2019年杨浦区八年级第二学期数学期末
- 格式:doc
- 大小:279.50 KB
- 文档页数:9
2019-2020学年下海市杨浦区八年级第二学期期末达标检测数学试题一、选择题(每题只有一个答案正确)1.电影院里的座位按“×排×号”编排,小明的座位简记为(12,6),小菲的座位简记为(12,12),则小明与小菲坐的位置为( )A.同一排B.前后同一条直线上 C.中间隔六个人D.前后隔六排2.下列四个图形中,既是轴对称又是中心对称的图形是()A.4个B.3个C.2个D.1个3.已知2是关于x的方程x2﹣2ax+4=0的一个解,则a的值是()A.1 B.2 C.3 D.44.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM 是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确D.甲、乙均错误5.如图,在菱形ABCD中,对角线AC、BD相较于点O,BD=8,BC=5,AE⊥BC于点E,则AE的长为( )A.5 B.125C.245D.1856.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD7.函数y 5x 1=-中,自变量x 的取值范围是( )A .x >1B .x <1C .1x 5≥D .1x 5≥- 8.下列各组数中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )A .3、4、5B .5、12、13C .325、、D .7、24、259.在平行四边形ABCD 中,若∠B=135°,则∠D=( )A .45°B .55°C .135°D .145° 10.一个多边形的内角和是1260°,这个多边形的边数是( )A .6B .7C .8D .9二、填空题11.直角三角形中,两条直角边长分别为12和5,则斜边上的中线长是________.12.若一次函数()21y k x =-+的函数值y 随x 的增大而增大,则k 的取值范围是_____.13.观察下列各式:32=4+5,52=12+13,72=24+25,92=40+41…根据发现的规律得到132= ____ + ____. 14.如图,在▱ABCD 中,对角线AC 、BD 相交于点O .如果AC=8,BD=14,AB=x ,那么x 的取值范围是____.15.如图放置的两个正方形,大正方形ABCD 边长为a ,小正方形CEFG 边长为b(a >b),M 是BC 边上一个动点,联结AM ,MF ,MF 交CG 于点P ,将△ABM 绕点A 旋转至△ADN ,将△MEF 绕点F 旋转恰好至△NGF .给出以下三个结论:①∠AND =∠MPC ; ②△ABM ≌△NGF ;③S 四边形AMFN =a 1+b 1.其中正确的结论是_____(请填写序号).16.若数a 使关于x 的不等式组11+2352x x x x a-⎧⎪⎨⎪-≥+⎩<有且只有四个整数解,且使关于y 的方程211y a a y y ++--=2的解为非负数,则符合条件的所有整数a 的和为_____.171x +有意义,则x 的取值范围为___. 三、解答题18.如图,在▱ABCD 中,CE 平分∠BCD ,交AD 于点E ,DF 平分∠ADC ,交BC 于点F ,CE 与DF 交于点P ,连接EF ,BP .(1)求证:四边形CDEF 是菱形;(2)若AB =2,BC =3,∠A =120°,求BP 的值.19.(6分)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图所示.①当0≤x≤3时,求y 与x 之间的函数关系.②3<x≤12时,求y 与x 之间的函数关系.③当容器内的水量大于5升时,求时间x 的取值范围.20.(6分)解下列方程:(1)22122x x x-=--; (2)2660x x -+=. 21.(6分)如图,ABCD ◇的对角线AC 、BD 相交于点O ,AE=CF .(1)求证:BOE DOF △≌△;(2)若BD=EF ,连接BE 、BF ,判断四边形BEDF 的形状,并说明理由.22.(8分)已知x=2+1,y=2-1,求x y y x-的值. 23.(8分)已知:如图,在ABC ∆中,,36AB AC B =∠=︒。
一、选择题(每题4分,共20分)1. 下列数中,是质数的是()A. 17B. 18C. 19D. 202. 一个长方形的长是10cm,宽是6cm,那么它的周长是()A. 26cmB. 32cmC. 34cmD. 36cm3. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形4. 下列方程中,x=3是它的解的是()A. 2x + 5 = 11B. 3x - 2 = 7C. 4x + 1 = 15D. 5x - 3 = 125. 如果a > b,那么下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. a + 2 < b + 2D. a - 2 > b - 2二、填空题(每题5分,共20分)6. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是______cm。
7. 2的平方根是______,3的立方根是______。
8. (-5)的相反数是______,0的倒数是______。
9. 如果a = -3,那么a的平方是______。
10. (3x + 2)-(2x - 5)=______。
三、解答题(每题10分,共30分)11. 计算下列各式的值:(1)(-3)² × (-2)³(2)-2(5 - 3x) + 4x12. 解下列方程:(1)2x - 5 = 3(2)3(x - 2) + 2 = 4x + 113. 已知一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的面积。
四、应用题(每题10分,共20分)14. 小明家装修,需要购买地砖。
已知地砖的边长为0.5m,小明家客厅的长为4m,宽为3m,请计算小明家需要购买多少块地砖。
15. 学校举行篮球比赛,甲队与乙队进行单循环比赛,共进行了5场比赛。
已知甲队赢了3场,请问乙队赢了多少场?答案:一、选择题1. A2. B3. D4. C5. A二、填空题6. 28cm7. -2,1.7328. 5,不存在9. 9 10. x + 7三、解答题11. (1)-24 (2)4x - 112. (1)x = 4 (2)x = 313. 三角形面积 = (底边长× 高) / 2 = (8cm × 10cm) / 2 = 40cm²四、应用题14. 小明家客厅面积 = 长× 宽= 4m × 3m = 12m²地砖面积= 0.5m × 0.5m = 0.25m²所需地砖块数 = 客厅面积 / 地砖面积= 12m² / 0.25m² = 48块15. 甲队赢了3场,乙队赢了5 - 3 = 2场。
一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001……D. -32. 已知x² - 5x + 6 = 0,则x的值为()A. 2,3B. 1,6C. 2,-3D. 1,-63. 下列函数中,y是x的一次函数的是()A. y = x² + 1B. y = 2x - 3C. y = √xD. y = 1/x4. 在平面直角坐标系中,点A(-2,3)关于y轴的对称点是()A.(-2,-3)B.(2,3)C.(2,-3)D.(-2,-3)5. 一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长是()A. 24cmB. 28cmC. 32cmD. 36cm6. 已知a,b,c是等差数列,且a+b+c=9,a+c=5,则b的值为()A. 2B. 3C. 4D. 57. 下列各式中,能够化简为同类二次根式的是()A. √9 + √16B. √25 - √4C. √36 + √1D. √81 - √98. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 梯形9. 在△ABC中,∠A=45°,∠B=90°,∠C=45°,则△ABC是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形10. 下列各数中,不是实数的是()A. √4B. √-1C. -√9D. √-4二、填空题(每题3分,共30分)11. 3x² - 6x + 3的因式分解为______。
12. 已知a² + b² = 25,a - b = 3,则a + b的值为______。
13. 函数y = 2x + 1在x=2时的函数值为______。
14. 在平面直角坐标系中,点P(3,-4)到原点O的距离为______。
15. 等腰三角形底边长为10cm,腰长为8cm,则这个三角形的面积是______cm²。
杨浦区2019学年度第二学期期末质量抽查初二数学试卷(测试时间90分钟,满分100分) 2019.6一、选择题(本大题共6题,每题3分,满分18分)1.下列说法正确的是…………………………………………………………( ) (A )20x x -=是二项方程;(B )1423x x--=是分式方程; (C 22x -=是无理方程;(D )224x y -=是二元二次方程.2.下列关于x 的方程一定有实数根的是 ……………………………………( ) (A )10ax -=;(B )210ax -=;(C )0x a -=;(D )20x a -=.3.四边形ABCD 中,90=∠=∠=∠C B A ,下列条件能使这个四边形是正方形的是 ………………………………………………………………………………( ) (A )90=∠D ; (B )CD AB =; (C )CD BC =; (D )BD AC =. 4.如图,梯形ABCD 中,AD ∥BC ,DE ∥AB 交BC 边于点E.那么下列事件中属于随机事件的是 ……………………………………………………………() (A )EBAD =;(B )DC AB =;(C )DE AB =;(D )EC AD =.5.若是非零向量,则下列等式正确的是 ………………………………( ) (A(B; (C )+=0; (D )=.6.如图所示的图像中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x 表示时间,y 表示张强离家的距离.根据图像提供的信息,以下四个说法中错误的是…………………………………( ) (A )体育场离张强家2.5千米;(B )张强在体育场锻炼了15分钟;(C )体育场离早餐店1千米; (D )张强从早餐店回家的平均速度是3千米/小时.(第4题图) (第6题图)D CE B A二、填空题(本大题共12题,每题2分,满分24分) 7.方程480x -=的根是 . 8.已知方程0342)12(2=-+-+x x x ,如果设y x=+12,那么原方程化为关于y 的方 程是 .9.若一次函数(1)2y k x =-+中,y 随x 的增大而增大,则k 的取值范围是 .10.将直线2y x =-+向下平移3个单位,所得直线经过的象限是 . 11.若直线1y kx =-与x 轴交于点(3,0),当1y >-时,x 的取值范围是 .12.如果多边形的每个外角都是45º,那么这个多边形的边数是 . 13.如果菱形边长为13,一条对角线长为10,那么它的面积为 . 14.如果一个平行四边形的内角平分线与边相交,并且这条边被分成3、5两段,那么这个平行四边形的周长为 .15.在△ABC 中,点D 是边AC 的中点,如果,AB a BD b ==,那么CD = . 16.顺次连接三角形三边的中点所构成的三角形周长为16,那么原来的三角形周长是 .17.当2=x 时,不论k 取何实数,函数3)2(+-=x k y 的值为3,所以直线3)2(+-=x k y 一定经过定点(2,3);同样,直线(2)3y k x k =-+一定经过的定点为 . 18.在梯形ABCD 中,AD //BC ,AB ⊥BC ,AD =2,AB =3, BC =6,如果CE 平分∠BCD 交边AB 于点E ,那么DE 的 长为 .三、解答题(本大题共6题,满分40分) 19.(本题6分)23x x =-C(第18题图)20.(本题6分)解方程组:2232 4.xy x xy y ==⎧⎨-+⎩,21.(本题6分)有一个不透明的袋子里装有除标记数字不同外其余均相同的4个小球,小球上分别标有数字1,2,3,4.(1)任意摸出一个小球,所标的数字不超过4的概率是 ; (2)任意摸出两个小球,所标的数字和为偶数的概率是 ;(3)任意摸出一个小球记下所标的数字后,再将该小球放回袋中,搅匀后再摸出一个小球,摸到的这两个小球所标数字的和被3整除的概率是多少?(请用列表法或树形图法说明)22.(本题6分)已知平行四边形ABCD ,点E 是BC 边上的点,请回答下列问题: (1)在图中求作AD 与DC 的和向量并填空:AD DC += ; (2)在图中求作AD 减DC 的差向量并填空:AD DC -= ; (3)计算:AB BE EA ++= . (作图不必写结论)BA CDE(第22题图)23.(本题8分)八年级的学生去距学校10千米的科技馆参观,一部分学生骑自行车先走,过了25分钟,其余的学生乘汽车出发,结果他们同时到达,已知每小时汽车的速度比骑自行车学生速度的2倍还多10千米,求骑车学生每小时行多少千米?24.(本题8分)已知梯形ABCD中,AD//BC,AB=AD=DC,点E、F分别是对角线AC、BD的中点.求证:四边形ADEF为等腰梯形.C(第24题图)四、解答题(本大题共2题,满分18分)25.(本题8分,第(1)小题5分,第(2)小题3分)平行四边形ABCD在平面直角坐标系中的位置如图所示,已知AB=8,AD=6,∠BAD=60°,点A的坐标为(-2,0).求:(1)点C的坐标;(2)直线AC与y轴的交点E的坐标.(第25题图)26.(本题10分,第(1)小题3分,第(2)小题4分,第(3)小题3分)如图,AC ⊥BC ,直线AM //CB ,点P 在线段AB 上,点D 为射线AC 上一动点,联结PD ,射线PE ⊥PD 交直线AM 于点E . 已知BP,AC =BC =4,。
