高中数学函数的单调性与导数综合测试题(含答案)
- 格式:doc
- 大小:15.51 KB
- 文档页数:8
高中数学专题1.3.1 函数的单调性与导数测试(含解析)新人教A版选修2-2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学专题1.3.1 函数的单调性与导数测试(含解析)新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学专题1.3.1 函数的单调性与导数测试(含解析)新人教A版选修2-2的全部内容。
函数的单调性与导数(时间:25分,满分50分)班级姓名得分1.(5分)函数f(x)=x3+ax2+bx+c,其中a,b,c为实数,当a2-3b<0时,f(x)是( )A.增函数B.减函数C.常数D.既不是增函数也不是减函数【答案】A2.(5分)下列函数中,在(0,+∞)内为增函数的是()A.y=sin x B.y=x e2C.y=x3-x D.y=ln x-x【答案】B【解析】显然y=sin x在(0,+∞)上既有增又有减,故排除A;对于函数y=x e2,因e2为大于零的常数,不用求导就知y=x e2在(0,+∞)内为单调增函数;对于C,y′=3x2-1=3(x+错误!)(x-错误!),故函数在(-∞,-错误!),(错误!,+∞)上为单调增函数,在(-错误!,错误!)上为单调减函数;对于D,y′=错误!-1 (x〉0).故函数在(1,+∞)上为单调减函数,在(0,1)上为单调增函数.故选B.3.(5分)如果函数f(x)的图象如图,那么导函数y=f′(x)的图象可能是()【答案】A【解析】由f(x)与f′(x)关系可选A。
4.(5分)设f(x)=ax3+bx2+cx+d(a>0),则f(x)为R上增函数的充要条件是() A.b2-4ac〉0 B.b>0,c>0C.b=0,c>0 D.b2-3ac〈0【答案】D5。
高一数学利用导数研究函数的单调性试题答案及解析1.若函数在区间内是增函数,则实数的取值范围是()A.B.C.D.【答案】B【解析】∵f(x)=x3+ax-2,∴f′(x)=3x2+a,∵函数f(x)=x3+ax-2在区间[1,+∞)内是增函数,∴f′(1)=3+a≥0,∴a≥-3.故选B..【考点】利用导数研究函数的单调性..2.已知函数(1)若,试确定函数的单调区间;(2)若,且对于任意,恒成立,试确定实数的取值范围;【答案】(1)详见解析(2).【解析】(1)求出函数的导数,只要解导数的不等式即可,根据导数与0的关系判断函数的单调性;(2)函数f(|x|)是偶函数,只要f(x)>0对任意x≥0恒成立即可,等价于f(x)在[0,+∞)的最小值大于零.试题解析:解:(1)由得,所以.由得,故的单调递增区间是,由得,故的单调递减区间是. 4(2)由可知是偶函数.于是对任意成立等价于对任意成立.由得.①当时,.此时在上单调递增.故,符合题意.②当时,.当变化时的变化情况如下表:单调递减极小值单调递增由此可得,在依题意,,又.综合①,②得,实数的取值范围是.【考点】1.利用导数求闭区间上函数的最值;2.利用导数研究函数的单调性..3.已知函数f(x)=2x--aln(x+1),a∈R.(1)若a=-4,求函数f(x)的单调区间;(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).【答案】(1)f(x)的单调增区间为(-1,3),单调减区间为(3,+∞)。
(2)ⅰ. 7分ⅱ.当时,若,由函数的单调性可知f(x)有极小值点;有极大值点。
若时, f(x)有极大值点,无极小值点。
【解析】(1)因为,f(x)=2x--aln(x+1),a∈R,定义域为(-1,+∞)。
所以,,故,f(x)的单调增区间为(-1,3),单调减区间为(3,+∞)。
(2)因为,f(x)=2x--aln(x+1),a∈R,定义域为(-1,+∞)。
完整版)函数的单调性练习题及答案1.函数的单调性练题一选择题:1.函数f(x)=x^2+2x-3的递增区间为(D。
[-1,+∞))2.如果函数f(x)=x^2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围是(A。
[-3,+∞))3.函数y=1-(1/(x-1))在(-1,+∞)内是单调递增。
4.如果函数f(x)=kx+b在R上单调递减,则(C。
b>0)5.在区间(-∞,0)上为增函数的是(B。
y=x^2)6.函数f(x)=2x-x^2的最大值是(B。
1)7.函数y=x+x^-2的最小值是(A。
0)2.填空题:8.函数f(x)=2x^2-mx+3,在(-∞,1)上是减函数,在[1,+∞)上是增函数,则m=4.9.已知f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,则实数m的取值范围为(-∞,-1/2)U(1/2,+∞)。
3.解答题:10.利用单调函数的定义证明:函数f(x)=x+2/x在区间(0,2)上是减函数。
证明:对于任意的x1,x2∈(0,2),且x1<x2,有:f(x2)-f(x1)=(x2+2/x2)-(x1+2/x1)x2-x1+2/x2-2/x1x2-x1+2(x1-x2)/(x1x2)x2-x1)(1-2/(x1x2))因为x1,x2∈(0,2),所以x1x2>0,而1-2/(x1x2)<1,所以f(x2)-f(x1)<0,即f(x)在区间(0,2)上是减函数。
11.已知定义在区间(1,+∞)上的函数f(x)满足f(x)=f(x/2)-f(x/4),且当x>1时f(x)<0.1)求f(1)的值;因为f(x)=f(x/2)-f(x/4),所以f(2)=f(1)-f(1/2),又因为f(2)=f(1)-f(1/2)=f(1/2)-f(1/4),所以f(1/2)=f(1)-f(1/4),继续类似地推导,得到:f(1)=f(1)-f(1/2)+f(1/2)-f(1/4)+f(1/4)-f(1/8)+。
《函数的单调性与导数》专题训练1.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象最有可能是下列选项中的( )2.如图是函数y =f (x )的导函数f ′(x )的图象,则下面判断正确的是( )A .在区间(-2,1)上f (x )是增函数B .在区间(1,3)上f (x )是减函数C .在区间(4,5)上f (x )是增函数D .在区间(3,5)上f (x )是增函数 3.函数y =x +x ln x 的单调递减区间是( )A .(-∞,e -2) B .(0,e -2) C .(e -2,+∞)D .(e 2,+∞)4.已知函数f (x )=-x 3+ax 2-x -1在(-∞,+∞)上是单调递减函数,则实数a 的取值范围是( )A .(-∞,-3)∪[3,+∞)B .[-3,3]C .(-∞,-3)∪(3,+∞)D .(-3, 3) 5.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)6.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________. 7.函数f (x )=2x 3-9x 2+12x +1的单调减区间是________.8.已知函数f (x )=ax +1x +2在(-2,+∞)内单调递减,则实数a 的取值范围为________.9.已知函数f (x )=(ax 2+x -1)e x ,其中e 是自然对数的底数,a ∈R. (1)若a =1,求曲线f (x )在点(1,f (1))处的切线方程.(2)若a=-1,求f(x)的单调区间.10.已知二次函数h(x)=ax2+bx+2,其导函数y=h′(x)的图象如图所示,f(x)=6ln x+h(x).(1)求函数f(x)的解析式;(2)若函数f(x)在区间(1,m+12)上是单调函数,求实数m的取值范围.《函数的单调性与导数》专题训练答案解析1.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的()【答案】C【解析】题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.如图是函数y=f(x)的导函数f′(x)的图象,则下面判断正确的是()A.在区间(-2,1)上f(x)是增函数B.在区间(1,3)上f(x)是减函数C.在区间(4,5)上f(x)是增函数D.在区间(3,5)上f(x)是增函数【答案】C【解析】由导函数f′(x)的图象知在区间(4,5)上,f′(x)>0,所以函数f(x)在(4,5)上单调递增.故选C. 3.函数y=x+x ln x的单调递减区间是()A.