溅渣护炉技术
- 格式:ppt
- 大小:339.00 KB
- 文档页数:38
毕业设计(论文)学校:专业:冶金技术班级:学生:学号:指导教师:摘要溅渣护炉技术作为一项工艺简单、综合经济效益高的新技术,正别外国许多厂家推广、使用,分析了该技术的优势及存在的问题和解决办法,以及该技术的应用现状和应用前景。
转炉溅渣护炉是在出钢后,将转炉内留渣的粘度和氧化镁含量调整到合适的范围,在车间原有的氧枪或另设专用喷枪,向氧化镁含量、高粘度的炉渣喷一定压力和流量的氮气,将粘渣吹溅到炉衬上全面涂挂、冷却、凝固成一层炉渣质的保护层,避免了在冶炼时炉衬和炉渣的直接接触,从而起到减缓耐火材料的蚀损,延长转炉炉龄的作用。
溅渣护炉作为一项实用技术,经过国内外许多钢厂实践后,对提高转炉炉龄和降低耐火材料消耗的效果非常显著。
关键词:溅渣护炉;转炉;应用目录1存在问题及解决办法 (1)2溅渣护炉工艺的冶金因素及其优势 (2)3国外溅渣炉技术的发展 (3)4国内转炉炉龄现状及溅渣护炉技术的发展 (5)5应用现状及应用前景 (6)致谢信 (7)参考文献 (8)1存在问题及解决办法任何一项技术的应用不可能没有缺陷,在一些早期设备上,氧枪结瘤就是一个问题。
溅渣技术使用后,往往使枪结瘤出现次数增加。
实践证明,在溅渣过程中,若炉内残留少量钢水,氧枪结瘤将更加严重。
解决这个问题,有几种方法证明是有效的。
第一,有充足冷却水的炉子不出现结瘤问题;第二,将用于吹炼的热氧枪移走,换上冷枪完成溅渣,氧枪结瘤几乎完全消除。
这表明氧枪结瘤与温度和热量的传递有关。
渣子和冷枪的表面结合并不紧密,如果在溅渣时冷凝钢不出现在氧枪上,那就不会再氧枪上形成粗糙的外壳以使炉渣粘附其上。
溅渣后将氧枪停放在支架上,形成的渣壳将冷却,并与氧枪分离,脱落。
使用底吹搅拌技术的BOF转炉对溅渣技术的应用提出了新的要求。
在溅渣时炼钢工必须小心,不能使炉底的渣太多;氮气的流速必须足够高,以便将炉渣吹离炉底;另外要调整经过透气砖喷吹气体的压力、流量。
最终,随着炉衬寿命的提高,额外的操作需要增加辅助设备的使用寿命,如BoF炉的烟罩、钢包车和轨道等设备。
转炉溅渣护炉系统优化技术基础理论研究随着钢铁产业的发展,转炉溅渣护炉系统优化技术越来越受到重视。
本文将从基础理论研究的角度,深入探讨该技术的优化方法和方向。
一、转炉溅渣护炉系统概述1.1 转炉溅渣护炉系统的作用与意义转炉溅渣护炉系统是钢铁冶炼过程中一种重要的保护措施。
它可以防止转炉壳体和砖衬的烧蚀,延长转炉的使用寿命,提高生产效率和钢质的质量。
1.2 溅渣护炉系统优化的挑战溅渣护炉系统优化面临着一些挑战。
首先,溅渣的物理、化学性质与溅渣的形成和稳定性息息相关。
其次,转炉操作条件对溅渣的形成和初始渣膜的稳定性有重要影响。
此外,溅渣护炉系统的设计和操作要求兼顾转炉冶炼的各种因素。
二、转炉溅渣护炉系统优化技术2.1 溅渣护炉系统结构的优化为了提高溅渣护炉系统的性能,首先需要优化其结构和组成部件。
例如,通过合理设计喷水系统,保证喷水位置合理、喷水强度和角度适宜,以达到均匀覆盖炉壁和稳定渣膜的目的。
2.2 溅渣护炉系统渣剂的优化渣剂是溅渣护炉系统中起着关键作用的组成部分。
通过优化渣剂的物理、化学性质,可以改善渣膜的稳定性和降低溅渣对炉壁的侵蚀。
此外,选择合适的渣剂还可以提高转炉冶炼的效率和钢质的质量。
2.3 溅渣护炉系统操作参数的优化转炉冶炼中,操作参数的优化对溅渣护炉系统的性能影响巨大。
如合理控制氧枪的氧浓度和流速,可以影响转炉中的气体组成和温度分布,从而改善渣膜的稳定性和溅渣的产生。
三、转炉溅渣护炉系统优化的基础理论研究3.1 溅渣生成机制研究溅渣的生成机制是转炉溅渣护炉系统优化的基础。
通过研究渣剂的物理、化学性质和与炉壁的相互作用,可以揭示溅渣产生的机理和规律。
3.2 渣膜稳定性研究渣膜的稳定性影响整个溅渣护炉系统的工作效果。
通过研究渣膜在高温、高压环境下的性质和行为,可以为渣膜的稳定性优化提供理论依据。
3.3 操作参数对溅渣的影响研究操作参数对溅渣的形成和稳定性具有重要影响。
通过模拟实验和理论计算,可以探究操作参数对溅渣护炉系统的影响规律,并为优化操作参数提供理论指导。