2019-2020学年上海市杨浦区八年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)1.(3分)一次函数y=2x﹣3的图象在y轴的截距是()A.2B.﹣2C.3D.﹣32.(3分)一次函数y=x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列方程组是二元二次方程组的是()A.B.C.D.4.(3分)如果一个多边形的内角和与外角和相等,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形5.(3分)下列事件为必然事件的()A.方程x2+1=0在实数范围内有解B.抛掷一枚硬币,落地后正面朝上C.对角线相等的平行四边形是矩形D.对角线互相垂直的四边形是菱形6.(3分)如果点C、D在线段AB上,|AC|=|BD|,那么下列结论中正确的是()A.与是相等向量B.与是相等向量C.与是相反向量D.与是平行向量二、填空题(本大题共12题,每题2分,满分24分)7.(2分)已知一次函数y=(k﹣1)x+2的图象与直线y=3x平行,那么k=.8.(2分)已知一次函数y=(1﹣2m)x+m,函数值y随自变量x的值增大而减小,那么m 的取值范围是.9.(2分)方程x3﹣27=0的根是.10.(2分)方程=x的根是.11.(2分)二元二次方程x2﹣xy﹣6y2=0可以化为两个一次方程,它们是.12.(2分)已知方程,如果设,那么原方程可化为关于y的整式方程是.13.(2分)一个不透明的口袋中,装有白球4个,黑球3个,这些球除颜色外都相同,从中任意摸出一个球,则摸到黑球的可能性是.14.(2分)在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信.已知全公司共发出2450条短信,那么这个公司有员工人.15.(2分)在平行四边形ABCD中,如果∠B=3∠A,那么∠A=度.16.(2分)如果菱形边长为13,一条对角线长为10,那么它的面积为.17.(2分)已知在梯形ABCD中,AD∥BC,AB=AD=DC=4,AC⊥AB,那么梯形ABCD 的周长=.18.(2分)已知在直线l上有A、B两点,AB=1,以AB为边作正方形ABCD,联结BD,将BD绕着点B旋转,使点D落在直线l上的点E处,那么AE=.三、解答题(本大题共6题,满分40分)19.(6分)解方程:﹣=120.(6分)解方程组:21.(6分)如图,已知梯形ABCD,AD∥BC,AB=DC,点E在边BC上,DE∥AB,请回答下列问题:(1)写出所有与互为相反的向量是;(2)在图中求作与的和向量:+=;(3)在图中求作与的差向量:﹣=;(4)++=.22.(6分)如图,已知在△ABC中,AB=AC,点O是△ABC内任意一点,点D、E、F、G分别是AB、AC、OB、OC的中点,∠A=2∠BDF.求证:四边形DEGF是矩形.23.(8分)某校组织学生步行到科技展览馆参观,学校与展览馆相距6千米,返回时由于步行速度比去时每小时少1千米,结果时间比去时多用了半小时,求学生返回时步行的速度.24.(8分)某市为鼓励市民节约用水和加强对节水的管理,制订了以下每年每户用水的收费标准:①用水量不超过220立方米时,每立方米收费1.92元,并加收每立方米1.53元的污水处理费;②用水量超过220立方米时,在①的基础上,超过220立方米的部分,每立方米收费3.30元,并加收每立方米1.53元污水处理费;设某户一年的用水量为x立方米,应交水费y元.(1)分别对①、②两种情况,写出y与x的函数解析式,并指出函数的定义域;(2)当某户2019年全年缴纳的水费共计1000.5元时,求这户2019年全年用水量.四、解答题(本大题共2题满分18分)25.(8分)如图,在平面直角坐标系中,直线y=2x与反比例函数y=在第一象限内的图象交于点A(m,2),将直线y=2x向下平移后与反比例函数y=在第一象限内的图象交于点P,且△POA的面积为2.(1)求k的值.(2)求平移后的直线的函数解析式.26.(10分)已知在平行四边形ABCD中,AB≠BC,将△ABC沿直线AC翻折,点B落在点E处,AD与CE相交于点O,联结DE.(1)如图1,求证:AC∥DE;(2)如图2,如果∠B=90°,AB=,BC=,求△OAC的面积;(3)如果∠B=30°,AB=2,当△AED是直角三角形时,求BC的长.2019-2020学年上海市杨浦区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)1.(3分)一次函数y=2x﹣3的图象在y轴的截距是()A.2B.﹣2C.3D.﹣3【分析】代入x=0,求出y值,此题得解.【解答】解:当x=0时,y=2x﹣3=﹣3,∴一次函数y=2x﹣3的图象在y轴的截距是﹣3.故选:D.2.(3分)一次函数y=x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据直线y=kx+b(k≠0)的k、b的符号判定该直线所经过的象限.【解答】解:∵一次函数y=x﹣1的1>0,∴该直线经过第一、三象限.又﹣1<0,∴该直线与y轴交于负半轴,∴一次函数y=x﹣1的图象一、三、四象限,即该函数不经过第二象限.故选:B.3.(3分)下列方程组是二元二次方程组的是()A.B.C.D.【分析】根据二元二次方程组的定义,逐个判断得结论.【解答】解:选项A符合二元二次方程组的概念;选项B含分式方程,选项D含无理方程,故B、C都不是二元二次方程组;选项C是二元一次方程组.故选:A.4.(3分)如果一个多边形的内角和与外角和相等,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形【分析】利用多边形的内角和与外角和公式列出方程,然后解方程即可.【解答】解:设多边形的边数为n,根据题意(n﹣2)•180°=360°,解得n=4.故选:A.5.(3分)下列事件为必然事件的()A.方程x2+1=0在实数范围内有解B.抛掷一枚硬币,落地后正面朝上C.对角线相等的平行四边形是矩形D.对角线互相垂直的四边形是菱形【分析】根据一元二次方程的解法、矩形和菱形的判定定理判断.【解答】解:A、方程x2+1=0在实数范围内有解,是不可能事件;B、抛掷一枚硬币,落地后正面朝上,是随机事件;C、对角线相等的平行四边形是矩形,是必然事件;D、对角线互相垂直的四边形是菱形,是随机事件;故选:C.6.(3分)如果点C、D在线段AB上,|AC|=|BD|,那么下列结论中正确的是()A.与是相等向量B.与是相等向量C.与是相反向量D.与是平行向量【分析】由点C、D在线段AB上,|AC|=|BD|,可得|AD|=|BC|,然后根据相等向量、相反向量与平行向量的定义,即可求得答案.注意排除法的应用.【解答】解:∵点C、D在线段AB上,|AC|=|BD|,∴|AD|=|BC|.A、与方向相反,∴≠,故本选项错误;B、∵与方向相反,∴≠,故本选项错误;C、∵相反向量是方向相反,模相等的两向量,而|AD|=|BC|>|BD|,∴与不是相反向量,故本选项错误;D、∵与共线,∴与是平行向量,故本选项正确.故选:D.二、填空题(本大题共12题,每题2分,满分24分)7.(2分)已知一次函数y=(k﹣1)x+2的图象与直线y=3x平行,那么k=4.【分析】根据两直线平行,则函数解析式的一次项系数相同,即可确定k的值.【解答】解:∵一次函数y=(k﹣1)x+2的图象与直线y=3x平行,∴k﹣1=3,∴k=4,故答案为:4.8.(2分)已知一次函数y=(1﹣2m)x+m,函数值y随自变量x的值增大而减小,那么m 的取值范围是m.【分析】根据一次函数y=(1﹣2m)x+m的增减性列出不等式1﹣2m<0,通过解该不等式即可求得m的取值范围.【解答】解:由题意得,1﹣2m<0,解得,m>;故答案为m.9.(2分)方程x3﹣27=0的根是x=3.【分析】先移项,再开立方即可.【解答】解:x3﹣27=0,x3=27,x==3,故答案为:x=3.10.(2分)方程=x的根是x=2.【分析】先把方程两边平方,使原方程化为整式方程x+2=x2,解此一元二次方程得到x1=2,x2=﹣1,把它们分别代入原方程得到x2=﹣1是原方程的增根,由此得到原方程的根为x=2.【解答】解:方程两边平方得,x+2=x2,解方程x2﹣x﹣2=0得x1=2,x2=﹣1,经检验x2=﹣1是原方程的增根,所以原方程的根为x=2.故答案为:x=2.11.(2分)二元二次方程x2﹣xy﹣6y2=0可以化为两个一次方程,它们是x﹣3y=0和x+2y =0.【分析】先因式分解二元二次方程,根据两个式子的积为0得结论.【解答】解:因为x2﹣xy﹣6y2=(x﹣3y)(x+2y),所以x2﹣xy﹣6y2=0可化为x﹣3y=0或x+2y=0.故答案为:x﹣3y=0和x+2y=0.12.(2分)已知方程,如果设,那么原方程可化为关于y的整式方程是3y2+3y﹣2=0.【分析】由设出的y,将方程左边前两项代换后,得到关于y的方程,去分母整理即可得到结果.【解答】解:设y=,方程﹣+3=0变形为3y﹣+3=0,整理得:3y2+3y﹣2=0.故答案为:3y2+3y﹣2=013.(2分)一个不透明的口袋中,装有白球4个,黑球3个,这些球除颜色外都相同,从中任意摸出一个球,则摸到黑球的可能性是..【分析】先求出所有球的个数与黑球的个数,再根据概率公式解答即可.【解答】解:∵共4+3=7个球在袋中,其中3个黑球,∴摸到黑球的概率为.故答案为:.14.(2分)在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信.已知全公司共发出2450条短信,那么这个公司有员工50人.【分析】设这个公司有员工x人,则每人需发送(x﹣1)条祝贺元旦的短信,根据全公司共发出2450条短信,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设这个公司有员工x人,则每人需发送(x﹣1)条祝贺元旦的短信,依题意,得:x(x﹣1)=2450,解得:x1=50,x2=﹣49(不合题意,舍去).故答案为:50.15.(2分)在平行四边形ABCD中,如果∠B=3∠A,那么∠A=45度.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角相等,即可得∠A=∠C,∠B=∠D,又由∠A+∠B=180°,即可求得答案.【解答】解:四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∵∠B=3∠A,A+∠B=180°,∴∠A=45°.故答案为:45.16.(2分)如果菱形边长为13,一条对角线长为10,那么它的面积为120.【分析】根据菱形的对角线互相垂直平分,得已知对角线的一半是5.根据勾股定理,得要求的对角线的一半是12,则另一条对角线的长是24,进而求出菱形的面积.【解答】解:在菱形ABCD中,AB=13,AC=10,∵对角线互相垂直平分,∴∠AOB=90°,AO=5,在Rt△AOB中,BO==12,∴BD=2BO=24.∴则此菱形面积是=120,故答案为:120.17.(2分)已知在梯形ABCD中,AD∥BC,AB=AD=DC=4,AC⊥AB,那么梯形ABCD 的周长=20.【分析】(1)根据等腰三角形的性质得到∠DAC=∠DCA,根据平行线的性质得到∠DAC =∠ACB,得到∠DCA=∠ACB,根据直角三角形的性质列式求出∠BCA=30°,根据直角三角形的性质求出BC,根据梯形的周长公式计算,得到答案.【解答】解:∵AD=DC,∴∠DAC=∠DCA,∵AD∥BC,∴∠DAC=∠ACB,∴∠DCA=∠ACB,∵AD∥BC,AB=DC,∴∠B=∠BCD=2∠ACB,∵AC⊥AB,∴∠B+∠BCA=90°,即3∠BCA=90°,∴∠BCA=30°,∴BC=2AB=8,∵AB=AD=DC=4,BC=8,∴梯形的周长=4+4+4+8=20,故答案为:20.18.