(-∞,e-2)B.(0,e-2)C.(e-2,+∞) D.(e2,+∞)【答案】B【解析】因为y=x+x ln x,所以定义域为(0,+∞).令y′=2+ln x<0,解得0<x<e-2,即函数y=x+x ln x的单调递减区间是(0,e-2),故选B.4.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是单调递减函数,则实数a的取值范围是() A.(-∞,-3)∪[3,+∞) B.[-3,3]C.(-∞,-3)∪(3,+∞) D.(-3,3)【答案】B【解析】f′(x)=-3x2+2ax-1≤0在(-∞,+∞)上恒成立且不恒为0,Δ=4a2-12≤0⇒-3≤a≤ 3.] 5.函数f(x)=(x-3)e x的单调递增区间是()A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)【答案】D【解析】f ′(x )=(x -3)′e x +(x -3)(e x )′=e x (x -2).由f ′(x )>0得x >2,∴f (x )的单调递增区间是(2,+∞).6.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________. 【答案】-32-6【解析】f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.7.函数f (x )=2x 3-9x 2+12x +1的单调减区间是________. 【答案】(1,2)【解析】[f ′(x )=6x 2-18x +12,令f ′(x )<0,即6x 2-18x +12<0,解得1<x <2. 8.已知函数f (x )=ax +1x +2在(-2,+∞)内单调递减,则实数a 的取值范围为________.【答案】⎝⎛⎭⎫-∞,12 【解析】f ′(x )=2a -1(x +2)2,由题意得f ′(x )≤0在(-2,+∞)内恒成立,∴解不等式得a ≤12,但当a =12时,f ′(x )=0恒成立,不合题意,应舍去,所以a 的取值范围是⎝⎛⎭⎫-∞,12. 9.已知函数f (x )=(ax 2+x -1)e x ,其中e 是自然对数的底数,a ∈R. (1)若a =1,求曲线f (x )在点(1,f (1))处的切线方程. (2)若a =-1,求f (x )的单调区间. 【解析】f ′(x )=(ax +2a +1)x e x .(1)若a =1,则f ′(x )=(x +3)x e x ,f (x )=(x 2+x -1)e x ,所以f ′(1)=4e ,f (1)=e. 所以曲线f (x )在点(1,f (1))处的切线方程为y -e =4e(x -1),即4e x -y -3e =0. (2)若a =-1,则f ′(x )=-(x +1)x e x .令f ′(x )=0解x 1=-1,x 2=0. 当∈(-∞,-1)时,f ′(x )<0; 当x ∈(-1,0)时,f ′(x )>0; 当x ∈(0,+∞)时,f ′(x )<0;所以f (x )的增区间为(-1,0),减区间为(-∞,-1)和(0,+∞).10.已知二次函数h (x )=ax 2+bx +2,其导函数y =h ′(x )的图象如图所示,f (x )=6ln x +h (x ).(1)求函数f (x )的解析式;(2)若函数f (x )在区间(1,m +12)上是单调函数,求实数m 的取值范围.【解析】(1)由已知,h ′(x )=2ax +b ,其图象为直线,且过(0,-8),(4,0)两点,把两点坐标代入h ′(x )=2ax +b ,∴⎩⎪⎨⎪⎧ 2a =2,b =-8,解得⎩⎪⎨⎪⎧a =1,b =-8,∴h (x )=x 2-8x +2,h ′(x )=2x -8,∴f (x )=6ln x +x 2-8x +2. (2)∵f ′(x )=6x +2x -8=2(1)(3)(0)x x x x--> ∴当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,1) 1 (1,3) 3 (3,+∞)f ′(x ) + 0 - 0 + f (x )↗↘↗∴f (x )的单调递增区间为(0,1)和(3,+∞), f (x )的单调递减区间为(1,3).要使函数f (x )在区间⎝⎛⎭⎫1,m +12上是单调函数, 则⎩⎨⎧1<m +12,m +12≤3,解得12<m ≤52,即实数m 的取值范围为⎝⎛⎦⎤12,52.。
高中数学函数的单调性与导数综合测试题(含答案)选修2-2 1.3.1 函数的单调性与导数一、选择题1.设f(x)=ax3+bx2+cx+d(a0),则f(x)为R上增函数的充要条件是()A.b2-4ac0 B.b0,c0C.b=0,c D.b2-3ac0[答案] D[解析]∵a0,f(x)为增函数,f(x)=3ax2+2bx+c0恒成立,=(2b)2-43ac=4b2-12ac0,b2-3ac0.2.(2009广东文,8)函数f(x)=(x-3)ex的单调递增区间是() A.(-,2) B.(0,3)C.(1,4) D.(2,+)[答案] D[解析]考查导数的简单应用.f(x)=(x-3)ex+(x-3)(ex)=(x-2)ex,令f(x)0,解得x2,故选D.3.已知函数y=f(x)(xR)上任一点(x0,f(x0))处的切线斜率k =(x0-2)(x0+1)2,则该函数的单调递减区间为()A.[-1,+) B.(-,2]C.(-,-1)和(1,2) D.[2,+)[答案] B[解析]令k0得x02,由导数的几何意义可知,函数的单调减区间为(-,2].4.已知函数y=xf(x)的图象如图(1)所示(其中f(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是()[答案] C[解析]当01时xf(x)0f(x)0,故y=f(x)在(0,1)上为减函数当x1时xf(x)0,f(x)0,故y=f(x)在(1,+)上为增函数,因此否定A、B、D故选C.5.函数y=xsinx+cosx,x(-)的单调增区间是()A.-,-2和0,2B.-2,0和0,2C.-,-2,D.-2,0和[答案] A[解析]y=xcosx,当-x2时,cosx0,y=xcosx0,当02时,cosx0,y=xcosx0.6.下列命题成立的是()A.若f(x)在(a,b)内是增函数,则对任何x(a,b),都有f(x)0B.若在(a,b)内对任何x都有f(x)0,则f(x)在(a,b)上是增函数C.若f(x)在(a,b)内是单调函数,则f(x)必存在D.若f(x)在(a,b)上都存在,则f(x)必为单调函数[答案] B[解析]若f(x)在(a,b)内是增函数,则f(x)0,故A错;f(x)在(a,b)内是单调函数与f(x)是否存在无必然联系,故C错;f(x)=2在(a,b)上的导数为f(x)=0存在,但f(x)无单调性,故D错.7.(2019福建理,11)已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x0时,f(x)0,g(x)0,则x0时()A.f(x)0,g(x) B.f(x)0,g(x)0C.f(x)0,g(x) D.f(x)0,g(x)0[答案] B[解析]f(x)为奇函数,g(x)为偶函数,奇(偶)函数在关于原点对称的两个区间上单调性相同(反),x0时,f(x)0,g(x)0. 8.f(x)是定义在(0,+)上的非负可导函数,且满足xf(x)+f(x)0,对任意正数a、b,若ab,则必有()A.af(a)f(b) B.bf(b)f(a)C.af(b)bf(a) D.bf(a)af(b)[答案] C[解析]∵xf(x)+f(x)0,且x0,f(x)0,f(x)-f(x)x,即f(x)在(0,+)上是减函数,又0<a<b,af(b)bf(a).9.对于R上可导的任意函数f(x),若满足(x-1)f(x)0,则必有()A.f(0)+f(2)2f(1) B.f(0)+f(2)2f(1)C.f(0)+f(2)2f(1) D.f(0)+f(2)2f(1)[答案] C[解析]由(x-1)f(x)0得f(x)在[1,+)上单调递增,在(-,1]上单调递减或f(x)恒为常数,故f(0)+f(2)2f(1).故应选C.10.(2019江西理,12)如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S(t)的图像大致为[答案] A[解析]由图象知,五角星露出水面的面积的变化率是增减增减,其中恰露出一个角时变化不连续,故选A.二、填空题11.已知y=13x3+bx2+(b+2)x+3在R上不是单调增函数,则b的范围为________.