π10.7. 【答案】 3【解析】 由图象可知A =2,34T =11π12-π6=3π4,∴T =π,∴ω=2.∵当x =π6时,函数f (x )取得最大值,∴2×π6+φ=π2+2k π(k ∈Z),∴φ=π6+2k π(k ∈Z),∵0<φ<π,∴φ=π6,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6,则f ⎝ ⎛⎭⎪⎫π4=2sin ⎝ ⎛⎭⎪⎫π2+π6=2cos π6= 3.8. 【答案】 143【解析】 依题意,x =π6+π32=π4时,y 有最小值,∴sin ⎝ ⎛⎭⎪⎫π4·ω+π3=-1,∴π4ω+π3=2k π+3π2 (k ∈Z).∴ω=8k +143 (k ∈Z),因为f (x )在区间⎝ ⎛⎭⎪⎫π6,π3上有最小值,无最大值,所以π3-π4≤πω,即ω≤12,令k =0,得ω=143. 9. 【答案】见解析【解析】(1)f (8)=10-3cos ⎝ ⎛⎭⎪⎫π12×8-sin ⎝ ⎛⎭⎪⎫π12×8 =10-3cos 2π3-sin 2π3=10-3×⎝ ⎛⎭⎪⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2(32cos π12t +12sin π12t ) =10-2sin ⎝ ⎛⎭⎪⎫π12t +π3, 又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1. 当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1; 当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天的最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.10. 【答案】见解析【解析】(1)因为f (x )的图象上相邻最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2. 又f (x )的图象关于直线x =π3对称, 所以2×π3+φ=k π+π2(k ∈Z), 因为-π2≤φ<π2,所以k =0, 所以φ=π2-2π3=-π6,所以f (x )=3sin ⎝⎛⎭⎪⎫2x -π6, 则f ⎝ ⎛⎭⎪⎫π4=3sin ⎝⎛⎭⎪⎫2×π4-π6=3sin π3=32. (2)将f (x )的图象向右平移π12个单位后,得到f ⎝ ⎛⎭⎪⎫x -π12的图象, 所以g (x )=f ⎝ ⎛⎭⎪⎫x -π12=3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-π6=3sin ⎝ ⎛⎭⎪⎫2x -π3. 当2k π+π2≤2x -π3≤2k π+3π2(k ∈Z),即k π+5π12≤x ≤k π+11π12(k ∈Z)时,g (x )单调递减. 因此g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12(k ∈Z). 11. 【答案】 B【解析】 ∵x =π12是f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴π3+φ=k π+π2(k ∈Z),即φ=k π+π6(k ∈Z). ∵0<φ<π,∴φ=π6,则f (x )=2sin ⎝⎛⎭⎪⎫2x +π3, ∴g (x )=-2sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1. 12. 【答案】 C【解析】 f (x )=220sin 100πx -220sin ⎝ ⎛⎭⎪⎫100πx +2π3 =220⎣⎢⎡⎦⎥⎤sin 100πx -⎝ ⎛⎭⎪⎫sin 100πx ·cos 2π3+cos 100πx sin 2π3 =220⎝ ⎛⎭⎪⎫sin 100πx +12sin 100πx -32cos 100πx =2203⎝ ⎛⎭⎪⎫32sin 100πx -12cos 100πx =2203×sin ⎝ ⎛⎭⎪⎫100πx -π6, 则由对任意x ∈R,有f (x 1)≤f (x )≤f (x 2)恒成立得当x =x 2时,f (x )取得最大值,当x =x 1时,f (x )取得最小值,所以|x 2-x 1|的最小值为12T =12×2π100π=1100(T 为f (x )的最小正周期),故选C. 13. 【答案】 ⎣⎢⎡⎦⎥⎤-5π12,π12 【解析】 ∵f (x )=1-23cos 2 x -(sin x -cos x )2=sin 2x -3cos 2x -3=2sin ⎝ ⎛⎭⎪⎫2x -π3-3, ∴g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π3-π3-3=2sin ⎝ ⎛⎭⎪⎫2x +π3-3, 由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z), 得-5π12+k π≤x ≤π12+k π(k ∈Z), ∵x ∈⎣⎢⎡⎦⎥⎤-π2,π2, ∴函数g (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的单调递增区间是⎣⎢⎡⎦⎥⎤-5π12,π12.14. 【答案】见解析【解析】(1)设函数f (x )的最小正周期为T ,由题图可知A =1,T 2=2π3-π6=π2, 即T =π,所以π=2πω,解得ω=2, 所以f (x )=sin(2x +φ),又过点⎝ ⎛⎭⎪⎫π6,0, 由0=sin ⎝ ⎛⎭⎪⎫2×π6+φ可得π3+φ=2k π(k ∈Z), 则φ=2k π-π3(k ∈Z),因为|φ|<π2,所以φ=-π3, 故函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎪⎫2x -π3. (2)根据条件得g (x )=sin ⎝ ⎛⎭⎪⎫4x +π3, 当x ∈⎣⎢⎡⎦⎥⎤0,π8时,4x +π3∈⎣⎢⎡⎦⎥⎤π3,5π6, 所以当x =π8时,g (x )取得最小值,且g (x )min =12. 15. 【答案】 π31 【解析】 函数f (x )=23sinωx 2cos ωx 2+2cos 2ωx 2-1=3sin ωx +cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π6. 由T =2πω=π,可得ω=2,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6. ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴π6≤2x +π6≤7π6,∴-1≤f (x )≤2. 画出f (x )的图象(图略),结合图象知x 1+x 2=π3, 则f (x 1+x 2)=f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫2π3+π6=2sin 5π6=1.。