(2分)已知在直线l上有A、B两点,AB=1,以AB为边作正方形ABCD,联结BD,将BD绕着点B旋转,使点D落在直线l上的点E处,那么AE=+1或.【分析】分两情况,当点E在AB的延长线上,当点E在BA的延长线上,由勾股定理求出BD的长,则可得出答案.【解答】解:如图1,当点E在AB的延长线上,∵正方形ABCD中,AB=AD=1,∠DAB=90°,∴BD==,∵将BD绕着点B旋转,使点D落在直线l上的点E处,∴BD=BE=,∴AE=AB+BE=1+;如图2,当点E在BA的延长线上,同理可得BD=BE=,∴AE=BE﹣AB=﹣1.∴AE的长为+1或﹣1.故答案为:+1或﹣1.三、解答题(本大题共6题,满分40分)19.(6分)解方程:﹣=1【分析】将方程化为=+1,然后两边平方即可求出答案.【解答】解:=+1x+2=x+2+11=220.(6分)解方程组:【分析】解①,用含y的代数式表示x,然后代入②求出y,再求出方程组的解.【解答】解:,由①,得x(x+y)=0,所以x=0或x=﹣y.把x=0代入②,得2y2=6,解得y=.把x=﹣y代入②,得y2+3y2+2y2=6,整理,得y2=1,所以y=±1.所以x=﹣1或1.故原方程组的解为:,,,21.(6分)如图,已知梯形ABCD,AD∥BC,AB=DC,点E在边BC上,DE∥AB,请回答下列问题:(1)写出所有与互为相反的向量是或;(2)在图中求作与的和向量:+=;(3)在图中求作与的差向量:﹣=;(4)++=.【分析】(1)根据相反向量的定义判断即可.(2)利用三角形法则计算即可.(3)利用三角形法则计算即可.(4)利用三角形法则计算即可.【解答】解:(1)∵AD∥BC,AB∥DE,∴四边形ABED是平行四边形,∴AB=DE,∴与互为相反的向量是或.故答案为或.(2)由题意,+=+=,故答案为.(3)由题意,﹣=+=,故答案为.(4)由题意++=,故答案为.22.(6分)如图,已知在△ABC中,AB=AC,点O是△ABC内任意一点,点D、E、F、G分别是AB、AC、OB、OC的中点,∠A=2∠BDF.求证:四边形DEGF是矩形.【分析】易证DE是△ABC的中位线,FG是△OBC的中位线,推出∠ADE=∠ABC,∠AED=∠ACB,DE∥FG,DE=FG,则四边形DEGF是平行四边形,由AB=AC,得∠ABC=∠ACB,则∠ADE=∠AED,证∠ADE+∠A=90°,∠ADE+∠BDF=90°,推出∠EDF=90°,即可得出结论.【解答】证明:∵点D、E、F、G分别是AB、AC、OB、OC的中点,∴DE是△ABC的中位线,FG是△OBC的中位线,∴DE∥BC,DE=BC,FG∥BC,FG=BC,∴∠ADE=∠ABC,∠AED=∠ACB,DE∥FG,DE=FG,∴四边形DEGF是平行四边形,∵AB=AC,∴∠ABC=∠ACB,∴∠ADE=∠AED,∵∠ADE+∠AED+∠A=180°,即2∠ADE+∠A=180°,∴∠ADE+∠A=90°,∵∠A=2∠BDF,∴∠BDF=∠A,∴∠ADE+∠BDF=90°,∴∠EDF=180°﹣∠ADE﹣∠BDF=180°﹣90°=90°,∴四边形DEGF是矩形.23.(8分)某校组织学生步行到科技展览馆参观,学校与展览馆相距6千米,返回时由于步行速度比去时每小时少1千米,结果时间比去时多用了半小时,求学生返回时步行的速度.【分析】设学生返回时步行的速度为x千米/小时,则去时步行的速度为(x+1)千米/小时,根据时间=路程÷速度结合返回时比去时多用了半小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设学生返回时步行的速度为x千米/小时,则去时步行的速度为(x+1)千米/小时,依题意,得:﹣=,整理,得:x2+x﹣12=0,解得:x1=3,x2=﹣4,经检验,x1=3,x2=﹣4是原方程的解,x1=3符合题意,x2=﹣4不符合题意,舍去.答:学生返回时步行的速度为3千米/小时.24.(8分)某市为鼓励市民节约用水和加强对节水的管理,制订了以下每年每户用水的收费标准:①用水量不超过220立方米时,每立方米收费1.92元,并加收每立方米1.53元的污水处理费;②用水量超过220立方米时,在①的基础上,超过220立方米的部分,每立方米收费3.30元,并加收每立方米1.53元污水处理费;设某户一年的用水量为x立方米,应交水费y元.(1)分别对①、②两种情况,写出y与x的函数解析式,并指出函数的定义域;(2)当某户2019年全年缴纳的水费共计1000.5元时,求这户2019年全年用水量.【分析】(1)由题意列出y关于x的函数解析式,根据限制条件写出函数定义域.(2)由交费可知说明该户用水量已超过220立方米,把数值代入函数关系式.【解答】解:(1)情况①:y=(1.92+1.53)x,即y=3.45x(0<x≤220),情况②:y=220×(1.92+1.53)+(x﹣220)(3.30+1.53),即所求的函数解析式为y=4.83x﹣303.6(x>220);(2)当该户一个月应交水费为1000.5元时,说明该户用水量已超过220立方米,则4.83x﹣303.6=1000.5,解得x=270.答:该户一个月的用水量为270立方米.四、解答题(本大题共2题满分18分)25.(8分)如图,在平面直角坐标系中,直线y=2x与反比例函数y=在第一象限内的图象交于点A(m,2),将直线y=2x向下平移后与反比例函数y=在第一象限内的图象交于点P,且△POA的面积为2.(1)求k的值.(2)求平移后的直线的函数解析式.【分析】(1)由点A的纵坐标求得m,即点A的坐标,把点A的坐标代入反比例函数中即可;(2)方法一、先求出PM,再求出BN然后用锐角三角函数求出OB,即可.方法二、先设出点P的坐标,利用△POA的面积为2.建立方程求出点P的坐标,即可得出结论.方法3,先判断出S△AOP=S梯形AMNP,再同方法二,即可得出结论.【解答】解:(1)∵点A(m,2)在直线y=2x,∴2=2m,∴m=1,∴点A(1,2),∵点A(1,2)在反比例函数y=上,∴k=2,(2)方法一、如图,设平移后的直线与y轴相交于B,过点P作PM⊥OA,BN⊥OA,AC⊥y轴由(1)知,A(1,2),∴OA=,sin∠BON=sin∠AOC==,∵S△POA=OA×PM=×PM=2,∴PM=,∵PM⊥OA,BN⊥OA,∴PM∥BN,∵PB∥OA,∴四边形BPMN是平行四边形,∴BN=PM=,∵sin∠BON===,∴OB=4,∵PB∥AO,∴B(0,﹣4),∴平移后的直线PB的函数解析式y=2x﹣4,方法二、如图1,过点P作PC⊥y轴交OA于C,设点P的坐标为(n,)(n>1),∴C(,),∴PC=n﹣,∵△POA的面积为2.A(1,2)∴S△POA=S△PCO+S△PCA=(n﹣)×+(n﹣)(2﹣)=(n﹣)×2=n﹣=2,∴n=1﹣(舍)或n=1+,∴P(1+,2﹣2)∴PB∥AO,∴设直线PB的解析式为y=2x+b,∵点P在直线PB上,∴2﹣2=2(1+)+b,∴b=﹣4,∴平移后的直线PB的函数解析式y=2x﹣4,方法3,过点A作AM⊥x轴于M,过点P作PN⊥x轴于N,∵点A,P是反比例函数y=图象上,∴S△AOM=S△PON,∴S△AOP=S梯形AMNP=2,∵A(1,2),∴AM=2,OM=1,设点P(m,),(m>1)∴ON=m,PN=,∴MN=m﹣1,∴S梯形AMNP=(PN+AM)×MN=(+2)×(m﹣1)=2,∴m=1﹣(舍)或m=1+,∴P(1+,2﹣2)∴PB∥AO,∴设直线PB的解析式为y=2x+b,∵点P在直线PB上,∴2﹣2=2(1+)+b,∴b=﹣4,∴平移后的直线PB的函数解析式y=2x﹣4,26.(10分)已知在平行四边形ABCD中,AB≠BC,将△ABC沿直线AC翻折,点B落在点E处,AD与CE相交于点O,联结DE.(1)如图1,求证:AC∥DE;(2)如图2,如果∠B=90°,AB=,BC=,求△OAC的面积;(3)如果∠B=30°,AB=2,当△AED是直角三角形时,求BC的长.【分析】(1)由折叠的性质得∠ACB=∠ACE,BC=EC,由平行四边形的性质得AD=BC,AD∥BC.则EC=AD,∠ACB=∠CAD,得∠ACE=∠CAD,证出OA=OC,则OD=OE,由等腰三角形的性质得∠ODE=∠OED,证出∠CAD=∠ACE=∠OED=∠ODE,即可得出结论;(2)证四边形ABCD是矩形,则∠CDO=90°,CD=AB=,AD=BC=,设OA =OC=x,则OD=﹣x,在Rt△OCD中,由勾股定理得出方程,求出OA=,由三角形面积公式即可得出答案;(3)分两种情况:∠EAD=90°或∠AED=90°,需要画出图形分类讨论,根据含30°角的直角三角形的性质,即可得到BC的长.【解答】(1)证明:由折叠的性质得:△ABC≌△△AEC,∴∠ACB=∠ACE,BC=EC,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∴EC=AD,∠ACB=∠CAD,∴∠ACE=∠CAD,∴OA=OC,∴OD=OE,∴∠ODE=∠OED,∵∠AOC=∠DOE,∴∠CAD=∠ACE=∠OED=∠ODE,∴AC∥DE;(2)解:∵平行四边形ABCD中,∠B=90°,∴四边形ABCD是矩形,∴∠CDO=90°,CD=AB=,AD=BC=,由(1)得:OA=OC,设OA=OC=x,则OD=﹣x,在Rt△OCD中,由勾股定理得:()2+(﹣x)2=x2,解得:x=,∴OA=,∴△OAC的面积=OA×CD=××=;(3)解:分两种情况:①如图3,当∠EAD=90°时,延长EA交BC于G,∵AD=BC,BC=EC,∴AD=EC,∵AD∥BC,∠EAD=90°,∴∠EGC=90°,∵∠B=30°,AB=2,∴∠AEC=30°,∴GC=EC=BC,∴G是BC的中点,在Rt△ABG中,BG=AB=3,∴BC=2BG=6;②如图4,当∠AED=90°时∵AD=BC,BC=EC,∴AD=EC,由折叠的性质得:AE=AB,∴AE=CD,在△ACE和△CAD中,,∴△ACE≌△CAD(SSS),∴∠ECA=∠DAC,∴OA=OC,∴OE=OD,∴∠OED=∠ODE,∴∠AED=∠CDE,∵∠AED=90°,∴∠CDE=90°,∴AE∥CD,又∵AB∥CD,∴B,A,E在同一直线上,∴∠BAC=∠EAC=90°,∵Rt△ABC 中,∠B=30°,AB=2,∴AC=AB=2,BC=2AC=4;的长为4或6.综上所述,当△AED是直角三角形时,BC。
下海市杨浦区2019-2020学年八年级第二学期期末达标检测数学试题一、选择题(每题只有一个答案正确) 1.下列定理中,没有逆定理...的是( ) A .对顶角相等B .同位角相等,两直线平行C .直角三角形的两锐角互余D .直角三角形两直角边平方和等于斜边的平方2.数据1,3,5,7,9的方差是( ). A .2B .4C .8D .163.下列命题:①任何数的平方根有两个;②如果一个数有立方根,那么它一定有平方根;③算术平方根一定是正数;④非负数的立方根不一定是非负数.错误的个数为( ) A .1 B .2 C .3 D .44.已知甲.乙两组数据的平均数相等,若甲组数据的方差2S 甲=0.055,乙组数据的方差2S 乙=0.105,则( )A .甲组数据比乙组数据波动大B .乙组数据比甲组数据波动大C .甲组数据与乙组数据的波动一样大D .甲.乙两组数据的数据波动不能比较5.如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A .3B .4C .5D .2.56.用配方法解方程x 2+3x+1=0,经过配方,得到( ) A .(x+32)2=134B .(x+32)2=54C .(x+3)2=10D .(x+3)2=87.下列运算,正确的是( )A .235m m m m ⋅⋅=B .224m m m +=C .()246m m =D .()23222m m m-÷=8.将直线y =﹣7x+4向下平移3个单位长度后得到的直线的表达式是( ) A .y =﹣7x+7B .y =﹣7x+1C .y =﹣7x ﹣17D .y =﹣7x+259.某居民小区10户家庭5月份的用水情况统计结果如表所示:这10户家庭的月平均用水量是( ) 月用水量/m 3 4 5 6 8 9 户数23311A .2m 3B .3.2m 3C .5.8m 310.用尺现作图的方法在一个平行四边形内作菱形ABCD ,下列作法错误的是 ( )A .B .C .D .二、填空题11.已知空气的密度是0.0012393/g cm ,用科学记数法表示为________3/g cm12.平行四边形的一个内角平分线将该平行四边形的一边分为3cm 和4cm 两部分,则该平行四边形的周长为______.13.如图,升降平台由三个边长为1.2米的菱形和两个腰长为1.2米的等腰三角形组成,其中平台AM 与底座A 0N 平行,长度均为24米,点B ,B 0分别在AM 和A 0N 上滑动这种设计是利用平行四边形的________;为了安全,该平台作业时∠B 1不得超过60°,则平台高度(AA 0)的最大值为________ 米14.点(2,9)P -与点Q 关于x 轴对称,则点Q 的坐标是__________.15.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,OE ∥DC 交BC 于点E ,AD =10cm ,则OE 的长为_____.16.如图,线段两个点的坐标分别为,,以原点为位似中心,将线段缩小得到线段,若点的坐标为,则点的坐标为______.17.不等式组()x 11242332x x -⎧≤⎪⎨⎪+<+⎩的最小整数解是___________.三、解答题18.已知矩形ABCD 的一条边AD=8,E 是BC 边上的一点,将矩形ABCD 沿折痕AE 折叠,使得顶点B 落在CD 边上的点P 处,PC=4(如图1).(1)求AB的长;(2)擦去折痕AE,连结PB,设M是线段PA的一个动点(点M与点P、A不重合).N是AB沿长线上的一个动点,并且满足PM=BN.过点M作MH⊥PB,垂足为H,连结MN交PB于点F(如图2).①若M是PA的中点,求MH的长;②试问当点M、N在移动过程中,线段FH的长度是否发生变化?若变化,说明理由;若不变,求出线段FH的长度.∠的平分线与BA的延长线交于点E,CE交AD于F19.(6分)在▱ABCD中,BCD()1求证:AE AF=;()2若BH CE∠的度数.⊥于点H,D50∠=,求CBH20.(6分)如图,已知点A(0,8)、B(8,0)、E(-2,0),动点C从原点O出发沿OA方向以每秒1个单位长度向点A运动,动点D从点B出发沿BO方向以每秒2个单位长度向点O运动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动,设运动时间为t 秒。