[答案]b-1或b2[解析]若y=x2+2bx+b+20恒成立,则=4b2-4(b+2)0,-12,由题意b<-1或b>2.12.已知函数f(x)=ax-lnx,若f(x)>1在区间(1,+)内恒成立,实数a的取值范围为________.[答案]a1[解析]由已知a>1+lnxx在区间(1,+)内恒成立.设g(x)=1+lnxx,则g(x)=-lnxx2<0(x>1),g(x)=1+lnxx在区间(1,+)内单调递减,g(x)<g(1),∵g(1)=1,1+lnxx<1在区间(1,+)内恒成立,a1.13.函数y=ln(x2-x-2)的单调递减区间为__________.[答案](-,-1)[解析]函数y=ln(x2-x-2)的定义域为(2,+)(-,-1),令f(x)=x2-x-2,f(x)=2x-10,得x12,函数y=ln(x2-x-2)的单调减区间为(-,-1).14.若函数y=x3-ax2+4在(0,2)内单调递减,则实数a的取值范围是____________.[答案][3,+)[解析]y=3x2-2ax,由题意知3x2-2ax0在区间(0,2)内恒成立,即a32x在区间(0,2)上恒成立,a3.三、解答题15.设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).(1)求a、b的值;(2)讨论函数f(x)的单调性.[解析](1)求导得f(x)=3x2-6ax+3b.由于f(x)的图象与直线12x+y-1=0相切于点(1,-11),所以f(1)=-11,f(1)=-12,即1-3a+3b=-113-6a+3b=-12,解得a=1,b=-3.(2)由a=1,b=-3得f(x)=3x2-6ax+3b=3(x2-2x-3)=3(x+1)(x-3).令f(x)0,解得x-1或x3;又令f(x)0,解得-13.所以当x(-,-1)时,f(x)是增函数;当x(3,+)时,f(x)也是增函数;当x(-1,3)时,f(x)是减函数.16.求证:方程x-12sinx=0只有一个根x=0.[证明]设f(x)=x-12sinx,x(-,+),则f(x)=1-12cosx>0,f(x)在(-,+)上是单调递增函数.而当x=0时,f(x)=0,方程x-12sinx=0有唯一的根x=0.17.已知函数y=ax与y=-bx在(0,+)上都是减函数,试确定函数y=ax3+bx2+5的单调区间.[分析]可先由函数y=ax与y=-bx的单调性确定a、b的取值范围,再根据a、b的取值范围去确定y=ax3+bx2+5的单调区间.[解析]∵函数y=ax与y=-bx在(0,+)上都是减函数,a <0,b<0.由y=ax3+bx2+5得y=3ax2+2bx.令y>0,得3ax2+2bx>0,-2b3a<x<0.当x-2b3a,0时,函数为增函数.令y<0,即3ax2+2bx<0,x<-2b3a,或x>0.在-,-2b3a,(0,+)上时,函数为减函数.18.(2019新课标全国文,21)设函数f(x)=x(ex-1)-ax2.(1)若a=12,求f(x)的单调区间;(2)若当x0时f(x)0,求a的取值范围.[解析](1)a=12时,f(x)=x(ex-1)-12x2,f(x)=ex-1+xex-x=(ex-1)(x+1).当x(-,-1)时,f(x)0;当x(-1,0)时,f(x)0;当x(0,+)时,f(x)0.故f(x)在(-,-1],[0,+)上单调递增,在[-1,0]上单调递减.(2)f(x)=x(ex-1-ax).令g(x)=ex-1-ax,则g(x)=ex-a.“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
高三数学利用导数研究函数的单调性试题答案及解析1.我们把形如y=f(x)φ(x)的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边求对数得ln y=φ(x)lnf(x),两边求导得=φ′(x)·ln f(x)+φ(x)·,于是y′=f(x)φ(x)[φ′(x)·ln f(x)+φ(x)·].运用此方法可以探求得y=x的单调递增区间是________.【答案】(0,e)【解析】由题意知y′=x (-ln x+·)=x·(1-ln x),x>0,>0,x>0,令y′>0,则1-ln x>0,所以0<x<e.2.已知函数f(x)=(ax+1)e x.(1)求函数f(x)的单调区间;(2)当a>0时,求函数f(x)在区间[-2,0]上的最小值.【答案】(1)见解析(2)当a>1时,f(x)在区间[-2,0]上的最小值为-a·;当0<a≤1时,f(x)在区间[-2,0]上的最小值为.【解析】解:依题意,函数的定义域为R,f′(x)=(ax+1)′e x+(ax+1)(e x)′=e x(ax+a+1).(1)①当a=0时,f′(x)=e x>0,则f(x)的单调递增区间为(-∞,+∞);②当a>0时,由f′(x)>0,解得x>-,由f′(x)<0,解得x<-,则f(x)的单调递增区间为(-,+∞),f(x)的单调递减区间为(-∞,-);③当a<0时,由f′(x)>0,解得x<-,由f′(x)<0解得,x>-,则f(x)的单调递增区间为(-∞,-),f(x)的单调递减区间为(-,+∞).(2)①当时,)上是减函数,在(-,0)上是增函数,则函数f(x)在区间[-2,0]上的最小值为f(-)=-a·;②当时,即当0<a≤1时,f(x)在[-2,0]上是增函数,则函数f(x)在区间[-2,0]上的最小值为f(-2)=.综上,当a>1时,f(x)在区间[-2,0]上的最小值为-a·;当0<a≤1时,f(x)在区间[-2,0]上的最小值为.3.函数f(x)=x(x-m)2在x=1处取得极小值,则m=________.【答案】1【解析】f′(1)=0可得m=1或m=3.当m=3时,f′(x)=3(x-1)(x-3),1<x<3,f′(x)<0;x<1或x>3,f′(x)>0,此时x=1处取得极大值,不合题意,所以m=1.4.设,曲线在点处的切线与直线垂直.(1)求的值;(2)若对于任意的,恒成立,求的范围;(3)求证:【解析】(1)求得函数f(x)的导函数,利用曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直,即可求a的值;(2)先将原来的恒成立问题转化为lnx≤m(x−),设g(x)=lnx−m(x−),即∀x∈(1,+∞),g(x)≤0.利用导数研究g(x)在(0,+∞)上单调性,求出函数的最大值,即可求得实数m的取值范围.(3)由(2)知,当x>1时,m=时,lnx<(x−)成立.不妨令x=,k∈N*,得出[ln(2k+1)−ln(2k−1)]<,k∈N*,再分别令k=1,2,,n.得到n个不等式,最后累加可得.(1) 2分由题设,∴,. 4分(2),,,即设,即.6分①若,,这与题设矛盾. 7分②若方程的判别式当,即时,.在上单调递减,,即不等式成立. 8分当时,方程,设两根为,当,单调递增,,与题设矛盾.综上所述, . 10分(3) 由(2)知,当时, 时,成立.不妨令所以,11分12分累加可得∴∴ ---------------14分【考点】1.利用导数研究曲线上某点切线方程;2.导数在最大值、最小值问题中的应用.5.已知函数.(1)当时,证明:当时,;(2)当时,证明:.【答案】(1)证明过程详见解析;(2)证明过程详见解析.【解析】本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,将当时,转化为,对函数求导,利用单调递增,单调递减,来判断函数的单调性来决定函数最值,并求出最值为0,即得证;第二问,先将转化为且,利用导数分别判断函数的单调性求出函数最值,分别证明即可.(1)时,,令,,∴在上为增函数 3分,∴当时,,得证. 6分(2)令,,时,,时,即在上为减函数,在上为增函数 9分∴①令,,∴时,,时,即在上为减函数,在上为增函数∴②∴由①②得. 12分【考点】导数的运算、利用导数判断函数的单调性、利用导数求函数的最值.6.已知函数.(1)当a=l时,求的单调区间;(2)若函数在上是减函数,求实数a的取值范围;(3)令,是否存在实数a,当(e是自然对数的底数)时,函数g(x)最小值是3,若存在,求出a的值;若不存在,说明理由.【答案】(1)单调递减区间为,单调递增区间为;(2);(3)存在实数.【解析】(1)把代入函数解析式得,且定义域为,利用导数法可求出函数的单调区间,由,分别解不等式,,注意函数定义域,从而可求出函数的单调区间;(2)此问题利用导数法来解决,若函数在上是减函数,则其导函数在上恒成立,又因为,所以函数,必有,从而解得实数的取值范围;(3)利用导数求极值的方法来解决此问题,由题意得,则,令,解得,通过对是否在区间上进行分类讨论,可求得当时,有,满足条件,从而可求出实数的值.