表面活性剂复配原理要点
- 格式:ppt
- 大小:792.50 KB
- 文档页数:61
(一).Kraft点,浊点(昙点)温度对增溶作用的影响:•★Kraft点:对于离子型表面活性剂,温度增加到某个温度,表面活性剂的溶解度急剧升高,这一温度即Kraft点。
•★浊点(昙点):对于非离子型表面活性剂,温度增加到某个温度,表面活性剂的溶解度急剧下降,溶液出现浑浊,这一温度即浊点。
•表面活性剂的复配:表面活性剂相互间,或与其它化合物配合使用能提高增溶能力,降低用量。
(二).CMC★Def:表面活性剂在水中随着浓度增大,表面上聚集的活性剂分子形成定向排列的紧密单分子层,多余的分子在体相内部也三三两两的以憎水基互相靠拢,聚集在一起形成胶束,这开始形成胶束的最低浓度称为临界胶束浓度。
表面活性剂在溶液中开始形成胶束的最低浓度称为临界胶束浓度。
胶束形状:球状、棒状、层状★胶束的作用:乳化作用;泡沫作用;分散作用;增溶作用;催化作用润湿:液体和固体表面接触时,原来的固-气界面消失,形成新的固-液界面的现象。
是溶液表面张力下降,溶液表面具有吸附现象的结果。
增溶:脂溶性强的物质在与本身性质相似的胶束中,溶解度可明显增大,形成透明溶液,这一作用称为增溶。
增溶体系为热力学上稳定的各向同性溶液。
一定浓度的表面活性剂溶液中溶解的被增溶物质的饱和浓度称为:增容量乳化:互不相溶的两液相,一相液体以液滴状态分散于另一相中,形成非均匀相液体分散体系(称为乳剂),这一作用称为乳化作用。
表面活性剂在此又称为乳化剂,它使一相液体以非常微小液滴状态均匀分散于另一相中。
泡沫:使空气进入溶液中,液体薄膜包围着气体形成泡,由于溶液浮力而升到溶液表面,最终逸出液面形成双分子薄膜。
是气体分散在液体中的分散体系。
★影响CMC的因素:1)表面活性剂的结构:主要包括表面活性剂的碳氢链链长(C↑,CMC↓),碳氢链分支数目(分支多,烃链间作用力↓,CMC↑)、极性基位置(极性基位于烃链中间,CMC↑)、碳氢链中其它取代基(烃链中有极性基团时,CMC↑)、亲水基团(CMC离子> CMC非离子)2)外部条件:温度(T↑,CMC非离子↓)(三). HLB值:(表面活性剂亲水亲油平衡值)★Def:表示分子内部平衡后整个分子的综合倾向是亲水的还是亲油的。
阴-阳离子表面活性剂复配研究与应用摘要:综合介绍了阴-阳离子表面活性剂复配体系在各种物化性能的增效效应,例如降低表面张力的效能、表面张力的效率、降低临界胶束浓度的能力、改善表面吸附的能力,以及这些增效效应在去污、增溶、泡沫、润湿、乳化等方面的应用。
讨论了提高阴-阳离子表面活性剂之间的可配伍性之对策,诸如采用非等摩尔比复配、在离子型表面活性剂中引入聚氧乙烯链及加入非离子或两性表面活性剂进行调节等手段以优化配方性能和提高综合经济效益。
总结了阴—阳离子表面活性剂复配体系用于洗涤用品的可行性配方技术,即采取无机助剂、水溶性有机高聚物或非离子表面活性剂包裹阳离子表面活性剂的措施。
关键词:阴离子表面活性剂;阳离子表面活性剂;复配体系;增效效应;研究;应用目前,表面活性剂复配体系的研究与应用已形成热点,如表面活性剂与无机物、高聚物或表面活性剂之间复配等,其目的是提高含表面活性剂配方的性能,优化使用并提高经济效益。
长期以来,在表面活性剂复配应用过程中把阳离子型表面活性剂与阴离子型表面活性剂的复配视为禁忌,一般认为两者在水溶液中相互作用会产生沉淀或絮状络合物,从而产生负效应甚至使表面活性剂失去表面活性。
研究发现,在一定条件下阴-阳离子表面活性剂复配体系具有很高的表面活性,显示出极大的增效作用,这样的复配体系已成功地用于实际。
由于阴-阳离子表面活性剂复配在一起相互之间必然产生强烈的电性作用,因而使表面活性大大提高。
有人认为阳离子型表面活性剂与阴离子型表面活性剂混合之后形成了“新的络合物”,并会表现出优异的表面活性和各方面的增效效应。
1阴-阳离子表面活性剂复配的增效效应1.1降低表面张力的效能复配溶液所能达到的最低表面张力,即在cmc时的表面张力γcmc比单一组分的最低表面张力低。
阳离子表面活性剂C8H17N(CH3)3Br(以下用C8N表示)与阴离子表面活性剂C8H17SO4Na(以下用C8S表示)等摩尔复配体系的γcmc比两纯组分各自的γcmc低得多,尤其在正庚烷/水溶液界面的界面张力的降低表现更为突出,等摩尔复配体系的界面张力可以低至0.2mN/m,而两种纯表面活性剂溶液相应的界面张力则高得多(分别为14mN/m和11mN/m)。
表面活性剂的复配原理表面活性剂的复配原理是指将不同种类的表面活性剂按一定的比例和方式组合使用,以达到更好的表面张力调节、乳化稳定以及分散悬浮等效果。
表面活性剂由亲水基和疏水基组成,亲水基具有亲水性,疏水基具有疏水性。
在液体中,亲水基会向水相靠近,而疏水基会向空气相靠近。