杨浦区2019学年度第二学期期末质量抽查初二数学试卷(测试时间90分钟,满分100分) 2019.6题号 一二三四总分得分一、选择题(本大题共6题,每题3分,满分18分)1.一次函数21y x =-+的图像经过 ( ) (A )一、二、三象限; (B )二、三、四象限;(C) 一、三、四象限; (D )一、二、四象限.2.下列关于x 的方程一定有实数根的是 ( ) (A )10ax +=; (B )210ax +=; (C )0x a +=; (D )20x a +=. 3.下列事件中,属于随机事件的是 ( ) (A )凸多边形的内角和为500°; (B )凸多边形的外角和为360°;(C )四边形绕它的对角线交点旋转180°能与它本身重合;(D )任何一个三角形的中位线都平行于这个三角形的第三边.4.如果点C 、D 在线段AB 上,AC=BD ,那么下列结论中正确的是 ( ) (A )AC 与BD 是相等向量; (B )AD 与BC 是相等向量;(C )AD 与BD 是相反向量; (D )AD 与BD 是平行向量 5.四边形ABCD 中,对角线AC 、BD 交于点O 。
给出下列四组条件:①AB //CD ,AD //BC ;②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB //CD ,AD =BC 。
其中一定能判定这个四边形是平行四边形的条件共有 ( ) (A )1组; (B )2组; (C )3组; (D )4组. 6.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路线长为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是 ( )(第6题图) (A ) (B ) (C ) (D )二、填空题(本大题共12题,每题2分,满分24分)7.若一次函数(2)1y k x =-+中,y 随x 的增大而减小,则k 的取值范围是 . 8.已知直线()32+-=x k y 与直线23-=x y 平行,那么k = . 9.方程320x +=在实数范围内的解是 .10.用换元法解方程31122=-+-x x x x 时,如果设y x x =-12,那么得到关于y 的整式方程为 .11.如图,已知一次函数y =kx +b 的图像经过点A (5,0)与B (0,-4),那么关于x 的不等式kx +b <0的解集是 . 12.设关于x的一次函数11y a x b =+与22y a x b =+,则称函数1122()()y m a x b n a x b =+++(其中+1m n =)为此两个函数的生成函数。
2019学年第二学期期末质量调研卷初二数学一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.一次函数23y x =-的图像在y 轴的截距是()A.2B.-2C.3D.-3【答案】D【解析】【分析】根据函数解析式得到b=-3,即可得到截距.【详解】∵23y x =-,即b=-3,∴图像与y 轴的截距为-3,故选:D.【点睛】此题考查一次函数的图象与坐标轴的截距,与y 轴的截距即为b 的值,注意有正负.2.一次函数y =x ﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】分析:根据函数图像的性质解决即可.解析:1y x =-的图像经过第一、三、四象限,所以不经过第二象限.故选B.3.下列方程组是二元二次方程组的是()A.2322y x xy x =⎧⎨+-=⎩ B.2013xy x x y +=⎧⎪⎨+=⎪⎩C.531x y x y +=⎧⎨-=-⎩D.23y y x==-⎪⎩【答案】A【解析】【分析】根据二元二次方程组的定义,逐个判断得结论.【详解】解:选项A符合二元二次方程组的概念;选项B含分式方程,选项D含无理方程,故B、C都不是二元二次方程组;选项C是二元一次方程组.故选:A.【点睛】本题考查了二元二次方程组的定义,掌握二元二次方程组的概念是解决本题的关键.4.若一个多边形的外角和与它的内角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【答案】B【解析】【分析】任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可.【详解】解:设多边形的边数为n.根据题意得:(n-2)×180°=360°,解得:n=4.故选:B.【点睛】本题主要考查的是多边形的内角和和外角和,掌握任意多边形的外角和为360°和多边形的内角和公式是解题的关键.5.下列事件为必然事件的是()A.方程x²+1=0在实数范围内有解;B.抛掷一枚硬币,落地后正面朝上;C.对角线相等的平行四边形是矩形;D.对角线互相垂直的四边形是菱形.【答案】C【解析】【分析】根据一元二次方程的解法、矩形和菱形的判定定理判断.【详解】解:A 、方程210x +=在实数范围内有解,是不可能事件;B 、抛掷一枚硬币,落地后正面朝上,是随机事件;C 、对角线相等的平行四边形是矩形,是必然事件;D 、对角线互相垂直的四边形是菱形,是随机事件;故选:C .【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.如图,点C 、D 在线段AB 上,AC BD =,那么下列结论中,正确的是()A.AC 与BD 是相等向量B.AD 与BD 是平行向量C.AD 与BD 是相反向量D.AD 与BC是相等向量【答案】B【解析】【分析】由AC=BD ,可得AD=BD ,即可得AD 与BD 是平行向量,AD BC AC BD =-=-,,继而证得结论.【详解】A 、∵AC=BD ,∴AC BD =- ,该选项错误;B 、∵点C 、D 是线段AB 上的两个点,∴AD 与BD 是平行向量,该选项正确;C 、∵AC=BC ,∴AD≠BD ,∴AD 与BD不是相反向量,该选项错误;D 、∵AC=BD ,∴AD=BC ,∴AD BC =- ,,该选项错误;故选:B .【点睛】本题考查了平面向量的知识.注意掌握相等向量与相反向量的定义是解此题的关键.二、填空题(本大题共12个小题,每小题2分,共24分)7.已知一次函数(1)2y k x =-+的图像与直线3y x =平行,那么k =__________.【答案】4【解析】【分析】根据两直线平行,则函数解析式的一次项系数相同,即可确定k 的值.【详解】解: 一次函数(1)2y k x =-+的图象与直线3y x =平行,13k ∴-=,4k ∴=,故答案为:4.【点睛】本题考查了两条直线平行问题,属于基础题,关键是掌握两直线平行则k 值相同.8.已知一次函数(12)y m x m =-+,函数值y 随自变量x 的值增大而减小,那么m 的取值范围是__________.【答案】12m >【解析】【分析】根据一次函数(12)y m x m =-+的增减性列出不等式120m -<,通过解该不等式即可求得m 的取值范围.【详解】解:由题意得,120m -<,解得,12m >;故答案为:12m >.【点睛】本题考查了一次函数图象与系数的关系.在直线(0)y kx b k =+≠中,当0k >时,y 随x 的增大而增大;当k 0<时,y 随x 的增大而减小.9.方程3270x -=的解是__________.【答案】3x =【解析】【分析】先移项,再开立方即可.【详解】解:3270x-=,327x=,3x==,故答案为:3x=.【点睛】本题考查了解高次方程,能把高次方程转化成低次方程是解此题的关键.10.方程x=的解为__________.【答案】2x=【解析】【分析】本题含根号,计算比较不便,因此可先对方程两边平方,得到x+2=x2,再对方程进行因式分解即可解出本题.【详解】原方程变形为:x+2=x2即x2-x-2=0∴(x-2)(x+1)=0∴x=2或x=-1∵x=-1时不满足题意.∴x=2.故答案为:2.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法和平方法.11.二元二次方程2260x xy y--=可以化为两个一次方程,他们是__________.【答案】30x y-=和20x y+=.【解析】【分析】先因式分解二元二次方程,根据两个式子的积为0得结论.【详解】解:因为226(3)(2)x xy y x y x y--=-+,所以2260x xy y--=可化为30x y-=或20x y+=.故答案为:30x y-=和20x y+=.【点睛】本题考查了高次方程,因式分解二元二次方程是解决本题的关键.若0ab=,则0a=或0b=.12.已知方程322301x x x x--+=-,如果设1x y x =-,那么原方程可化为关于y 的整式方程是__________.【答案】23320y y +-=【解析】【分析】由设出的y ,将方程左边前两项代换后,得到关于y 的方程,去分母整理即可得到结果.【详解】解:设1x y x =-,方程322301x x x x--+=-变形为2330-+=y y ,整理得:23320y y +-=.故答案为:23320y y +-=.【点睛】此题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.13.一个不透明的口袋中,装有红球4个,黑球3个,这些球除颜色不同外其他都相同,从中任意摸出一个球,则摸到黑球的概率为__________.【答案】37【解析】【分析】先求出所有球的个数与黑球的个数,再根据概率公式解答即可.【详解】解: 共437+=个球在袋中,其中3个黑球,∴摸到黑球的概率为37.故答案为:37.【点睛】本题考查了概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )m n=,难度适中.14.在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信,已知全公司共发出2450条短信,那么这个公司有_________员工人.【答案】50【解析】【分析】设这个公司有员工x 人,则每人需发送(1)x -条祝贺元旦的短信,根据全公司共发出2450条短信,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设这个公司有员工x 人,则每人需发送(1)x -条祝贺元旦的短信,依题意,得:(1)2450x x -=,解得:150x =,249x =-(不合题意,舍去).故答案为:50.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.在平行四边形ABCD 中,如果3B A ∠=∠,那么A ∠=_________度.【答案】45【解析】【分析】由四边形ABCD 是平行四边形,根据平行四边形的对角相等,即可得A C ∠=∠,B D ∠=∠,又由180A B ∠+∠=︒,即可求得答案.【详解】解:四边形ABCD 是平行四边形,A C ∴∠=∠,B D ∠=∠,3B A ∠=∠Q ,180A B +∠=︒,45A ∴∠=︒.故答案为:45.【点睛】此题考查了平行四边形的性质.解题的关键是注意数形结合思想与平行四边形的对角相等定理的应用.16.已知菱形的边长为13,一条对角线长为10,那么它的面积等于__________.【答案】120【解析】【分析】根据菱形的对角线互相垂直平分,得已知对角线的一半是5.根据勾股定理,得要求的对角线的一半是12,则另一条对角线的长是24,进而求出菱形的面积.