(1)当时,. 2分因为函数的定义域为,所以当时,,当时,.所以函数的单调递减区间为,单调递增区间为. 4分(2)在上恒成立.令,有, 6分得,. 8分(3)假设存在实数,使有最小值3,. 9分当时,在上单调递减,,(舍去); 10分②当时,在上单调递减,在上单调递增.,解得,满足条件; 12分③当时,在上单调递减,,(舍去). 13分综上,存在实数,使得当时,有最小值3. 14分【考点】1.导数性质;2.不等式求解;3.分类讨论.7.设函数f(x)=x-2msin x+(2m-1)sin xcos x(m为实数)在(0,π)上为增函数,则m的取值范围为()A.[0,]B.(0,)C.(0,]D.[0,)【答案】A【解析】∵f(x)在区间(0,π)上是增函数,∴f′(x)=1-2mcos x+2(m-)cos 2x=2[(2m-1)cos2x-mcos x+1-m]=2(cos x-1)[(2m-1)cos x+(m-1)]>0在(0,π)上恒成立,令cos x=t,则-1<t<1,即不等式(t-1)[(2m-1)t+(m-1)]>0在(-1,1)上恒成立,①若m>,则t<在(-1,1)上恒成立,则只需≥1,即<m≤,②当m=时,则0·t+-1<0,在(-1,1)上显然成立;③若m<,则t>在(-1,1)上恒成立,则只需≤-1,即0≤m<.综上所述,所求实数m的取值范围是[0,].8.已知e为自然对数的底数,设函数f(x)=xe x,则()A.1是f(x)的极小值点B.﹣1是f(x)的极小值点C.1是f(x)的极大值点D.﹣1是f(x)的极大值点【答案】B【解析】f(x)=xe x⇒f′(x)=e x(x+1),令f′(x)>0⇒x>﹣1,∴函数f(x)的单调递增区间是[﹣1,+∞);令f′(x)<0⇒x<﹣1,∴函数f(x)的单调递减区间是(﹣∞,﹣1),故﹣1是f(x)的极小值点.故选:B.9.若函数f(x)=x3-ax2+(a-1)x+1在区间(1,4)上是减函数,在区间(6,+∞)上是增函数,则实数a的取值范围是________.【答案】[5,7]【解析】f′(x)=x2-ax+(a-1),由题意,f′(x)≤0在(1,4)恒成立且f′(x)≥0在(6,+∞)恒成立,即a≥x+1在(1,4)上恒成立且a≤x+1在(6,+∞)上恒成立,所以5≤a≤7.10.已知函数f(x)=x2-mlnx+(m-1)x,当m≤0时,试讨论函数f(x)的单调性;【答案】当-1<m≤0时单调递增区间是和(1,+∞),单调递减区间是;当m≤-1时,单调递增区间是和,单调递减区间是【解析】函数的定义域为,f′(x)=x-+(m-1)=.①当-1<m≤0时,令f′(x)>0,得0<x<-m或x>1,令f′(x)<0,得-m<x<1,∴函数f(x)的单调递增区间是和(1,+∞),单调递减区间是;②当m≤-1时,同理可得,函数f(x)的单调递增区间是和,单调递减区间是.11.若函数f(x)=x2+ax+在上是增函数,则a的取值范围是________.【答案】a≥3【解析】f′(x)=2x+a-≥0在上恒成立,即a≥-2x在上恒成立.令g(x)=-2x,求导可得g(x)在上的最大值为3,所以a≥3.12.函数y=(3-x2)e x的单调递增区间是()A.(-∞,0)B.(0,+∞)C.(-∞,-3)和(1,+∞)D.(-3,1)【答案】D【解析】y'=-2xe x+(3-x2)e x=e x(-x2-2x+3)>0x2+2x-3<0-3<x<1,∴函数y=(3-x2)e x的单调递增区间是(-3,1).13.若函数f(x)=x3-x2+ax+4恰在[-1,4]上单调递减,则实数a的值为________.【答案】-4【解析】∵f(x)=x3-x2+ax+4,∴f′(x)=x2-3x+a.又函数f(x)恰在[-1,4]上单调递减,∴-1,4是f′(x)=0的两根,∴a=-1×4=-4.14.函数f(x)=x2-ln x的单调递减区间为 ().A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)【答案】B【解析】由题意知,函数的定义域为(0,+∞),又由f′(x)=x-≤0,解得0<x≤1,所以函数的单调递减区间为(0,1].15.已知函数,(1)求函数的单调区间;(2)若方程有且只有一个解,求实数m的取值范围;(3)当且,时,若有,求证:.【答案】(1)的递增区间为,递减区间为和;(2);(3)详见解析.【解析】(1)对求导可得,令,或,由导数与单调性的关系可知,所以递增区间为,递减区间为;(2)若方程有解有解,则原问题转化为求f(x)的值域,而m只要在f(x)的值域内即可,由(1)知,,方程有且只有一个根,又的值域为,;(3)由(1)和(2)及当,时,有,不妨设,则有,,又,即,同理,又,,且在上单调递减,,即.试题解析:(1),令,即,解得,令,即,解得,或,的递增区间为,递减区间为和. 4分(2)由(1)知,, 6分方程有且只有一个根,又的值域为,由图象知8分(3)由(1)和(2)及当,时,有,不妨设,则有,,又,即, 11分,又,,且在上单调递减,,即. 13分【考点】1.导数在函数单调性上的应用;2. 导数与函数最值.16.某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。
第2讲导数在研究函数中的应用第1课时导数与函数的单调性一、选择题1.函数f(x)=x-ln x的单调递减区间为() A.(0,1) B.(0,+∞)C.(1,+∞) D.(-∞,0)∪(1,+∞)解析函数的定义域是(0,+∞),且f′(x)=1-1x=x-1x,令f′(x)<0,解得0<x<1,所以单调递减区间是(0,1).答案 A2.(2015·陕西卷)设f(x)=x-sin x,则f(x)() A.既是奇函数又是减函数B.既是奇函数又是增函数C.是有零点的减函数D.是没有零点的奇函数解析因为f′(x)=1-cos x≥0,所以函数为增函数,排除选项A和C.又因为f(0)=0-sin 0=0,所以函数存在零点,排除选项D,故选B.答案 B3.已知定义在R上的函数f(x),其导函数f′(x)的大致图像如图所示,则下列叙述正确的是()A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )解析 依题意得,当x ∈(-∞,c )时,f ′(x )>0,因此,函数f (x )在(-∞,c )上是增函数,由a <b <c ,所以f (c )>f (b )>f (a ). 答案 C4.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为( )A .(-∞,2)B .(-∞,2] C.⎝ ⎛⎭⎪⎫-∞,52 D.⎝ ⎛⎦⎥⎤-∞,52 解析 ∵f ′(x )=6x 2-6mx +6, 当x ∈(2,+∞)时,f ′(x )≥0恒成立, 即x 2-mx +1≥0恒成立,∴m ≤x +1x 恒成立. 令g (x )=x +1x ,g ′(x )=1-1x 2,∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增, ∴m ≤2+12=52. 答案 D5.(2017·上饶模拟)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞) 解析 由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2,因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上单调递增.又F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1.答案 B二、填空题6.已知函数f(x)=(-x2+2x)e x(x∈R,e为自然对数的底数),则函数f(x)的单调递增区间为________.解析因为f(x)=(-x2+2x)e x,所以f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f′(x)>0,即(-x2+2)e x>0,因为e x>0,所以-x2+2>0,解得-2<x<2,所以函数f(x)的单调递增区间为(-2,2).答案(-2,2)7.已知函数f(x)=-12x2+4x-3ln x在区间[t,t+1]上不单调,则t的取值范围是________.解析由题意知f′(x)=-x+4-3x=-(x-1)(x-3)x,由f′(x)=0得函数f(x)的两个极值点为1和3,则只要这两个极值点有一个在区间(t,t+1)内,函数f(x)在区间[t,t+1]上就不单调,由t<1<t+1或t<3<t+1,得0<t<1或2<t<3.