第9章 表面活性剂的复配
- 格式:ppt
- 大小:796.00 KB
- 文档页数:22
表面活性剂复配对1/3焦煤润湿性能的影响研究摘要:以1/3焦煤为研究对象,选取5种表面活性剂,通过接触角、表面张力和沉降实验,研究表面活性剂及其复配溶液对煤尘润湿性能的影响;通过红外光谱实验,分析复配溶液对煤表面官能团的影响。
结果发现当表面活性剂的浓度达到CMC 后,继续增加表面活性剂的浓度,表面活性剂的表面张力、接触角和煤尘的沉降速度呈现不同的变化规律,分析认为表面活性剂分子吸附状态发生变化是导致这种现象发生的原因;0.4wt%APG0810+0.4wt%JFC-E 的等质量复配溶液,对1/3焦煤有着显著的协同润湿效应。
煤尘沉降速度达到了45.45mg/s 。
煤样经0.4wt%APG0810+0.4wt%JFC-E 的复配溶液浸泡处理后,含氧官能团和亲水官能团的比例升高,分别达到了50.24%和83.65%。
由此推断,复配后表面活性剂分子在煤尘上有更高的吸附密度。
关键词:1/3焦煤;煤尘;表面活性剂;复配溶液;润湿中图分类号:X964文献标识码:A文章编号:2095-0438(2024)03-0145-06(1.安徽理工大学安全科学与工程学院;2.安徽理工大学煤炭安全精准开采国家地方联合工程研究中心安徽淮南232001)在煤炭开采过程中,会产生大量的煤尘,其中综采工作面和掘进工作面煤尘浓度可达3000mg/m 3[1]。
远远超过国家标准,严重危害煤矿企业的安全生产与煤矿工人的身体健康[2]。
由于煤表面有大量的芳香族、脂肪族等疏水性官能团,而且纯水的表面张力高达72mN/m ,导致纯水难以在煤的表面铺展,对煤尘的润湿效果有限[3-5]。
国内外学者研究发现,在水中添加表面活性剂能大幅降低水的表面张力,提高对煤尘的润湿效果[6-8]。
朱森等[9]合成了一种Gemini 阴离子表面活性剂,研究发现Gemini 阴离子表面活性剂在降低水的表面张力方面具有极高的效率。
张政等[3]研究发现,十二烷基硫酸钠(SDS )溶液对烟煤有良好的润湿效果。
表面活性剂的复配原理表面活性剂的复配原理是指将不同种类的表面活性剂按一定的比例和方式组合使用,以达到更好的表面张力调节、乳化稳定以及分散悬浮等效果。
表面活性剂由亲水基和疏水基组成,亲水基具有亲水性,疏水基具有疏水性。
在液体中,亲水基会向水相靠近,而疏水基会向空气相靠近。
当表面活性剂溶解在液体中时,由于其分子有两个相对独立的界面,即表面活性剂分子的水溶液界面和水/空气界面。
在这两个界面上,亲水基和疏水基具有不同的定位,形成了所谓的吸附层,这种吸附行为也决定了表面活性剂的表面活性。
通过复配不同种类的表面活性剂可以调节表面张力和稳定乳液、分散悬浮体系。
具体原理如下:1. 鸟嘌呤类表面活性剂与短链烷基硫酸盐类表面活性剂的复配:鸟嘌呤类表面活性剂具有良好的乳化性能,但其乳化稳定性较差。
而短链烷基硫酸盐类表面活性剂具有良好的乳化稳定性。
因此,将两者复配使用可以提高乳化体系的稳定性,同时实现良好的乳化效果。
2. 非离子型表面活性剂与阳离子型表面活性剂的复配:非离子型表面活性剂在水性体系中具有较好的乳化性能,但其稳定性相对较差。
而阳离子型表面活性剂则具有良好的稳定性。
将两者复配使用可以同时实现较好的乳化效果和乳化稳定性。
3. 阴离子型表面活性剂与非离子型表面活性剂的复配:阴离子型表面活性剂在水性体系中具有较好的分散悬浮性能,但其分散稳定性较差。
而非离子型表面活性剂具有较好的分散稳定性。
将两者复配使用可以提高分散悬浮体系的稳定性,同时实现良好的分散效果。
通过合理复配不同种类的表面活性剂,可以充分利用各种表面活性剂的特性,实现更好的表面张力调节、乳化稳定以及分散悬浮等效果。
表面活性剂及其复配体系摘要:本文主要介绍了表面活性的种类、特性以及复配方法。
并着重介绍了复配体系的复配方法、性能以及应用用于学习交流。