【详解】解:在菱形ABCD 中,13AB =,10AC =,对角线互相垂直平分,90AOB ∠=︒∴,5AO =,在Rt AOB ∆中,12BO =,224BD BO ∴==.∴则此菱形面积是10241202⨯=,故答案为:120.【点睛】本题考查了菱形的性质,注意菱形对角线的性质:菱形的对角线互相垂直平分.熟练运用勾股定理.17.已知在梯形ABCD 中,//AD BC ,4AB AD DC ===,AC AB ⊥,那么梯形ABCD 的周长等于__________.【答案】20【解析】【分析】根据等腰三角形的性质得到DAC DCA ∠=∠,根据平行线的性质得到DAC ACB ∠=∠,得到DCA ACB ∠=∠,根据直角三角形的性质列式求出30BCA ∠=︒,根据直角三角形的性质求出BC ,根据梯形的周长公式计算,得到答案.【详解】解:AD DC = ,DAC DCA ∴∠=∠,//AD BC ,DAC ACB ∴∠=∠,DCA ACB ∴∠=∠,//AD BC ,AB DC =,2B BCD ACB ∴∠=∠=∠,AC AB ⊥ ,90B BCA ∴∠+∠=︒,即390BCA ∠=︒,30BCA ∴∠=︒,28BC AB ∴==,4AB AD DC === ,8BC =,∴梯形的周长444820=+++=,故答案为:20.【点睛】本题考查的是梯形的性质、直角三角形的性质、等腰三角形的性质,掌握含30°的直角三角形的性质是解题的关键.18.已知在直线l 上有,A B 两点,1AB =,以AB 为边作正方形ABCD ,联结BD ,将BD 绕着点B 旋转,使点D 落在直线l 上的点E 处,那么AE =__________.【答案】1+1-【解析】【分析】分两情况,当点E 在AB 的延长线上,当点E 在BA 的延长线上,由勾股定理求出BD 的长,则可得出答案.【详解】解:如图1,当点E 在AB 的延长线上,正方形ABCD 中,1AB AD ==,90DAB ∠=︒,BD ∴==将BD 绕着点B 旋转,使点D 落在直线l 上的点E 处,BD BE ∴==1AE AB BE ∴=+=+;如图2,当点E 在BA 的延长线上,同理可得2BD BE ==21AE BE AB ∴=-=.AE ∴21+21.21+或21-.【点睛】此题考查了旋转的性质,勾股定理,以及正方形的性质,熟练掌握勾股定理是解本题的关键.三、解答题:本大题共6个小题,共40分.19.21x x +-=【答案】14x =【解析】【分析】方程两边同时平方可把根号化去,逐渐化为整式方程,可求出解.【详解】解:移项,得21x x+=两边平方,得x移项整理,得x两边平方,得4x=1所以,正数x=14故答案为14.【点睛】本题考核知识点:二次根式,无理方程.解题关键点:方程两边同时平方把根号化去.20.解方程组:2220326x xy x xy y ⎧+=⎨-+=⎩①②【答案】110x y =⎧⎪⎨=⎪⎩220x y =⎧⎪⎨=⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩【解析】【分析】解①,用含y 的代数式表示x ,然后代入②求出y ,再求出方程组的解.【详解】解:2220326x xy x xy y ⎧+=⎨-+=⎩①②,由①,得()0x x y +=,所以0x =或x y =-.把0x =代入②,得226y =,解得y =.把x y =-代入②,得222326y y y ++=,整理,得21y =,所以1y =±.所以1x =-或1.故原方程组的解为:110x y =⎧⎪⎨=⎪⎩220x y =⎧⎪⎨=⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩.【点睛】本题考查了高次方程组的解法.变形①用代入法把二元二次方程组转化为一元二次方程,是解决本题的关键.21.如图,已知梯形ABCD ,//AD BC ,AB DC =,点E 在边BC 上,//DE AB ,请回答下列问题:(1)写出所有与AB 互为相反数的向量是.(2)在图中求作AB 与AD 的和向量:=AB AD + .(3)在图中求作BC 与DC 的差向量:=BC DC -.(4)AB BC CD ++= .【答案】(1)BA 或ED ;(2)A E ;(3)BD ;(4)AD【解析】【分析】(1)根据相反向量的定义判断即可.(2)利用三角形法则计算即可.(3)利用三角形法则计算即可.(4)利用三角形法则计算即可.【详解】解:(1)//AD BC ,//AB DE ,∴四边形ABED 是平行四边形,AB DE ∴=,∴与AB 互为相反的向量是BA 或ED .故答案为BA 或ED.(2)由题意,AB AD AD DE AE +=+= ,故答案为A E .(3)由题意,BC DC BC CD BD -=+= ,故答案为BD .(4)由题意AB BC CD AD ++= ,故答案为AD .【点睛】本题考查平面向量,平行四边形的判定和性质,三角形法则等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.如图,已知在ABC 中,AB AC =,点O 是ABC 内任意一点,点,,,D E F G 分别是,,,AB AC OB OC 的中点,2A BDF ∠=∠.求证:四边形DEFG 是矩形.【答案】见解析【解析】【分析】易证DE 是ABC ∆的中位线,FG 是OBC ∆的中位线,推出ADE ABC =∠∠,AED ACB ∠=∠,//DE FG ,DE FG =,则四边形DEGF 是平行四边形,由AB AC =,得A ABC CB =∠∠,则ADE AED ∠=∠,证1902ADE A ∠+∠=︒,90ADE BDF ∠+∠=︒,推出90EDF ∠=︒,即可得出结论.【详解】解:证明: 点D 、E 、F 、G 分别是AB 、AC 、OB 、OC 的中点,DE ∴是ABC ∆的中位线,FG 是OBC ∆的中位线,//DE BC ∴,12DE BC =,//FG BC ,12FG BC =,ADE ABC ∴∠=∠,AED ACB ∠=∠,//DE FG ,DE FG =,∴四边形DEGF 是平行四边形,AB AC = ,ABC ACB ∴∠=∠,ADE AED ∴∠=∠,180ADE AED A ∠+∠+∠=︒ ,即2180ADE A ∠+∠=︒,1902ADE A ∴∠+∠=︒,2A BDF ∠=∠ ,12BDF A ∴∠=∠,90ADE BDF ∴∠+∠=︒,1801809090EDF ADE BDF ∴∠=︒-∠-∠=︒-︒=︒,∴四边形DEGF 是矩形.【点睛】本题考查了平行线的性质、等腰三角形的性质、三角形中位线定理、平行四边形的判定、矩形的判定等知识;熟练掌握三角形中位线定理和矩形的判定是解题的关键.23.某校组织学生步行到科技展览馆参观,学校与展览馆相距6千米,返回时由于步行速度比去时每小时少1千米,结果时间比去时多用了半小时,求学生返回时步行的速度.【答案】3千米/小时【解析】【分析】设学生返回时步行的速度为x 千米/小时,则去时步行的速度为(1)x +千米/小时,根据时间=路程÷速度结合返回时比去时多用了半小时,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设学生返回时步行的速度为x 千米/小时,则去时步行的速度为(1)x +千米/小时,依题意,得:66112x x -=+,整理,得:2120x x +-=,解得:13x =,24x =-,经检验,13x =,24x =-是原方程的解,13x =符合题意,24x =-不符合题意,舍去.答:学生返回时步行的速度为3千米/小时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.某市为鼓励市民节约用水和加强对节水的管理,制订了以下每年每户用水的收费标准:①用水量不超过220立方米时,每立方米收费1.92元,并加收每立方米1.53元的污水处理费;②用水量超过220立方米时,在①的基础上,超过220立方米的部分,每立方米收费3.30元,并加收每立方米1.53元污水处理费;设某户一年的用水量为x 立方米,应交水费y 元.(1)分别对①、②两种情况,写出y 与x 的函数解析式,并指出函数的定义域;(2)当某户2019年全年缴纳的水费共计1000.5元时,求这户2019年全年用水量.【答案】(1)① 3.45(0220)y x x =< ;② 4.83303.6(220)y x x =->;(2)270立方米【解析】【分析】(1)由题意列出y 关于x 的函数解析式,根据限制条件写出函数定义域.(2)由交费可知说明该户用水量已超过220立方米,把数值代入函数关系式.【详解】解:(1)情况①:(1.92 1.53)y x =+,即 3.45(0220)y x x =<,情况②:220(1.92 1.53)(220)(3.30 1.53)y x =⨯++-+,即所求的函数解析式为 4.83303.6(220)y x x =->;(2)当该户一个月应交水费为1000.5元时,说明该户用水量已超过220立方米,则4.83303.61000.5x-=,解得270x=.答:该户一个月的用水量为270立方米.【点睛】本题主要考查了根据实际问题列一次函数解析式,根据220x>得出水费应有两部分组成是解题关键.四、解答题(本大题共2题,满分18分)25.如图,在平面直角坐标系中,直线y=2x与反比例函数y=kx在第一象限内的图像交于点A(m,2),将直线y=2x向下平移后与反比例函数y=kx在第一象限内的图像交于点P,且△POA的面积为2.(1)求k的值;(2)求平移后的直线的函数解析式.【答案】(1)k=2(2)y=2x-4【解析】【分析】(1)由点A的纵坐标求得m,即点A的坐标,把点A的坐标代入反比例函数中即可;(2)先求出PM,再求出BN然后用锐角三角函数求出OB,即可.【详解】(1)∵点A(m,2)在直线y=2x上,∴2=2m,∴m=1,∴点A(1,2),∵点A(1,2)在反比例函数y=kx上,∴k=2,(2)如图,设平移后的直线与y 轴相交于B ,过点P 作PM ⊥OA ,BN ⊥OA ,AC ⊥y 轴由(1)知,A(1,2),∴5∠BON=sin ∠AOC=55AC OA =,∵S △POA =12OA×PM=125,∴PM=55,∵PM ⊥OA ,BN ⊥OA ,∴PM ∥BN ,∵PB ∥OA ,∴四边形BPMN 是平行四边形,∴BN=PM=455,∵sin ∠BON=45555BN OB OB ==,∴OB=4,∵PB ∥AO ,∴B(0,−4),∴平移后的直线PB 的函数解析式y=2x−4.【点睛】此题是反比例函数和一次函数的交点问题,涉及的知识有:一次函数与坐标轴的交点,待定系数法求函数解析式,平行四边形的判定和性质,坐标与图形变化-平移,锐角三角函数的意义,解本题的关键是作出辅助线.26.已知在平行四边形ABCD 中,AB BC ≠,将ABC 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE .(1)如图1,求证://AC DE ;(2)如图2,如果90B ∠=︒,AB =,=BC OAC 的面积;(3)如果30B ∠=︒,AB =AED 是直角三角形时,求BC 的长.【答案】(1)见解析;(2)8;(3)4或6【解析】【分析】(1)由折叠的性质得ACB ACE ∠=∠,BC EC =,由平行四边形的性质得AD BC =,//AD BC .则EC AD =,ACB CAD ∠=∠,得ACE CAD ∠=∠,证出OA OC =,则OD OE =,由等腰三角形的性质得ODE OED ∠=∠,证出CAD ACE OED ODE ∠=∠=∠=∠,即可得出结论;(2)证四边形ABCD 是矩形,则90CDO ∠=︒,==CD AB ,AD BC ==OA OC x ==,则OD x =-,在Rt OCD ∆中,由勾股定理得出方程,求出4OA =,由三角形面积公式即可得出答案;(3)分两种情况:90EAD ∠=︒或90AED ∠=︒,需要画出图形分类讨论,根据含30°角的直角三角形的性质,即可得到BC 的长.【详解】解:(1)证明:由折叠的性质得:ABC ∆≅△AEC ∆,ACB ACE ∴∠=∠,BC EC =,四边形ABCD 是平行四边形,AD BC ∴=,//AD BC .EC AD ∴=,ACB CAD ∠=∠,ACE CAD ∴∠=∠,OA OC ∴=,OD OE ∴=,ODE OED ∴∠=∠,AOC DOE ∠=∠ ,CAD ACE OED ODE ∴∠=∠=∠=∠,//AC DE ∴;(2) 平行四边形ABCD 中,90B ∠=︒,∴四边形ABCD 是矩形,90CDO ∴∠=︒,==CD ABAD BC ==由(1)得:OA OC =,设OA OC x ==,则OD x =,在Rt OCD ∆中,由勾股定理得:222)x x +-=,解得:364x =,4OA ∴=,OAC ∴∆的面积1192228OA CD =⨯=⨯;(3)分两种情况:①如图3,当90EAD ∠=︒时,延长EA 交BC 于G ,AD BC = ,BC EC =,AD EC ∴=,//AD BC ,90EAD ∠=︒,90EGC ∴∠=︒,30B ∠=︒ ,AB =30AEC ∴∠=︒,1122GC EC BC ∴==,G ∴是BC 的中点,在Rt ABG ∆中,32BG AB ==,26BC BG ∴==;②如图4,当90AED ∠=︒时AD BC = ,BC EC =,AD EC ∴=,由折叠的性质得:AE AB =,AE CD ∴=,在ACE ∆和CAD ∆中,AE CD CE AD AC CA =⎧⎪=⎨⎪=⎩,()ACE CAD SSS ∴∆≅∆,ECA DAC ∴∠=∠,OA OC ∴=,OE OD ∴=,OED ODE ∴∠=∠,AED CDE ∴∠=∠,90AED ∠=︒ ,90CDE \Ð=°,//AE CD ∴,又//AB CD ,B ∴,A ,E 在同一直线上,90BAC EAC ∴∠=∠=︒,Rt ABC ∆ 中,30B ∠=︒,AB =2AC ∴==,24BC AC ==;综上所述,当AED ∆是直角三角形时,BC 的长为4或6.【点睛】本题是四边形综合题目,考查了翻折变换的性质、平行四边形的性质、平行线的判定与性质、矩形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、勾股定理、直角三角形的性质等知识;本题综合性强,熟练掌握翻折变换的性质和平行四边形的性质是解题的关键.。