答案(0,1)∪(2,3)8.(2017·武汉模拟)已知f(x)=2ln x+x2-5x+c在区间(m,m+1)上为递减函数,则m的取值范围为________.解析 由f (x )=2ln x +x 2-5x +c ,得f ′(x )=2x +2x -5,又函数f (x )在区间(m ,m +1)上为递减函数, ∴f ′(x )≤0在(m ,m +1)上恒成立, ∴⎩⎪⎨⎪⎧2m +2m -5≤0,2m +1+2(m +1)-5≤0,解得12≤m ≤1.答案 ⎣⎢⎡⎦⎥⎤12,1三、解答题 9.已知函数f (x )=ln x +ke x (k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间.解 (1)由题意得f ′(x )=1x -ln x -ke x ,又f ′(1)=1-ke =0,故k =1. (2)由(1)知,f ′(x )=1x -ln x -1e x.设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x <0, 即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1),单调递减区间是(1,+∞). 10.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝ ⎛⎭⎪⎫23.(1)求a 的值;(2)求函数f (x )的单调区间;(3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.解 (1)由f (x )=x 3+ax 2-x +c , 得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2a ×23-1, 解得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c ,则f ′(x )=3x 2-2x -1=3⎝ ⎛⎭⎪⎫x +13(x -1),列表如下:所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-13和(1,+∞);f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-13,1.(3)函数g (x )=(f (x )-x 3)·e x =(-x 2-x +c )·e x , 有g ′(x )=(-2x -1)e x +(-x 2-x +c )e x =(-x 2-3x +c -1)e x ,因为函数g (x )在x ∈[-3,2]上单调递增,所以h (x )=-x 2-3x +c -1≥0在x ∈[-3,2]上恒成立,只要h (2)≥0,解得c ≥11,所以c 的取值范围是[11,+∞).11.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析 依题意得,当x <1时,f ′(x )>0, 则f (x )在(-∞,1)上为增函数; 又f (3)=f (-1),且-1<0<12<1, 因此有f (-1)<f (0)<f ⎝ ⎛⎭⎪⎫12,即有f (3)<f (0)<f ⎝ ⎛⎭⎪⎫12,c <a <b .答案 C12.(2016·全国Ⅰ卷)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-1,-13 解析 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2 x +a cos x +53,由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立. 令t =cos x ,t ∈[-1,1],则-43t 2+at +53≥0.在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立.令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13. 答案 C13.(2017·合肥质检)设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x 的取值范围是________. 解析 令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2>0,x ∈(0,+∞),所以函数g (x )在(0,+∞)上单调递增. 又g (-x )=f (-x )-x=-f (x )-x=f (x )x =g (x ), 则g (x )是偶函数,g (-2)=0=g (2). 则f (x )=xg (x )>0⇔⎩⎪⎨⎪⎧x >0,g (x )>0或⎩⎪⎨⎪⎧x <0,g (x )<0,解得x >2或-2<x <0,故不等式f (x )>0的解集为(-2,0)∪(2,+∞). 答案 (-2,0)∪(2,+∞)14.已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式;(2)若φ(x )=m (x -1)x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.解 (1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2. 又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1. (2)∵φ(x )=m (x -1)x +1-f (x )=m (x -1)x +1-ln x 在[1,+∞)上是减函数, ∴φ′(x )=-x 2+(2m -2)x -1x (x +1)2≤0在[1,+∞)上恒成立,∴x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x ,x ∈[1,+∞), ∵x +1x ∈[2,+∞),∴2m -2≤2,m ≤2. 故实数m 的取值范围是(-∞,2].。
高二数学利用导数研究函数的单调性试题答案及解析1.已知函数在上单调递增,则实数的取值范围是.【答案】【解析】函数在上单调递增即在恒成立,则有在恒成立即,构造函数,,当时, ,当时, ,所以当时,因此,答案为.【考点】1.导数与函数的单调性;2.不等式的恒成立问题;3.函数的最值问题2. .定义在上的函数满足:则不等式(其中为自然对数的底数)的解集为()A.B.C.D.【答案】A【解析】令,由于,所用在上是增函数,【考点】函数的单调性与导数的关系.3.已知函数f(x)= -ax(a∈R,e为自然对数的底数).(1)讨论函数f(x)的单调性;(2)若a=1,函数g(x)=(x-m)f(x)-+x2+x在区间(0,+)上为增函数,求整数m 的最大值.【答案】(1)所以在为减函数,在为增函数;(2)最大值为1【解析】(1)利用函数的单调性与导数的关系;(2)解决类似的问题时,注意区分函数的最值和极值.求函数的最值时,要先求函数在区间内使的点,再计算函数在区间内所有使的点和区间端点处的函数值,最后比较即得.(3)第二问关键是分离参数,把所求问题转化为求函数的最小值问题.(4)若可导函数在指定的区间上单调递增(减),求参数问题,可转化为恒成立,从而构建不等式,要注意“=”是否可以取到.试题解析:解:(Ⅰ)定义域为,,当时,,所以在上为增函数; 2分当时,由得,且当时,,当时,所以在为减函数,在为增函数. 6分(Ⅱ)当时,,若在区间上为增函数,则在恒成立,即在恒成立 8分令,;,;令,可知,,又当时,所以函数在只有一个零点,设为,即,且; 9分由上可知当时,即;当时,即,所以,,有最小值, 10分把代入上式可得,又因为,所以,又恒成立,所以,又因为为整数,所以,所以整数的最大值为1. 12分【考点】(1)利用导数求函数的单调性;(2)利用导数求函数的最值问题.4.设函数(其中).(1)当时,求函数的单调区间;(2)当时,求函数在上的最大值.【答案】(1)函数的递减区间为,递增区间为,;(2)【解析】(1)由,利用导数的符号判断函数的单调性和求单调区间;(2)试题解析:解:(1)当时,,令,得,当变化时,的变化如下表:单调递增极大值单调递减极小值单调递增右表可知,函数的递减区间为,递增区间为,.(2),令,得,, 令,则,所以在上递增, 所以,从而,所以所以当时,;当时,;所以令,则,令,则在上递减,而所以存在使得,且当时,当时,所以在上单调递增,在上单调递减.因为,所以在上恒成立,当且仅当时取得“=”.综上,函数在上的最大值.【考点】1、导数在研究函数性质中的综合应用;2、等价转化的思想.5.