当表面活性剂溶解在液体中时,由于其分子有两个相对独立的界面,即表面活性剂分子的水溶液界面和水/空气界面。
在这两个界面上,亲水基和疏水基具有不同的定位,形成了所谓的吸附层,这种吸附行为也决定了表面活性剂的表面活性。
通过复配不同种类的表面活性剂可以调节表面张力和稳定乳液、分散悬浮体系。
具体原理如下:1. 鸟嘌呤类表面活性剂与短链烷基硫酸盐类表面活性剂的复配:鸟嘌呤类表面活性剂具有良好的乳化性能,但其乳化稳定性较差。
而短链烷基硫酸盐类表面活性剂具有良好的乳化稳定性。
因此,将两者复配使用可以提高乳化体系的稳定性,同时实现良好的乳化效果。
2. 非离子型表面活性剂与阳离子型表面活性剂的复配:非离子型表面活性剂在水性体系中具有较好的乳化性能,但其稳定性相对较差。
而阳离子型表面活性剂则具有良好的稳定性。
将两者复配使用可以同时实现较好的乳化效果和乳化稳定性。
3. 阴离子型表面活性剂与非离子型表面活性剂的复配:阴离子型表面活性剂在水性体系中具有较好的分散悬浮性能,但其分散稳定性较差。
而非离子型表面活性剂具有较好的分散稳定性。
将两者复配使用可以提高分散悬浮体系的稳定性,同时实现良好的分散效果。
通过合理复配不同种类的表面活性剂,可以充分利用各种表面活性剂的特性,实现更好的表面张力调节、乳化稳定以及分散悬浮等效果。
阳离子:质量分数0.5%十六烷基三甲基溴化铵(分子量364.45),
阴离子:质量分数0.5%十二烷基苯磺酸钠(分子量348.48),
非离子:质量分数0.5%TO-10(分子量630)
仪器:烧杯,移液管,滴管,天平
2.实验部分
2.1向阳离子中滴加阴离子,记录发生沉淀时阴阳离子比例,获得阴
阳离子混合时发生沉淀反应的区域。
2.2在生成沉淀的区域,选择不同的阴阳离子比例,向其中加入非离子,当沉淀消失时,记录三者的用量比。
2.3选择某一比例的复配体系,测定其表面张力。
3.结果
3.1向阳离子中加入阴离子,发现当阴阳离子体积比大于12:5时会有
白色浑浊生成,即生成沉淀的区域为V阳离子:V阴离子< 5:12
3.2向阳离子中加入阴离子,产生沉淀后继续加入非离子至浑浊消失,三者的用量比例列入下表
序号 1 2 3 4 5 6 7 8 9 10 11 十六烷基三甲基溴化铵/ml 5 5 5 5 5 5 5 5 5 5 5 十二烷基苯磺酸钠/ml 12 15 20 25 30 35 40 45 50 55 60 TO-10/ml 1 18 27 50 65 67 67 67 67 67 67 3.3(表面张力测定结果)
阴阳离子进行复配时会有沉淀生成,影响表面活性剂的使用,加入一定比例的某些非离子型表面活性剂后可以使沉淀消除,增大阴阳离子表面活性剂的使用比例范围。
洗涤剂配方复配知识讲解洗涤剂属于配方密集型产品,洗涤剂是将不同的洗涤剂成分按一定比例混合,使以达到最佳的清洁效果和经济效益。
常见的复配原理包括:1、互补复配:将具有不同清洁功能的洗涤剂成分混合使用,如表面活性剂和酶类洗涤剂的互补复配。
2、协同复配:将具有相同或相似清洁功能的洗涤剂成分混合使用,以增强清洁效果,如表面活性剂和助剂的协同复配。
3、对抗复配:将具有相反作用的洗涤剂成分混合使用,以达到平衡效果,如表面活性剂和缓蚀剂的对抗复配。
表面活性剂和泡沫抑制剂的复配。
洗涤剂中的各种成分经过精确的复配,相互作用,协同发挥作用,以达到更好的清洁效果和节约成本的目的。
常见的复配原理包括下面是洗涤剂各种成分之间的相互作用:1、表面活性剂:洗涤剂中最重要的成分,表面活性剂可以使污垢分散在水中,并在洗涤水溶液中形成泡沫。
它们能够在水和油之间降低表面张力,使油和污垢从衣物表面剥离并被水冲走。
不同类型的表面活性剂对不同污垢有不同的清洁能力,因此需要在复配过程中选择最佳比例,以达到最佳的清洁效果。
例如,阴离子表面活性剂和非离子表面活性剂的复配增加提高清洁效果和去污能力;两性表面活性剂和阴离子表面活性剂的复配可以提高清洁效果,泡沫稳定性和减少刺激性。
2、生物酶类制剂:洗涤剂中的酶类制剂可以瓦解某些污垢,如蛋白质和淀粉等,提高清洁效果。
同时,酶类制剂与表面活性剂相互作用,可以增加表面活性剂的清洁能力。
3、抗污垢再沉积剂:和表面活性剂有强的互补作用,指抗污垢再沉积剂可以与表面活性剂结合,形成一种复合物,从而增强其去污能力和防止再沉积能力。
可互相促进洗涤效力。
一般来说,抗污垢再沉积剂中的聚合物可以与表面活性剂形成交联结构,从而增强其稳定性和去污能力。
4、酸碱度控制剂:洗涤剂中的酸碱度对其清洁效果有很大影响。
酸碱度控制剂可以在洗涤过程中稳定洗涤剂的酸碱度,并与硬度调节剂相互作用,减少水垢的形成,提高洗涤效果。
5、配制中的水硬度调节剂:硬水中含有大量的钙、镁等离子,容易形成水垢,降低洗涤剂的清洁效果。