2019上海市杨浦区八年级(下)期末数学试卷及答案上海市杨浦区八年级(下)期末数学试卷一、填空题(共15小题,每小题2分,满分30分)1.(2分)直线y=2x﹣1平行于直线y=kx﹣3,则k=_________.2.(2分)若一次函数y=(1﹣m)x+2,函数值y随x的增大而减小,则m的取值范围是_________.3.(2分)在直角坐标系内,直线y=﹣x+2在x轴上方的点的横坐标的取值范围是_________.4.(2分)方程x3﹣x=0的解为_________.5.(2分)(1997•辽宁)方程的解为_________.6.(2分)(2017•长沙)“太阳每天从东方升起”,这是一个_________事件.(填“确定”或“不确定”)7.(2分)(2017•海南)如图是一个被等分成6个扇形可自由转动的转盘,转动转盘,当转盘停止后,指针指向红色区域的概率是_________.8.(2分)从1,2,3,4四个数中任意取出2个数做加法,其和为偶数的概率是_________.9.(2分)甲乙两人加工同一种玩具,甲加工90个玩具与乙加工120玩具所用的时间相同,已知甲乙两人每天共加工35个玩具,若设甲每天加工x个玩具,则根据题意列方程:_________.10.(2分)(2010•桂林)任意五边形的内角和为_________.11.(2分)在▱ABCD中,若∠A=110°,则∠B=_________度.12.(2分)(2017•江西)如图,在矩形ABCD中,AB=1,BC=2,则AC=_________.13.(2分)若一梯形的中位线和高的长均为6cm,则该梯形的面积为_________cm2.14.(2分)已知菱形的边长和一条对角线的长均为2cm,则菱形的面积为_________cm2.15.(2分)要使平行四边形ABCD为正方形,须再添加一定的条件,添加的条件可以是_________.(填上一组符合题目要求的条件即可)二、选择题(共4小题,每小题2分,满分8分)16.(2分)下列直线中,经过第一、二、三象限的是()A.直线y=x﹣1 B.直线y=﹣x+1 C.直线y=x+1 D.直线y=﹣x﹣117.(2分)(2008•乌兰察布)气象台预报“本市明天降水概率是80%”,对此信息,下面的几种说法正确的是()A.本市明天将有80%的地区降水B.本市明天将有80%的时间降水C.明天肯定下雨D.明天降水的可能性比较大18.(2分)(2017•中山)如图所示,在▱ABCD中,对角线AC、BD交于点O,下列式子中一定成立的是()A.A C⊥BD B.O A=OC C.A C=BD D.A0=OD19.(2分)(2017•资阳)正方形、矩形、菱形都具有的特征是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线平分一组对角三、解答题(共6小题,20-25题每题7分26、27题每题10分,满分42分)20.(7分)(2017•双柏县)解方程:=2.21.(7分)解方程组:.22.(7分)已知▱ABCD,点E是BC边的中点,请回答下列问题:(1)在图中求作与的和向量:=_________;(2)在图中求作与的差向量:=_________;(3)如果把图中线段都画成有向线段,那么在这些有向线段所表示的向量中,所有与互为相反向量的向量是_________;(4)=_________.23.(7分)请你根据图中图象所提供的信息,解答下面问题:(1)分别写出直线l1、l2中变量y随x变化而变化的情况;(2)分别求出图象分别为直线l1、l2的一次函数解析式.24.(7分)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.要使这两个正方形的面积之和等于17cm2,那么这两个正方形的边长分别是多少?25.(7分)(2017•河南)如图,梯形ABCD中,AD∥BC,AB=AD=DC,点E为底边BC的中点,且DE∥AB.试判断△ADE的形状,并给出证明.四、(本大题共2题,每题各10分,满分20分)26.(10分)A,B两地盛产柑桔,A地有柑桔200吨,B地有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从A地运往C仓库的柑桔重量为x吨,A、B两地运往两仓库的柑桔运输费用分别为y A元和y B元.(1)请填写下表后分别求出y A,y B与x之间的函数关系式,并写出定义域.仓库产地 C D 总计A x吨200吨B 300吨总计240吨260吨500吨(2)试讨论A,B两地中,哪个运费较少?27.(10分)已知:正方形ABCD的边长为厘米,对角线AC上的两个动点E,F.点E从点A,点F从点C 同时出发,沿对角线以1厘米/秒的相同速度运动,过E作EH⊥AC交Rt△ACD的直角边于H,过F作FG⊥AC交Rt△ACD的直角边于G,连接HG,EB.设HE、EF、FG、GH围成的图形面积为S1,AE,EB,BA围成的图形面积为S2(这里规定:线段的面积为0)E到达C,F到达A停止.若E的运动时间为x秒,解答下列问题:(1)如图,判断四边形EFGH是什么四边形,并证明;(2)当0<x<8时,求x为何值时,S1=S2;(3)若y是S1与S2的和,试用x的代数式表示y.(如图为备用图)2017学年上海市杨浦区八年级(下)期末数学试卷参考答案与试题解析一、填空题(共15小题,每小题2分,满分30分)1.(2分)直线y=2x﹣1平行于直线y=kx﹣3,则k=2.考点:两条直线相交或平行问题.分析:根据两条直线是平行的关系,那么他们的自变量系数相同,即k值相同,可直接得到答案.解答:解:∵线y=2x﹣1平行于直线y=kx﹣3,∴k=2.故答案为:2.点评:此题主要考查了两条直线是平行时的关系问题,关键掌握两条直线是平行时自变量系数相等的关系即可.2.(2分)若一次函数y=(1﹣m)x+2,函数值y随x的增大而减小,则m的取值范围是m>1.考点:一次函数图象与系数的关系.专题:计算题.分析:一次函数y=kx+b,当k<0时,y随x的增大而减小.据此列式解答即可.解答:解:∵一次函数y=(1﹣m)x+2,y随x的增大而减小,∴1﹣m<0,解得,m>1.故答案是:m>1.点评:本题主要考查了一次函数的性质.一次函数y=kx+b,当k>0时,y随x的增大而减小;当k<0时,y随x 的增大而增大.3.(2分)在直角坐标系内,直线y=﹣x+2在x轴上方的点的横坐标的取值范围是x<2.考点:一次函数的性质;解一元一次不等式.专题:推理填空题.分析:根据题意得到﹣x+2>0,求出即可.解答:解:∵根据题意得:y=﹣x+2>0,解得:x<2.故答案为:x<2.点评:本题主要考查对解一元一次不等式,一次函数的性质等知识点的理解和掌握,能根据题意得到﹣x+2>0是解此题的关键.4.(2分)方程x3﹣x=0的解为0,1,﹣1.考点:解一元二次方程-因式分解法.分析:首先对方程的左边进行因式分解,然后再解方程即可求出解.解答:解:∵x3﹣x=0∴x(x+1)(x﹣1)=0∴x=0,x+1=0,x﹣1=0,∴x1=0,x2=1,x3=﹣1,∴x1=0,x2=1,x3=﹣1都为原方程得解.故答案为:0,﹣1,1.点评:本题主要考查用因式分法解一元二次方程,关键在于对方程的左边进行正确的因式分解.5.(2分)(1997•辽宁)方程的解为3.考点:无理方程.分析:首先把方程两边分别平方,然后解一元二次方程即可求出x的值.解答:解:两边平方得:2x+3=x2∴x2﹣2x﹣3=0,解方程得:x1=3,x2=﹣1,检验:当x1=3时,方程的左边=右边,所以x1=3为原方程的解,当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.故答案为3.点评:本题主要考查解无理方程,关键在于首先把方程的两边平方,注意最后要把x的值代入原方程进行检验.6.(2分)(2017•长沙)“太阳每天从东方升起”,这是一个确定事件.(填“确定”或“不确定”)考点:随机事件.专题:压轴题.分析:根据事件的可能性得到相应事件的类型即可.解答:解:根据生活常识,知“太阳每天从东方升起”,一定发生,这是一个确定事件.点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(2分)(2017•海南)如图是一个被等分成6个扇形可自由转动的转盘,转动转盘,当转盘停止后,指针指向红色区域的概率是.考点:几何概率.分析:首先确定在图中红色区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向红色区域的概率.解答:解:∵圆被等分成6份,其中红色部分占3份,∴落在阴影区域的概率==.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率;此题将概率的求解设置于几何图象或游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.8.(2分)从1,2,3,4四个数中任意取出2个数做加法,其和为偶数的概率是.考点:列表法与树状图法.专题:数形结合.分析:列举出所有情况,看和为偶数的情况数占总情况数的多少即可.解答:解:共12种情况,和为偶数的情况数有4种,所以概率为.故答案为.点评:考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.9.(2分)甲乙两人加工同一种玩具,甲加工90个玩具与乙加工120玩具所用的时间相同,已知甲乙两人每天共加工35个玩具,若设甲每天加工x个玩具,则根据题意列方程:=.考点:由实际问题抽象出分式方程.分析:关系式为:甲加工90个玩具的时间=乙加工120玩具所用的时间,把相关数值代入即可求解.解答:解:甲乙两人每天共加工35个玩具,若设甲每天加工x个玩具,则乙每天加工(35﹣x)个玩具.甲加工90个玩具的时间为,乙加工120玩具所用的时间为,列方程为:=.点评:根据所用的时间相同找到相应的等量关系是解决本题的关键.10.(2分)(2010•桂林)任意五边形的内角和为540°.考点:多边形内角与外角.专题:常规题型.分析:根据多边形的内角和公式(n﹣2)•180°计算即可.解答:解:(5﹣2)•180°=540°.故答案为:540°.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键,是基础题.11.(2分)在▱ABCD中,若∠A=110°,则∠B=70度.考点:平行四边形的性质.分析:根据“平行四边形的两邻角互补”可知:∠A+∠B=180°,把∠A=110°代入可求解.解答:解:∵平行四边形ABCD中,AD∥BC,∴∠A+∠B=180°,∴∠B=180°﹣110°=70°.故答案为70.点评:主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.12.(2分)(2017•江西)如图,在矩形ABCD中,AB=1,BC=2,则AC=.考点:勾股定理;正方形的性质.专题:计算题.分析:在直角三角形中,利用勾股定理直接解答即可.解答:解:由于是矩形,因此∠B=90°,在直角三角形ABC中,根据勾股定理得:AC2=BC2+AB2=1+4=5∴AC=.故答案为.点评:本题主要考查了矩形的性质和勾股定理的应用,本题比较容易.13.(2分)若一梯形的中位线和高的长均为6cm,则该梯形的面积为36cm2.考点:梯形中位线定理.专题:计算题.分析:利用梯形面积=中位线×高,可求梯形面积.解答:解:根据题意得,梯形面积=中位线×高=6×6=36(cm2).故答案为:36.点评:本题考查了梯形的中位线定理,根据梯形中位线定理,结合梯形面积公式可求:梯形面积=中位线×高.14.(2分)已知菱形的边长和一条对角线的长均为2cm,则菱形的面积为cm2.考点:菱形的性质.专题:计算题.