直线与函数的图像有三个相异的交点,则的取值范围为()A.B.C.D.【答案】A【解析】得列表:x(-,-1)-1(-1,1)1(1,+ )++y画出大到图象可得:-2<a<2,故选A.【考点】函数的极值.6.函数f(x)=ax3-x在R上为减函数,则()A.a≤0B.a<1C.a<0D.a≤1【答案】【解析】当时,在上为减函数,成立;当时, 的导函数为,根据题意可知, 在上恒成立,所以且,可得.综上可知.【考点】导数法判断函数的单调性;二次函数恒成立.7.已知f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围.【答案】(1)若,的单调增区间为 , ,的单调增区间为;(2).【解析】(1)对f(x)求导得,解可得单调增区间,解不等式过程中要对进行讨论;(2) 在R上单调递增,则在R上恒成立 ,即恒成立,即,求出的最小值即可.试题解析:解:(1) 1分若,则,此时的单调增区间为 2分若,令,得此时的单调增区间为 -6分(2)在R上单调递增,则在R上恒成立 -8分即恒成立即,因为当时,所以 -12分-0 +【考点】求导,函数的单调性与导数的关系.8.在区间内不是增函数的是()A.B.C.D.【答案】D【解析】选项中,时都有,所以在上为单调递增函数,所以在是增函数;选项在,而在上为增函数,所以在是增函数;选项,令得或,所以在为增函数,而,所以在上增函数;选项,令,得。
高三数学利用导数研究函数的单调性试题答案及解析1.设函数、,且f(x)存在两个极值点、,其中.(Ⅰ)求实数的取值范围;(Ⅱ)求的最小值;(Ⅲ)证明不等式:.【答案】(1);(2);(3)见解析.【解析】(1)f(x)存在两个极值点,等价于其导函数有两个相异零点;(2)先找出(x1-x2)的取值范围,再利用g(x)的导函数可找出最小值;(3)适当构造函数,并注意x1与x2的关系,转化为函数求最大值问题,证明相关不等式.试题解析:(Ⅰ)由题:∵函数存在两个极值点、,且∴关于的方程即在内有不等二实根令、,则由图像可得即∴实数的取值范围是(Ⅱ)由(Ⅰ)可知∴∴由得∴当时,,即在单调递减;当时,,即在单调递增∴(Ⅲ)由(Ⅰ)知∴令,则且令,则∴∵∴即在上是减函数∴∴在上是增函数∴即【考点】导函数,函数的单调性,最值,不等式证明2.已知为定义在(0,+∞)上的可导函数,且恒成立,则不等式的解集为______ _____.【答案】【解析】由可得.即函数在(0,+∞)上递减.由可得.所以.又因为.所以即.【考点】1.函数导数.2.构建新函数的思维.3.函数的单调性.3.设.(1)若曲线在点处的切线方程为,求的值;(2)当时,求的单调区间与极值.【答案】(1),(2)单调增区间是,减区间是,极小值求导可得.【解析】(1)由,,解得,.(2)函数的定义域是.当时,,.令,求导可得.当时,,则,是减函数;当时,,则,是增函数.故的单调增区间是,减区间是,当时,有极小值.4.若函数y=f(x)在x=x0处取得极大值或极小值,则称x为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.【答案】(1)a=0,b=-3.(2)-2.【解析】(1)由题设得f′(x)=3x2+2ax+b,所以,解之得a=0,b=-3.(2)由(1)知f(x)=x3-3x.因为f(x)+2=(x-1)2(x+2),所以g′(x)=0的根为x1=x2=1,x3=-2,于是函数g(x)的极值点只可能是1或-2.当x<-2时,g′(x)<0;当-2<x<1时,g′(x)>0,故-2是g(x)的极值点.当-2<x<1或x>1时,g′(x)>0,故1不是g(x)的极值点.所以g(x)的极值点为-2.5.已知函数.若存在实数,,使得的解集恰为,则的取值范围是.【答案】【解析】由题意得方程有两个不等的非零根,方程变形得,则由得,因此当时,当时,因此的取值范围为【考点】利用导数求参数取值范围6.已知函数的单调递减区间是,则实数.【答案】【解析】∵=,由题知不等式=≤0的解集{x|2≤≤3},即方程=0两根为2,3,根据根与系数关系得2+3=,∴.【考点】函数单调性与导数关系.7.已知函数f(x)=-x3+x2,g(x)=a ln x,a∈R.(1)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围;(2)设F(x)=若P是曲线y=F(x)上异于原点O的任意一点,在曲线y=F(x)上总存在另一点Q,使得△POQ中的∠POQ为钝角,且PQ的中点在y轴上,求a的取值范围.【答案】(1)(-∞,-1](2)(-∞,0]【解析】(1)由g(x)≥-x2+(a+2)x,得(x-ln x)a≤x2-2x..由于x∈[1,e],ln x≤1≤x,且等号不能同时取得,所以ln x<x,x-ln x>0..(4分)从而a≤恒成立,a≤min设t(x)=,x∈[1,e].求导,得t′(x)=.(6分)x∈[1,e],x-1≥0,ln x≤1,x+2-2ln x>0,从而t′(x)≥0,t(x)在[1,e]上为增函数.所以t(x)=t(1)=-1,所以a的取值范围是(-∞,-1].(8分)min(2)F(x)=设P(t,F(t))为曲线y=F(x)上的任意一点.假设曲线y=F(x)上存在一点Q(-t,F(-t)),使∠POQ为钝角,则<0.(10分)①若t≤-1,P(t,-t3+t2),Q(-t,a ln(-t)),=-t2+a ln(-t)·(-t3+t2).由于<0恒成立,a(1-t)ln(-t)<1.当t=-1时,a(1-t)ln(-t)<1恒成立.当t<-1时,a<恒成立.由于>0,所以a≤0.(12分)②若-1<t<1,且t≠0,P(t,-t3+t2),Q(-t,t3+t2),则=-t2+(-t3+t2)·(t3+t2)<0,即t4-t2+1>0对-1<t<1,且t≠0恒成立.(14分)③当t≥1时,同①可得a≤0.综上所述,a的取值范围是(-∞,0].(16分)8.设函数f(x)=ax n(1-x)+b(x>0),n为正整数,a,b为常数.曲线y=f(x)在(1,f(1))处的切线方程为x+y=1.(1)求a,b的值;(2)求函数f(x)的最大值.【答案】(1) a=1,b=0. (2)【解析】(1)因为f(1)=b,由点(1,b)在x+y=1上,可得1+b=1,即b=0.因为f′(x)=anx n-1-a(n+1)x n,所以f′(1)=-a.又因为切线x+y=1的斜率为-1,所以-a=-1,即a=1.故a=1,b=0.(2)由(1)知,f(x)=x n(1-x)=x n-x n+1,f′(x)=(n+1)x n-1.令f′(x)=0,解得x=,在上,f′(x)>0,故f(x)单调递增;而在上,f′(x)<0,故f(x)单调递减.故f(x)在(0,+∞)上的最大值为f=n·=.9.已知实数满足,,设函数(1)当时,求的极小值;(2)若函数()的极小值点与的极小值点相同,求证:的极大值小于等于【答案】(1);(2)见解析【解析】(1)把代入原函数先得解析式,再求导数,列表判断单调性求函数的极小值;(2)先分别求函数的导函数,再分两种情况讨论,根据条件函数的极小值点相同分别求的极大值,从而进行判断得结论试题解析:(Ⅰ)解: 当a=2时,f ′(x)=x2-3x+2=(x-1)(x-2)列表如下:(-,1)(2,+)++所以,f (x)极小值为f (2)= 5分(Ⅱ)解:f ′(x)=x2-(a+1)x+a=(x-1)(x-a)g ′(x)=3x2+2bx-(2b+4)+=令p(x)=3x2+(2b+3)x-1,(1)当 1<a≤2时,f(x)的极小值点x=a,则g(x)的极小值点也为x=a,所以pA=0,即3a2+(2b+3)a-1=0,即b=,此时g(x)极大值=g(1)=1+b-(2b+4)=-3-b=-3+=由于1<a≤2,故≤2--= 10分(2)当0<a<1时,f(x)的极小值点x=1,则g(x)的极小值点为x=1,由于p(x)=0有一正一负两实根,不妨设x2<0<x1,所以0<x1<1,即p(1)=3+2b+3-1>0,故b>-此时g(x)的极大值点x=x1,有 g(x1)=x13+bx12-(2b+4)x1+lnx1<1+bx12-(2b+4)x1=(x12-2x1)b-4x1+1(x12-2x1<0)<-(x12-2x1)-4x1+1=-x12+x1+1=-(x1-)2+1+(0<x1<1)≤<综上所述,g(x)的极大值小于等于 14分【考点】利用导数求函数的单调性及极值10.已知函数上为增函数,且,,.(1)求的值;(2)当时,求函数的单调区间和极值;(3)若在上至少存在一个,使得成立,求的取值范围.【答案】(1);(2)函数的单调递增区间是,递减区间为,极大值;(3)的取值范围为.