关键词:阴离子表面活性剂阳离子表面活性剂复配体系一、表面活性剂结构特征及分类表面活性剂是指既具有亲水性又具有亲油性,在溶液的表面能定向排列,并能使表面张力显著下降的物质。
它是一大类有机化合物,他们的性质极具特色,应用极为灵活、广泛,有很大的实用价值和理论意义。
为了达到稳定,表面活性剂溶于水时,可以采取两种方式:1.在液面形成单分子膜将亲水基留在水中而将疏水基伸向空气,以减小排斥。
而疏水基与水分子间的斥力相当于使表面的水分子受到一个向外的推力,抵消表面水分子原来受到的向内的拉力,亦即使水的表面张力降低。
2.形成“胶束”胶束可为球形,也可是层状结构,都尽可能地将疏水基藏于胶束内部而将亲水基外露。
这类表面活性剂具有增溶作用。
如溶液中有不溶于水的油类(不溶于水的有机液体的泛称),则可进入球形胶束中心和层状胶束的夹层内而溶解。
按表面活性剂溶于水时的电性特征,表面活性剂可分为:①阴离子表面活性剂②阳离子表面活性剂③非离子表面活性剂④两性离子表面活性剂二、表面活性剂复配系统概述不同表面活性各自有其特点。
通常,改变表面活性剂应用性能的途径有两种:一种是根据结构与性能的关系设计合成新型表面活性剂,另一种是通过多种表面活性剂的复配得到具有优异性能的产品。
开发表面活性剂新品种往往难度很大,而且进行毒性安全性试验也很困难。
相比较而言,通过复配的方法改进体系的特性就比较迅速、经济、有效。
近年来,对表面活性剂复配协同增效的研究正在引起越来越多的重视,不同结构的表面活性剂组成的复配体系不仅可以形成多种多样的体相缔合结构,而且在界面上可以发生协同吸附,比单一表面活性剂体系降低界面张力的力更强,利用表面活性剂复配提高界面活性已经成为强化采油等应用领域有效的技术措施之一。
表面活性剂复配后,一方面由于分子间相互作用,性基团之间的静电排斥作用减小,排列更为紧密;另一方面,二者的碳氢链由于疏水效应也会相互吸引。
阴-阳离子表面活性剂复配研究与应用目前,表面活性剂复配体系的研究与应用已形成热点,如表面活性剂与无机物、高聚物或表面活性剂之间复配等,其目的是提高含表面活性剂配方的性能,优化使用并提高经济效益。
长期以来,在表面活性剂复配应用过程中把阳离子型表面活性剂与阴离子型表面活性剂的复配视为禁忌,一般认为两者在水溶液中相互作用会产生沉淀或絮状络合物,从而产生负效应甚至使表面活性剂失去表面活性。
研究发现,在一定条件下阴-阳离子表面活性剂复配体系具有很高的表面活性,显示出极大的增效作用,这样的复配体系已成功地用于实际。
由于阴-阳离子表面活性剂复配在一起相互之间必然产生强烈的电性作用,因而使表面活性大大提高。
有人认为阳离子型表面活性剂与阴离子型表面活性剂混合之后形成了“新的络合物”,并会表现出优异的表面活性和各方面的增效效应。
1阴-阳离子表面活性剂复配的增效效应1.1降低表面张力的效能复配溶液所能达到的最低表面张力,即在cmc时的表面张力γcmc比单一组分的最低表面张力低。
阳离子表面活性剂C8H17N(CH3)3Br(以下用C8N表示)与阴离子表面活性剂C8H17SO4Na(以下用C8S表示)等摩尔复配体系的γcmc比两纯组分各自的γcmc低得多,尤其在正庚烷/水溶液界面的界面张力的降低表现更为突出,等摩尔复配体系的界面张力可以低至0.2mN/m,而两种纯表面活性剂溶液相应的界面张力则高得多(分别为14mN/m和11mN/m)。
事实上,在单组分的碳氢链表面活性剂中尚未见报道能达到如此低的表面张力和界面张力。
1.2降低表面张力的效率达到指定的表面张力γ时,复配体系所需表面活性剂总浓度比单一表面活性剂溶液所需浓度低。
十二醇聚氧乙烯醚硫酸铵(AESA)与阳离子表面活性剂十二烷基三甲基溴化铵(DTAB)以9/1(mol)复配,当达到相同的表面张力38mN/m时,体系的总浓度为5×10-6mol/L,远比单一组分AESA(4×10-4mol/L及DTAB(1×10-2mol/L)的浓度低得多。