分析:由四边形ABCD是菱形,可得菱形的四条边都相等AB=BC=CD=AD,菱形的对角线互相平分且相等即AC⊥BD,OA=OC,OB=OD,又因为菱形的边长和一条对角线的长均为2cm,易求得OB=1cm,则可得AC的值,根据菱形的面积等于积的一半,即可求得菱形的面积.解答:解:根据题意画出图形,如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=AD=2cm,AC⊥BD,OA=OC,OB=OD,又∵菱形的边长和一条对角线的长均为2cm,∴AB=AD=BD=2cm,∴OB=1cm,∴OA=cm,∴AC=2cm,∴菱形的面积为cm2.故答案为:.点评:此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的四条边相等;菱形的面积为对角线积的一半.15.(2分)要使平行四边形ABCD为正方形,须再添加一定的条件,添加的条件可以是AC=BD且AC⊥BD或AB=BC且AB⊥BC等.(填上一组符合题目要求的条件即可)考点:正方形的判定;平行四边形的性质.专题:开放型.分析:本题是开放题,可以针对正方形的判定方法,由给出条件四边形ABCD为平行四边形,加上条件AC=BD 根据对角线相等的平行四边形为矩形,得到ABCD为矩形,再加上满足菱形的特点对角线AC与BD垂直,根据对角线垂直的矩形是正方形即可得证;或加上邻边AB与BC相等,根据邻边相等的平行四边形是菱形,得到ABCD为菱形,再加上AB垂直BC,即有一个角是直角的菱形为正方形,即可得证.答案可以有多种,主要条件明确,说法有理即可.解答:解:本题答案不唯一,以下是其中两种解法:(1)根据题意画出图形,如图所示:添加的条件是AC=BD且AC⊥BD,此时平行四边形ABCD为正方形,证明:∵四边形ABCD是平行四边形.又AC=BD,∴四边形ABCD是矩形,∵AC⊥BD,∴四边形ABCD是正方形;(2)添加的条件是AB=BC且AB⊥BC,此时平行四边形ABCD为正方形,证明:∵四边形ABCD是平行四边形.又AB=BC,∴四边形ABCD是菱形,又∵AB⊥BC,即∠ABC=90°,∴四边形ABCD是正方形.故答案为:AC=BD且AC⊥BD或AB=BC且AB⊥BC等.点评:此题主要考查矩形、菱形及正方形的判定,是一道开放型题.解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论.二、选择题(共4小题,每小题2分,满分8分)16.(2分)下列直线中,经过第一、二、三象限的是()A.直线y=x﹣1 B.直线y=﹣x+1 C.直线y=x+1 D.直线y=﹣x﹣1考点:一次函数的性质.专题:函数思想.分析:直线y=kx+b(k≠0),当k>0,b>0时,该函数的图象经过第一、二、三象限.解答:解:A、∵k=1>0,b=﹣1<0,∴直线y=x﹣1经过第一、三、四象限;故本选项错误;B、∵k=1>0,b=1>0,∴直线y=﹣x+1经过第一、二、四象限;故本选项错误;C、∵k=1>0,b=1>0,∴直线y=x+1经过第一、二、三象限;故本选项正确;D、∵k=﹣1<0,b=﹣1<0,∴直线y=﹣x﹣1经过第二、三、四象限;故本选项错误;故选C.点评:本题考查了一次函数的图象.解答该题时,要了解直线y=kx+b(k≠0)所经过的象限与k、b的符号的关系.17.(2分)(2008•乌兰察布)气象台预报“本市明天降水概率是80%”,对此信息,下面的几种说法正确的是()A.本市明天将有80%的地区降水B.本市明天将有80%的时间降水C.明天肯定下雨D.明天降水的可能性比较大考点:概率的意义.专题:压轴题.分析:根据概率的意义找到正确选项即可.解答:解:本市明天降水概率是80%,只说明明天降水的可能性比较大,是随机事件,A,B,C属于对题意的误解,只有D正确.故选D.点评:关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.18.(2分)(2017•中山)如图所示,在▱ABCD中,对角线AC、BD交于点O,下列式子中一定成立的是()A.A C⊥BD B.O A=OC C.A C=BD D.A0=OD考点:平行四边形的性质.专题:压轴题.分析:根据平行四边形的对角线互相平分即可判断.解答:解:A、菱形的对角线才相互垂直.故不对.B、根据平行四边形的对角线互相平分可知此题选B.C、只有平行四边形为矩形时,其对角线相等,故也不对.D、只有平行四边形为矩形时,其对角线相等且平分.故也不对.故选B.点评:此题主要考查平行四边形的性质.即平行四边形的对角线互相平分.19.(2分)(2017•资阳)正方形、矩形、菱形都具有的特征是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线平分一组对角考点:正方形的性质;菱形的性质;矩形的性质.专题:证明题.分析:根据正方形的性质,菱形的性质及矩形的性质进行分析,从而得到答案.解答:解:A、三者均具有此性质,故正确;B、菱形不具有此性质,故不正确;C、矩形不具有此性质,故不正确;D、矩形不具有此性质,故不正确;故选A.点评:主要考查正方形、矩形、菱形的性质.三、解答题(共6小题,20-25题每题7分26、27题每题10分,满分42分)20.(7分)(2017•双柏县)解方程:=2.考点:换元法解分式方程;解一元二次方程-因式分解法.专题:计算题;分类讨论.分析:本题考查用换元法解分式方程的能力,观察方程可得与互为倒数,所以可采用换元法将方程转化.解答:解:设=y,则,则原方程为:y﹣=2,即:y2﹣2y﹣3=0,解得y1=3,y2=﹣1.当y1=3时,x=﹣1,当y2=﹣1时,x=.经检验,x1=﹣1,x2=是原方程的根.∴x1=﹣1,x2=.点评:用换元法解分式方程是常用的一种方法,它能将方程化繁为简,因此要注意总结能够用换元法解的分式方程的特点.解分式方程时要注意根据方程特点选择合适的方法.21.(7分)解方程组:.考点:高次方程.分析:本题需先根据方程组的解法先把x﹣2y=1进行转化,再把它代入即可求出它们的值,即可得出结果.解答:解:由x﹣2y=1得x=1+2y将x=1+2y代入x2+2y﹣5=0得:2y2+3y﹣2=0解得y1=﹣2,y2=得x1=﹣3,x2=2所以方程组的解为:点评:本题主要考查了解方程组,在解题时要根据方程组的解法分别进行计算是本题的关键.22.(7分)已知▱ABCD,点E是BC边的中点,请回答下列问题:(1)在图中求作与的和向量:=;(2)在图中求作与的差向量:=;(3)如果把图中线段都画成有向线段,那么在这些有向线段所表示的向量中,所有与互为相反向量的向量是,;(4)=.考点:*平面向量.专题:常规题型.分析:(1)根据向量的加法法则求作即可;(2)根据向量的减法法则求作即可;(3)根据相反向量的定义,方向相反,大小相等即可解答;(4)根据向量的加法法则即可求解.解答:解:(1);(2);(3)与互为相反向量的向量是:,(4)=.故答案为:;.点评:本题考查平面向量的知识,难度不大,关键是掌握平面向量这一概念及其加减运算法则.23.(7分)请你根据图中图象所提供的信息,解答下面问题:(1)分别写出直线l1、l2中变量y随x变化而变化的情况;(2)分别求出图象分别为直线l1、l2的一次函数解析式.考点:两条直线相交或平行问题.分析:(1)一次函数的图象的性质进行分析即可;(2)本题可根据两条直线所经过点的坐标,用待定系数法求出两直线的函数解析式,然后联立两函数的解析式,所得方程组即为所求.解答:解:(1)l1:y的值随x的增大而增大;l2:y的值随x的增大而减少.(2)设直线l1,l2的函数表达式分别为y=a1x+b1(a1≠0),y=a2x+b2(a2≠0),由题意得,,解得,,∴直线l1,l2的函数表达式分别为.点评:本题主要考查了一次函数的性质以及一次函数与二元一次方程组的关系,①看y随x变化趋势主要看直线从左向右的升降趋势,②求函数解析式主要看图象所经过的点的坐标.24.(7分)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.要使这两个正方形的面积之和等于17cm2,那么这两个正方形的边长分别是多少?考点:一元二次方程的应用.分析:设其中一个正方形的边长为xcm,根据将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.要使这两个正方形的面积之和等于17cm2,可列方程求解.解答:解:设其中一个正方形的边长为xcm,则另一个正方形的边长为.依题意列方程得:x2+(5﹣x)2=17,解方程得:x1=1,x2=4,答:这两个小正方形的边长分别是1cm、4cm.点评:本题考查理解题意的能力,设出一个正方形的边长,表示出另一个,以面积相等做为等量关系列方程求解.25.(7分)(2017•河南)如图,梯形ABCD中,AD∥BC,AB=AD=DC,点E为底边BC的中点,且DE∥AB.试判断△ADE的形状,并给出证明.考点:等边三角形的判定;全等三角形的判定与性质;梯形.专题:探究型.分析:此题可以发现并证明两个平行四边形,根据平行四边形的性质得到三角形的三边关系进行证明.解答:解:△ADE是等边三角形.证明:∵AD∥BC,DE∥AB,∴四边形ABED为平行四边形.∴AB=DE,AD=BE.∵BE=CE,∴AD=CE.∴四边形AECD是平行四边形.∴AE=CD.∵AB=AD=CD,∴AD=AE=DE.∴△ADE为等边三角形.点评:此题的重点是发现两个平行四边形,根据平行四边形的性质以及已知条件找到线段之间的等量关系.四、(本大题共2题,每题各10分,满分20分)26.(10分)A,B两地盛产柑桔,A地有柑桔200吨,B地有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从A地运往C仓库的柑桔重量为x吨,A、B两地运往两仓库的柑桔运输费用分别为y A元和y B元.(1)请填写下表后分别求出y A,y B与x之间的函数关系式,并写出定义域.仓库产地 C D 总计A x吨200吨B 300吨总计240吨260吨500吨(2)试讨论A,B两地中,哪个运费较少?考点:一次函数的应用.分析:(1)首先根据题意填表,然后由题意结合表格找到等量关系,继而求得y A,y B与x之间的函数关系式;(2)分别从当y A=y B时,当y A>y B时,当y A<y B时去分析,利用一元一次方程与一元一次不等式的知识,即可求得答案.解答:解:(1)地C D 总计产仓库A x吨(200﹣x)吨200吨B (240﹣x)吨(60+x)吨300吨总计240吨260吨500吨∴y A=20x+25(200﹣x)=﹣5x+5000(0≤x≤200),y B=15(240﹣x)+18(60+x)=3x+4680(0≤x≤200).(2)当y A=y B时,﹣5x+5000=3x+4680,x=40;当y A>y B时,﹣5x+5000>3x+4680,x<40;当y A<y B时,﹣5x+5000<3x+4680,x>40.∴当x=40时,y A=y B即两地运费相等;当0≤x<40时,y A>y B即B地运费较少;当40<x≤200时,y A<y B即A地费用较少.点评:此题考查了一次函数的实际应用问题,考查了一次函数与一元一次方程、一元一次不等式的关系.此题难度适中,解题的关键是理解题意,找到等量关系求得函数解析式.27.(10分)已知:正方形ABCD的边长为厘米,对角线AC上的两个动点E,F.点E从点A,点F从点C 同时出发,沿对角线以1厘米/秒的相同速度运动,过E作EH⊥AC交Rt△ACD的直角边于H,过F作FG⊥AC交Rt△ACD的直角边于G,连接HG,EB.设HE、EF、FG、GH围成的图形面积为S1,AE,EB,BA围成的图形面积为S2(这里规定:线段的面积为0)E到达C,F到达A停止.若E的运动时间为x秒,解答下列问题:(1)如图,判断四边形EFGH是什么四边形,并证明;(2)当0<x<8时,求x为何值时,S1=S2;(3)若y是S1与S2的和,试用x的代数式表示y.(如图为备用图)考点:正方形的性质;矩形的判定与性质.专题:综合题.分析:(1)首先根据动点E、F的运动速度与运动时间均相同得出AE=CF,再由正方形的性质及已知EH⊥AC,FG⊥AC得出△CGF与△AHE都是等腰直角三角形,然后根据有一个角是直角的平行四边形是矩形得出结论;(2)首先由勾股定理求出正方形ABCD的对角线长为16.再连接BD交AC于O,则BO=8.然后用含x 的代数式分别表示S1,S2,当S1=S2时得出关于x的方程,解方程即可;(3)因为当x=8时,点E与点F重合,此时S1=0,y=S2.故应分0≤x<8与8≤x≤16两种情况讨论.解答:解:(1)四边形EFGH是矩形.理由如下:∵点E从点A,点F从点C同时出发,沿对角线以1厘米/秒的相同速度运动,∴AE=CF.∵EH⊥AC,FG⊥AC,∴EH∥FG.∵ABCD为正方形,∴AD=DC,∠D=90°,∠GCF=∠HAE=45°,又∵EH⊥AC,FG⊥AC,∴∠CGF=∠AHE=45°,∴∠GCF=∠CGF,∠HAE=∠AHE,∴AE=EH,CF=FG,∴EH=FG,∴四边形EFGH是平行四边形,又∵EH⊥AC∴平行四边形EFGH是矩形;(2)∵正方形边长为,∴AC=16.∵AE=x,连接BD交AC于O,则BO⊥AC且BO=8,∴S2=•AE•BO=4x.∵CF=GF=AE=x,∴EF=16﹣2x,∴S1=EF•GF=x(16﹣2x).当S1=S2时,x(16﹣2x)=4x,解得x1=0(舍去),x2=6.∴当x=6时,S1=S2;(3)①当0≤x<8时,y=x(16﹣2x)+4x=﹣2x2+20x.②当8≤x≤16时,AE=x,CE=HE=16﹣x,EF=16﹣2(16﹣x)=2x﹣16.∴S1=(16﹣x)(2x﹣16).∴y=(16﹣x)(2x﹣16)+4x=﹣2x2+52x﹣256.综上,可知y=.点评:本题主要考查了正方形的性质,矩形的判定与性质,勾股定理等知识,综合性较强,难度中等.参与本试卷答题和审题的老师有:zhangCF;yu123;zjx111;zhehe;CJX;zcx;ln_86;lf2-9;ZHAOJJ;sd2011;蓝月梦;cair。