【解析】(1)利用在上恒成立,转化成在上恒成立,从而只需,即,结合正弦函数的有界性,得到,求得;(2)研究函数的单调性、极值,一般遵循“求导数,求驻点,讨论区间导数值的正负,确定单调性及极值”,利用“表解法”,往往形象直观,易于理解.(3)构造函数,讨论,时,的取值情况,根据在上恒成立,得到在上单调递增,利用大于0,求得.试题解析:(1)由已知在上恒成立,即,∵,∴,故在上恒成立,只需,即,∴只有,由知; 4分(2)∵,∴,,∴,令,则,∴,和的变化情况如下表:+0极大值即函数的单调递增区间是,递减区间为,有极大值;7分(3)令,当时,由有,且,∴此时不存在使得成立;当时,,∵,∴,又,∴在上恒成立,故在上单调递增,∴,令,则,故所求的取值范围为. 12分【考点】应用导数研究函数单调性、极值11.已知函数.(I)求函数的单调区间;(Ⅱ)若,试解答下列两小题.(i)若不等式对任意的恒成立,求实数的取值范围;(ii)若是两个不相等的正数,且以,求证:.【答案】(I)①当时,递增区间是;②当时,递增区间是,递减区间为;(Ⅱ)(i)实数的取值范围为;(ii)详见试题解析.【解析】(I)首先求函数的定义域,再求的导数,令下面分和讨论求函数的单调区间;(Ⅱ)(i)先由已知条件,将问题转化为设求函数的导数:,由此讨论可得在上为减函数,从而求得实数的取值范围;(ii)先根据已知条件把化简为,只要证设,构造函数利用导数可得在上单调递减,在上单调递增,最终证得.试题解析:(I)解:函数的定义域为令①当时,在上恒成立,∴递增区间是;②当时,由可得,∴递增区间是,递减区间为.(6分)(Ⅱ)(i)解:设则.∵在上恒成立,∴在上为减函数,∴实数的取值范围为.(10分)(ii)证明:.设,则.令,得,在上单调递减,在上单调递增.(15分)【考点】1.导数与函数的单调性;2.利用导数求恒成立问题中的参数取值范围问题参数;3.利用导数证明不等式.12.已知函数f(x)=alnx+(a≠0)在(0,)内有极值.(I)求实数a的取值范围;(II)若x1∈(0,),x2∈(2,+∞)且a∈[,2]时,求证:f(x1)﹣f(x2)≥ln2+.【答案】(1);(2)证明过程详见解析.【解析】本题主要考查导数的运算,利用导数研究函数的单调性及最值、不等式等基础知识,考查函数思想,突出考查综合运用数学知识和方法分析问题解决问题的能力.第一问,先对求导,由函数定义域可知,的分母为正数,设的分子为新函数,判断,所以或,解得的取值范围;第二问,对求导,令,设出方程的两根,利用韦达定理得到两根之和、两根之积,判断导函数的正负,决定函数的单调性,求出最大值和最小值,代入求证的式子的左边,化简,得到,再求函数的最小值,通过不等式的传递性得到求证的表达式.试题解析:(I)由(),得:,∵a≠0,令,∴.令或,则.(II)由(I)得:,设()的两根为,则,得.当和时,,函数f(x)单调递增;当和时,,函数f(x)单调递减,则,,则==(利用)令,则,则函数单调递增,,∴,∵,则,∴.【考点】1.二次函数的性质;2.零点问题;3.利用导数判断函数的单调区间;4. 利用导数判断函数的最值;5.不等式的性质.13.设函数.(I)求函数的单调递增区间;(II) 若关于的方程在区间内恰有两个不同的实根,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)的取值范围是【解析】(Ⅰ)求出导数,根据导数大于0求得的单调递增区间.(Ⅱ)令.利用导数求出的单调区间和极值点,画出其简图,结合函数零点的判定定理找出所满足的条件,由此便可求出的取值范围.试题解析:(Ⅰ)函数的定义域为,∵,∵,则使的的取值范围为,故函数的单调递增区间为(Ⅱ)∵,∴令,∵,且,由得,由得.∴在区间内单调递减,在区间内单调递增,故在区间内恰有两个相异实根即解得:.综上所述,的取值范围是【考点】1、导数及其应用;2、函数的零点.14.已知函数f(x)的定义域为R,对任意,有,且,则f(x)<3x+6的解集为( )A.(-1, 1)B.(-1,+)C.(-,-1)D.(-,+)【答案】C【解析】构造函数,则,所以函数是增函数,又,所以的解集是,即的解集是.【考点】利用导函数判断函数的单调性.15.已知函数(Ⅰ)若试确定函数的单调区间;(Ⅱ)若且对于任意恒成立,试确定实数的取值范围;(Ⅲ)设函数求证:.【答案】(Ⅰ)单调递增区间是,单调递减区间是;(Ⅱ);(Ⅲ)见解析.【解析】(Ⅰ)求出函数的导数,令导数大于零解得单调增区间,令导数小于零得单调减区间;(Ⅱ)先可得知是偶函数,于是对任意成立等价于对任意成立,令导数等于零得,然后对在处断开进行讨论;(Ⅲ)先求得,并证明,然后列举累乘即可证明.试题解析:(Ⅰ)由得,所以.由得,故的单调递增区间是, 3分由得,故的单调递减区间是. 4分(Ⅱ)由可知是偶函数.于是对任意成立等价于对任意成立. 5分由得.①当时,.此时在上单调递增.故,符合题意. 6分②当时,.当变化时的变化情况如下表:单调递减极小值单调递增由此可得,在依题意,,又,所以.综合①,②得,实数的取值范围是. 9分(Ⅲ), 10分,12分得,故. 14分【考点】利用导数求函数的单调区间、利用导数求函数的极值、不等式证明.16.已知函数.(1)当时,求的单调区间;(2)若函数在单调递减,求实数的取值范围.【答案】(1)在上单调递增.(2).【解析】(1)通过“求导数,求驻点,分区间讨论”,可得函数的单调区间.也可利用导数大于0或小于0 ,解不等式,得到单调区间.(2)问题转化成在上恒成立,由,对进行分类讨论,求得其范围.试题解析:(1) 1分,,,,, 4分在上单调递增 5 分(2)在上恒成立,①时,在是增函数,其最小值为0,不合题意; 7分②时,,函数有最大值,不合题意; 9分③时,,函数在单调递增,在处取到最小值0; 11分综上: 12分【考点】应用导数研究函数的单调性、最值.17.已知函数(1)当时,试讨论函数的单调性;(2)证明:对任意的,有.【答案】(1)①时,在(0,1)是增函数,在是减函数;②时,在(0,1),是增函数,在是减函数;③时,在是增函数.(2)见解析.【解析】(1)求导数得到,而后根据两个驻点的大小比较,分以下三种情况讨论.①时,在(0,1)是增函数,在是减函数;②时,在(0,1),是增函数,在是减函数;③时,在是增函数.(2)注意到时,在是增函数当时,有.从而得到:对任意的,有通过构造,并放缩得到利用裂项相消法求和,证得不等式。
高二数学函数的单调性与导数试题答案及解析1.奇函数的定义域为,且满足,已知,则的取值范围是A.B.C.D.【答案】D【解析】解:因为根据已知可知f(x)在(-1,1)上递减,那么则满足a-2>3-2a,同时a-2,和2a-3都要满足在区间(-1,1)内,那么可以解得为选项D.2.函数的图象如图所示,下列数值排序正确的是A.B.C.D.【答案】B【解析】解:因为由图可知,函数单调递减,并且导数值都为读书,变量越大利用导数的几何意义可知,那么成立的为f’(-2)<f(-2)<f(-3)<f’(-3)<03.已知函数满足,且在区间和区间上分别单调。
(Ⅰ)求解析式;(Ⅱ)若函数求的值。
【答案】解:(Ⅰ)∵,∴。
① 1分又∵在区间和区间上分别单调,∴的对称轴为,即。
②由②得,。
2分把代入①得,。
3分(Ⅱ)∵∴4分,5分∴。
6分【解析】本试题主要是考查了函数的单调性质和函数的求值的运用。
(1)根据已知f(-1)=-5,那么得到a.b的关系式,并结合对称性可知参数啊,b的值。
(2)由函数为分段函数可知函数的对应的自变量的值。
4.设函数,,则的最大值为____________,最小值为_________。
【答案】【解析】解:因为,利用导数符号与函数单调性关系可知道f(x)的最大值,最小值分别为5.已知函数,其中.(Ⅰ)若函数为奇函数,求实数的值;(Ⅱ)若函数在区间上单调递增,求实数的取值范围.【答案】(Ⅰ)解:因为是奇函数.所以,其中且. ………… 2分即, 其中且.所以. ………………………… 6分(Ⅱ)解:. ………………………… 8分因为在区间上单调递增,所以在上恒成立,……… 9分即在上恒成立,因为在上的最小值,所以.验证知当时,在区间上单调递增. … 13分【解析】本试题主要是考查了导数在研究函数的性质中的运用,奇偶性和单调新的综合运用。
(1)根据奇偶性的定义先判定的定义域再看f(x)和f(-x)的关系得到结论。
高中数学函数的单调性与导数综合测试题(含答案)
选修2-2 1.3.1 函数的单调性与导数
一、选择题
1.设f(x)=ax3+bx2+cx+d(a0),则f(x)为R上增函数的充要条件是()
A.b2-4ac0 B.b0,c0
C.b=0,c D.b2-3ac0
[答案] D
[解析] ∵a0,f(x)为增函数,
f(x)=3ax2+2bx+c0恒成立,
=(2b)2-43ac=4b2-12ac0,b2-3ac0.