一、复配表面活性剂的增效作用当表面活性剂溶液中含有同系物或添加另一种表面活性剂或其他有机物,无机电介质后,溶液的物理化学或表面特性将发生明显的变化,并将改变其应用性能。
通常对表面活性剂是由不同的亲水基团与憎水基团组合而成,常采用亲水—亲油平衡值(HLB)来表示表面活性剂分子中这两种不同极性基团的相互平衡程度,对非离子表面活性剂还采用浊点来表示亲水性大小,HLB值愈大,浊点愈高,表面活性剂的亲水性愈好。
另外,常把临界胶束浓度(CMC)作为表面活性剂形成胶束的最低浓度;同时以临界胶束浓度的倒数(1/CMC)表示降低表面张力的效率,临界胶束浓度愈低,则效率愈高。
此外,还将表面活性剂在临界胶束浓度时的表面张力δcmc可作为表征表面活性剂表面特性的量度。
1、非—非离子表面活性剂复配后的表面特性不同结构非离子表面活性剂复配后的表面特性:非—非离子表面活性剂复配后,浊点,CMC和δcmc 均介于两组分之间。
由此可见,非—非离子表面活性剂复配后形成的胶团可视为理想胶团,所形成的混合液可作为同系物混合物,它们是一类具有相同结构的极性基或非极性基组成,仅仅在链长有一些差别,故而它们的物理化学性质或表面特性处于各表面活性剂之间,但不是简单平均值。
而且还表明非—非离子表面活性剂混合体系中,CMC值较低的表面活性较高的组分(如AEO—9,MSE)容易在混合液中形成胶团;反之,CMC值较高的表面活性较低的表面活性剂(如AEP—13等)则不易形成胶团。
反胶团是指表面活性剂溶解在有机溶剂中,当其浓度超过CMC (临界胶束浓度)后,形成亲水极性头朝内,疏水链朝外的液体颗粒结构。
反胶团内核可增溶水分子,形成水核,颗粒直径小于100 nm时,称为反胶团,颗粒直径介于100~2 000 nm时,称为W/O 型微乳液。
反胶团或微乳液体系一般由表面活性剂,助表面活性剂,有机溶剂和H 2 O 四部分组成。
它是一个热力学稳定体系,其水核相当于一个“微型反应器”,这个“微型反应器”具有很大的界面,在其中可以增溶各种不同的化合物,是非常好的化学反应介质。
表面活性剂的复配名词解释表面活性剂是一种化学物质,通常被广泛应用于日常生活和工业领域。
它能够改变液体或固体表面的性质,使其具有较好的润湿性能和界面活性。
表面活性剂的复配是指将两种或更多种表面活性剂混合使用,以提高其性能和应用范围。
下面将对表面活性剂常用的复配名词进行解释。
1. 合成复配合成复配是指通过合成方法将不同种类的表面活性剂分子有机地连接在一起形成复配分子。
这种复配能够综合各个成分的优点,以产生更好的表面活性效果。
例如,将疏水性表面活性剂与亲水性表面活性剂通过酯化、醚化等方法连接在一起,可以在较低的浓度下提供更好的起泡性和去污能力。
2. 物理复配物理复配是指将两种或多种表面活性剂以机械混合的方式共同应用。
这种复配通常在液体洗涤剂和清洁剂中常见。
物理复配能够通过不同种类表面活性剂之间的相互作用,实现更好的清洁效果和稳定性。
例如,将非离子表面活性剂与阳离子表面活性剂物理复配,可以提高洗涤剂对油污和蛋白质的去除能力,并增强泡沫稳定性。
3. 亲合复配亲合复配是指将两种或多种互相配合的表面活性剂共同应用。
这种复配能够通过表面活性剂之间的疏水相互作用和亲水相互作用,实现更好的稳定性和表面活性效果。
例如,将疏水性阴离子表面活性剂与疏水性非离子表面活性剂亲合复配,可以提高洗涤剂对油污的去除能力,并增加表面张力。
4. 微乳液复配微乳液复配是指将两种或多种表面活性剂与水相结合,形成微乳液体系。
微乳液复配具有优异的稳定性和清洁性能。
这种复配通常应用于皮肤护理产品和清洁剂。
例如,将阴离子表面活性剂与非离子表面活性剂复配形成的微乳液,能够提供丝滑的质感和有效去除油脂。
微乳液复配既具有水溶性的特点,又具有油溶性成分的特点,能够更好地提高功效成分的吸收和释放。
在表面活性剂的复配中,需要考虑各种表面活性剂之间的相容性、稳定性和协同效应。
根据应用需求和使用环境,选择适当的复配方式和成分比例,可以最大程度地发挥表面活性剂的性能和应用效果。