杨浦区2019学年第二学期初二年级数学学科 期末教学质量监控测试题(满分100分,考试时间90分钟)考生注意:1.本试卷含六个大题,共25题;2.除第一、二大题外,其余各题如无特别说明,都必须写出解答的主要步骤.6题,每题3分,满分18分) 【每题只有一个正确选项,在答题纸相应位置填涂】1. 如图,一次函数)(x f y =的图像经过点(2,0),如果0>y , 那么对应的x 的取值范围是(A )2<x ; (B )2>x ; (C )0<x ; (D )0>x . 2.下列方程中,为分式方程的是(A )211=+-x x ; (B )2121=+-x ; (C )2112=--x x ; (D )211=--x x .3.下列方程中,有实数解的方程是(A )022=++x ; (B )02=++x x ; (C )11=+x x; (D )01)1(4=+-x . 4.下列图形中,一定是中心对称但不一定是轴对称图形的是(A )菱形; (B )矩形; (C )等腰梯形; (D )平行四边形. 5.如图,在四边形ABCD 中,AC 与BD 相交于点O ,∠BAD =90º,BO =DO ,那么下列 条件中不能..判定四边形ABCD 是矩形的是 (A )∠ABC =90º; (B )∠BCD =90º ; (C )AB=CD ; (D )AB//CD . 62=3=,那么下列结论中正确的是(A )<<15; (B )51≤≤; (C )32<<; (D )32≤≤. (第1题图)(第5题图)D二、填空题(本大题共12题,每题3分,满分36分) 7.方程064=-x 的根是8.方程0242=--x x 的根是 .9.方程组⎩⎨⎧=-=-79,1322y x y x 的解是 .10.已知方程213122=+-+x x x x ,如果设y x x=+12,那么原方程可以变形关于y 的整式方程为 .11.确定事件的概率是 .12.一次函数y=2x+3的图像向下平移5个单位后,所得图像的函数解析式是 . 13.一次函数y=(m -1)x+m 的图像经过第一、二、四象限,那么m 的取值范围是 . 14.某市出租车白天的收费起步价为14元,即路程不超过3公里时收费14元,超过部分每公里 收费2.4元. 如果乘客白天乘坐出租车的路程为()3x x >公里,乘车费为y 元,那么y 与x 之 间的关系式为 .15.如果过多边形的一个顶点共有6条对角线,那么这个多边形的内角和是 . 16.已知向量a =,向量CD 与AB 是长度相等的平行向量,那么CD = . 17.在梯形ABCD 中,AD //BC ,AD =3,BC =7,点E 、F 分别是AC 、BD 的中点,那么EF 的长为 .18.如图,形如□ABCD 的纸片的对角线AC 与BD 相交于点O ,将这张纸片对折后点B 与点D 重合,点A 落在点E ,已知∠AOB =α,那么∠CEO 的度数为 .BCO(第18题图)A三、解答题(本大题共8题,满分66分) [将下列各题的解答过程,做在答题纸上] 19. 解方程:1521=-++x x .20. 解方程组:⎪⎩⎪⎨⎧=-+=+-.0,496222y xy y y xy x21.(本题满分8分,第(1)小题2分,第(2)小题2分,第(3)小题4分)有两个不透明的袋子分别装有除标记数字不同外其余均相同的小球,甲袋中有分别标为数 字1、2、3的三个小球,乙袋中有分别标为数字4、5、6的三个小球.(1)如果在甲袋中随机摸出一个小球,那么摸到的球标为素数的概率是 . (2)如果在乙袋中随机摸出两个小球,那么摸到两球都标为合数的概率是 . (3)如果在甲、乙两个袋子中分别随机摸出一个小球,那么摸到两球标的数奇偶数情况不同的概率是多少?(请用列表法或树状图法说明)22.(本题满分8分,第(1)小题4分,第(2)小题4分)如图,在△ABC 中,点D 是BC 的中点,点E 在边AC 上,设=,=,c =. (1)试用向量、、c 表示下列向量:EC = ;EA = ; (2)求作:b a -、c b a ++.(保留作图痕迹,写出结果,不要求写作法)23.(本题满分8分,第(1)小题3分,第(2)小题5分)已知:如图,在□ABCD 中,AE 与对角线BD 相交于点F ,EF =AF . (1) 求证:CE//BD ;(2) 当点G 为CD 中点时,求证:BD=3CE .(第23题图)ABECDFG(第22题图)C24.(本题满分8分)某副食品基地向甲、乙两个超市分别提供总量为140吨、80吨的一种季节性商品,向乙超市供货天数比甲超市少4天,且每天比甲超市少2吨,每天给同一超市供货量相同且不超过7.5吨,求这个副食品基地向乙超市供货的天数. 25.(本题满分8分,第(1)小题3分,第(2)小题5分)如图,在平面直角坐标系xOy 中,四边形ABCD 为菱形,点A 的坐标为(0,1),点D 在y 轴上,经过点B 的直线4+-=x y 与AC 相交于横坐标为2的点E .(1) 求直线AC 的表达式; (2) 求点B 、C 、D 的坐标. (第25题图)26.(本题满分10分,第(1)小题6分,第(2)小题4分)已知:在梯形ABCD 中,AD //BC ,∠B =90º,AB =BC=4,点E 在边AB 上,CE =CD . (1)如图,当∠BCD 为锐角时,设AD =x ,△CDE 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域; (2)当CD=5时,求△CDE 的面积. (第26题图)A BCDE八年级第二学期数学期末调研参考答案及评分标准一、选择题(本大题共6题,每题3分,满分18分)1.A ; 2.C ; 3.B ; 4.D ; 5.C ; 6. B . 二、填空题(本大题共12题,每题3分,满分36分)7.46±=x ; 8.2-=x ; 9. ⎩⎨⎧==;1,4y x10.01632=-+y y ; 11.0或1; 12.22-=x y 13.10<<m ; 14.8.64.2+=x y ; 15.︒1260; 16.a 或a -; 17.2; 18.α-︒90. 三、解答题(本大题共8题,满分66分)19.解:1152+-=-x x ,…………………………………………………………………(1分) 112152+++-=-x x x ,…………………………………………………………(1分) x x -=+712,………………………………………………………………………(1分) 2144944x x x +-=+,…………………………………………………………………(1分)045182=+-x x .……………………………………………………………………(1分) 15,321==x x .…………………………………………………………………………(1分) 经检验:它们都是增根.………………………………………………………………(1分) 所以原方程无解.………………………………………………………………………(1分)20.解:由①得 23=-y x 或23-=-y x ,…………………………………………………(1分)由②得 0=y 或01=-+y x ,………………………………………………………(1分)原方程组可化为⎩⎨⎧=-=-⎩⎨⎧==-;0,23;0,23y y x y y x ⎩⎨⎧=-+-=-⎩⎨⎧=-+=-.01,23;01,23y x y x y x y x …………(2分) 解这两个方程组得原方程组的解为⎪⎪⎪⎨⎧=⎪⎪⎪⎨⎧=⎩⎨⎧=-=⎩⎨⎧==3,411,45;0,2;0,2432211x x y x y x …………(4分)21.(1)32.……………………………(2分) (2)31.……………………………(2分) (3)解:列表法或画树状图(略)……………………………………………………………(1分)共有9种等可能的情况,其中摸到奇偶数情况不同的可能情况有5种,……(1分)所以摸到的两球颜色相同的概率P =95. ………………………………………(2分) 22.(1)c b EC -= ,…(2分) c b a EA --= ,…(2分) (2)作图略 …(各2分)23.证明:(1)联结AC ,AC 与BD 相交于点O ,……………………………………………(1分)∵□ABCD ,∴AO =CO .…………………………………………………………(1分) 又∵AF =EF ,∴OF //CE ,即CE //BD .……………………………………………(1分) (2)∵AO =CO ,AF =EF ,CE =2OF .………………………………………………(1分)∵CE //BD ,∴∠FDG =∠ECG ,∠GFD =∠GEC ,∵DG =CG ,∴△GDF ≌△GCE .…………………………………………………(1分) ∴CE =DF =2OF .…………………………………………………………………(1分) ∵□ABCD 中,BD =2DO=2(DF +OF )=6OF .………………………………(1分) ∴BD=3CE .…………………………………………………………………………(1分)24.解:设这个副食品基地向乙超市供货的天数为x 天,……………………………………(1分) 则这个副食品基地向甲超市供货的天数为(x +4)天.……………………………(1分)2804140=-+xx ,…………………………………………………………………………(2分) 0160262=+-x x ,……………………………………………………………………(1分)解得1x =10,2x =16.………………………………………………………………(1分) 经检验它们都是原方程的根,但10=x 不符合题意.………………………………(1分)答:这个副食品基地向乙超市供货的天数为16天.……………………………………(1分)25.解:(1)∵点直线4+-=x y 经过横坐标为2的点E ,∴E (2,2).…………………(1分)由点A (0,1),设直线AC 的表达式为1+=kx y ,……………………………(1分) ∴.21,122=+=k k ∴直线AC 的表达式为121+=x y .………………………………………………(1分)(2)设点C 的坐标为(1,2+m m ),∵在菱形ABCD 中,BC //AD ,∴点B 的坐标为(42,2+-m m ).………………(1分) ∵BA =BC ,∴,22BC BA =∴222)421()142()02(-++=-+-+-m m m m .…………………………………(1分) ∴6),(0,06212===-m m m m 舍去.………………………………………………(1分) ∴点B 、C 的坐标分别为(8,12-)、(7,12). …………………………………(1分) ∵AD =BC =15,∴OD =16,∴D (0,16).………………………………………(1分)26.解:(1)过点D 作DF ⊥BC ,垂足为F ,∵AD//BC ,∠B =90º,∴∠A =∠B =∠DFB =90º,∴四边形ABFD 是矩形,∴DF =AB .……………………………………………(1分) ∵AB =BC ,∴BC = DF .又∵∠B =∠DFC ,CE =CD ,∴△BEC ≌△FCD .…(1分) ∴BE =CF ,∴AE =BF =AD =x ,∴BE =x -4.…………………………………(1分) ∵BCE AED ABCD CDE S S S S ∆∆∆--=梯形,∴)4(421214)4(212x x x y -⨯--⨯+=.……………………………………(1分)∴y 与x 之间的函数解析式为x x y 4212+-=,定义域为40<<x .………(2分)(2)当∠BCD 为锐角时,CF =3452222=-=-DF CD ,AD =BF =4–3=1,(1分) 27141212=⨯+⨯-=∆CDE S .……………………………………………………(1分) 当∠BCD 为钝角时,过点C 作CG ⊥AD ,垂足为G ,同理求得BE =DG =3, AE =AB –BE =1,AD =AG +DG =BC +CG =4+3=7.………………………………(1分)∴BCE AED ABCD CDE S S S S ∆∆∆--=梯形22534217121)74(421=⨯⨯-⨯⨯-+⨯⨯=.……………………………(1分)。