2.(2009广东文,8)函数f(x)=(x-3)ex的单调递增区间是()
A.(-,2) B.(0,3)
C.(1,4) D.(2,+)
[答案] D
[解析] 考查导数的简单应用.
f(x)=(x-3)ex+(x-3)(ex)=(x-2)ex,
令f(x)0,解得x2,故选D.
3.已知函数y=f(x)(xR)上任一点(x0,f(x0))处的切线斜
率k=(x0-2)(x0+1)2,则该函数的单调递减区间为()
页 1 第
A.[-1,+) B.(-,2]
C.(-,-1)和(1,2) D.[2,+)
[答案] B
[解析] 令k0得x02,由导数的几何意义可知,函数的单调
减区间为(-,2].
4.已知函数y=xf(x)的图象如图(1)所示(其中f(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是() [答案] C
[解析] 当01时xf(x)0
f(x)0,故y=f(x)在(0,1)上为减函数
当x1时xf(x)0,f(x)0,故y=f(x)在(1,+)上为增函数,因此否定A、B、D故选C.
5.函数y=xsinx+cosx,x(-)的单调增区间是()
A.-,-2和0,2
B.-2,0和0,2
C.-,-2,
D.-2,0和
[答案] A
[解析] y=xcosx,当-x2时,
cosx0,y=xcosx0,
当02时,cosx0,y=xcosx0.
6.下列命题成立的是()
页 2 第
A.若f(x)在(a,b)内是增函数,则对任何x(a,b),都有f(x)0
B.若在(a,b)内对任何x都有f(x)0,则f(x)在(a,b)上是增函数
C.若f(x)在(a,b)内是单调函数,则f(x)必存在
D.若f(x)在(a,b)上都存在,则f(x)必为单调函数
[答案] B
[解析] 若f(x)在(a,b)内是增函数,则f(x)0,故A错;f(x)在(a,b)内是单调函数与f(x)是否存在无必然联系,故C错;f(x)=2在(a,b)上的导数为f(x)=0存在,但f(x)无单调性,故D错.
7.(2019福建理,11)已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x0时,f(x)0,g(x)0,则x0时() A.f(x)0,g(x) B.f(x)0,g(x)0
C.f(x)0,g(x) D.f(x)0,g(x)0
[答案] B
[解析] f(x)为奇函数,g(x)为偶函数,奇(偶)函数在关于原点对称的两个区间上单调性相同(反),x0时,f(x)0,
g(x)0.
8.f(x)是定义在(0,+)上的非负可导函数,且满足xf(x)+f(x)0,对任意正数a、b,若ab,则必有()
A.af(a)f(b) B.bf(b)f(a)
页 3 第
C.af(b)bf(a) D.bf(a)af(b)
[答案] C
[解析] ∵xf(x)+f(x)0,且x0,f(x)0,
f(x)-f(x)x,即f(x)在(0,+)上是减函数,
又0<a<b,af(b)bf(a).
9.对于R上可导的任意函数f(x),若满足(x-1)f(x)0,则必有()
A.f(0)+f(2)2f(1) B.f(0)+f(2)2f(1)
C.f(0)+f(2)2f(1) D.f(0)+f(2)2f(1)
[答案] C
[解析] 由(x-1)f(x)0得f(x)在[1,+)上单调递增,在(-,1]上单调递减或f(x)恒为常数,
故f(0)+f(2)2f(1).故应选C.
10.(2019江西理,12)如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S(t)的图像大致为
[答案] A
[解析] 由图象知,五角星露出水面的面积的变化率是增减增减,其中恰露出一个角时变化不连续,故选A.
二、填空题
11.已知y=13x3+bx2+(b+2)x+3在R上不是单调增函页4 第
数,则b的范围为________.
[答案] b-1或b2
[解析] 若y=x2+2bx+b+20恒成立,则=4b2-4(b+2)0,-12,
由题意b<-1或b>2.
12.已知函数f(x)=ax-lnx,若f(x)>1在区间(1,+)
内恒成立,实数a的取值范围为________.
[答案] a1
[解析] 由已知a>1+lnxx在区间(1,+)内恒成立.
设g(x)=1+lnxx,则g(x)=-lnxx2<0 (x>1),
g(x)=1+lnxx在区间(1,+)内单调递减,
g(x)<g(1),
∵g(1)=1,
1+lnxx<1在区间(1,+)内恒成立,
a1.
13.函数y=ln(x2-x-2)的单调递减区间为__________.[答案] (-,-1)
[解析] 函数y=ln(x2-x-2)的定义域为(2,+)(-,-1),令f(x)=x2-x-2,f(x)=2x-10,得x12,
函数y=ln(x2-x-2)的单调减区间为(-,-1).
14.若函数y=x3-ax2+4在(0,2)内单调递减,则实数a页5 第
的取值范围是____________.
[答案] [3,+)
[解析] y=3x2-2ax,由题意知3x2-2ax0在区间(0,2)内恒成立,
即a32x在区间(0,2)上恒成立,a3.
三、解答题
15.设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(1)求a、b的值;
(2)讨论函数f(x)的单调性.
[解析] (1)求导得f(x)=3x2-6ax+3b.
由于f(x)的图象与直线12x+y-1=0相切于点(1,-11),所以f(1)=-11,f(1)=-12,
即1-3a+3b=-113-6a+3b=-12,
解得a=1,b=-3.
(2)由a=1,b=-3得
f(x)=3x2-6ax+3b=3(x2-2x-3)
=3(x+1)(x-3).
令f(x)0,解得x-1或x3;又令f(x)0,解得-13.
所以当x(-,-1)时,f(x)是增函数;
当x(3,+)时,f(x)也是增函数;
当x(-1,3)时,f(x)是减函数.
页 6 第
16.求证:方程x-12sinx=0只有一个根x=0.
[证明] 设f(x)=x-12sinx,x(-,+),
则f(x)=1-12cosx>0,
f(x)在(-,+)上是单调递增函数.
而当x=0时,f(x)=0,
方程x-12sinx=0有唯一的根x=0.
17.已知函数y=ax与y=-bx在(0,+)上都是减函数,试确定函数y=ax3+bx2+5的单调区间.
[分析] 可先由函数y=ax与y=-bx的单调性确定a、b的取值范围,再根据a、b的取值范围去确定y=ax3+bx2+5的单调区间.
[解析] ∵函数y=ax与y=-bx在(0,+)上都是减函数,a<0,b<0.
由y=ax3+bx2+5得y=3ax2+2bx.
令y>0,得3ax2+2bx>0,-2b3a<x<0.
当x-2b3a,0时,函数为增函数.
令y<0,即3ax2+2bx<0,
x<-2b3a,或x>0.
在-,-2b3a,(0,+)上时,函数为减函数.
18.(2019新课标全国文,21)设函数f(x)=x(ex-1)-ax2.
(1)若a=12,求f(x)的单调区间;
(2)若当x0时f(x)0,求a的取值范围.
页 7 第
[解析] (1)a=12时,f(x)=x(ex-1)-12x2,
f(x)=ex-1+xex-x=(ex-1)(x+1).
当x(-,-1)时,f(x)0;当x(-1,0)时,f(x)0;当x(0,+)时,f(x)0.
故f(x)在(-,-1],[0,+)上单调递增,在[-1,0]上单
调递减.
(2)f(x)=x(ex-1-ax).
令g(x)=ex-1-ax,则g(x)=ex-a.
若a1,则当x(0,+)时,g(x)0,g(x)为增函数,而g(0)
=0,从而当x0时g(x)0,即f(x)0.
当a1,则当x(0,lna)时,g(x)0,g(x)为减函数,而g(0)
=0,从而当x(0,lna)时g(x)0,即f(x)0.
综合得a的取值范围为(-,1].
页 8 第。