转炉溅渣护炉技术的应用方法1.溅渣护炉的基本原理,是在转炉出完钢后加入调渣剂,使其中的Mg与炉渣产生化学反应,生成一系列高熔点物质,被通过氧枪系统喷出的高压氮气喷溅到炉衬的大部分区域或指定区域,粘附于炉衬内壁逐渐冷凝成固态的坚固保护渣层,并成为可消耗的耐材层。
转炉冶炼时,保护层可减轻高温气流及炉渣对炉衬的化学侵蚀和机械冲刷,以维护炉衬、提高炉龄并降低耐材包括喷补料等消耗。
氧气顶吹转炉溅渣护炉是在转炉出钢后将炉体保持直立位置,利用顶吹氧枪向炉内喷射高压氮气(1. 0MPa) ,将炉渣喷溅在炉衬上。
渣粒是以很大冲击力粘附到炉衬上,与炉壁结合的相当牢固,可以有效地阻止炉渣对炉衬的侵蚀。
复吹转炉溅渣护炉是将顶吹和底吹均切换成氮气,从上、下不同方向吹向转炉内炉渣,将炉渣溅起粘结在炉衬上以实现保护炉衬的目的。
溅渣护炉充分利用了转炉终渣并采用氮气作为喷吹动力,在转炉技术上是一个大的进步,它比干法喷补、火焰喷补、人工砌砖等方法更合理,其既能抑制炉衬砖表面的氧化脱碳,又能减轻高温渣对炉砖的侵蚀冲刷,从而保护炉衬砖,降低耐火材料蚀损速度,减少喷补材料消耗,减轻工人劳动强度,提高炉衬使用寿命,提高转炉作业率,减少操作费用,而且不需大量投资,较好地解决了炼钢生产中生产率与生产成本的矛盾。
因此,转炉溅渣护炉技术与复吹炼钢技术被并列为转炉炼钢的2项重大新技术。
2 溅渣护炉主要工艺因素2. 1 合理选择炉渣并进行终渣控制炉渣选择着重是选择合理的渣相熔点。
影响炉渣熔点的物质主要有FeO、MgO和炉渣碱度。
渣相熔点高可提高溅渣层在炉衬的停留时间,提高溅渣效果,减少溅渣频率,实现多炉一溅目标。
由于FeO易与CaO和MnO等形成低熔点物质,并由MgO和FeO的二元系相图可以看出,提高MgO的含量可减少FeO相应产生的低熔点物质数量,有利于炉渣熔点的提高。
从溅渣护炉的角度分析,希望碱度高一点,这样转炉终渣C2 S 及C3 S之和可以达到70%~75%。
1.什么是溅渣护炉技术?答案:溅渣护炉技术是向炉渣中加入含MgO的造渣剂造粘渣补炉技术的基础上, 采用氧枪喷吹高压N2在2-4mm 内将出钢后留在炉内的残余炉渣喷溅涂敷在转炉内衬表面上,生成炉渣保护层的护炉技术。
2.炉渣来源何处?它在炼钢中起什么作用?答案:来源:(1)钢铁料中夹杂氧化的产物。
(2)造渣材料(石灰、白云石、萤石等)。
(3)冷却剂(氧化铁皮、矿石等)。
(4)被浸蚀和冲刷下来的炉衬耐火材料。
(5)各种原料带来的泥沙。
作用:(1)去夹杂(P、S);(2)传氧媒介;(3)清洁钢液;(4)对熔池保温;(5)影响金属损失;(6)影响炉衬浸蚀。
3.脱碳反应对炼钢过程的重要意义是什么?答案:(1)铁水中C氧化到钢种所要求的范围。
(2)氧化产生CO气泡对熔池起着循环搅拌作用,均匀钢液成份、温度, 改变各种化学反应的动力学条件。
(3)CO气泡有利于去除N2、H2等。
(4)利于非金属夹杂物上浮。
(5)提供炼钢的大部分热源。
(6)CO气泡使炉渣形成泡沫渣。
4.造成钢包回磷的原因是什么?如何防止?答案:原因:(1)出钢下渣;(2)脱氧产物SiO2;(3)氧含量降低。
防止措施:(1)挡渣出钢,尽量减少出钢带渣。
(2)采用碱性钢包或渣线部位用碱性材料。
(3)出钢过程中投入钢包中石灰粉。
(4)减少钢水在钢包中停留时间。
5.为什么兑铁时,有时会发生大喷?答案:因为转炉吹炼到终点,钢中氧含量和炉渣氧化性高, 留渣或未倒净的渣子和钢水,兑铁时炉内碳含量急剧增加且铁水温度低及钢水温度骤然下降, 促使碳氧反应剧烈进行在炉内产生强烈沸腾,如果兑铁水过猛且炉内残留钢渣较多就会大喷。
6.为什么转炉炼钢脱硫比脱磷困难?答案:碱性转炉渣中含有较高的(FeO),炉渣脱硫的分配比较低,降低了炉渣的脱硫能力,高(FeO)对脱磷工艺是一个相当有利的因素, 转炉炼钢条件下钢渣间磷的分配比较高, 一般可达100-400,而硫的分配比一般为6-15,此外,脱磷反应速度快,很快可达到平衡,而脱硫速度较慢,一般达不到平衡。
一种溅渣护炉方法
溅渣护炉是指在炉膛工作过程中,避免炉渣溅落到炉膛的一种方法。
以下是一种常用的溅渣护炉方法:
1. 炉面准备:在铁水倒入炉膛前,先将前一炉的炉渣清理干净,确保炉膛内没有残留的炉渣。
2. 合理倒铁水:倒铁水时应尽量减少喷溅,可以通过减小倒铁水的高度或采取减速倒注的方式来避免溅渣。
3. 控制铁水温度:保持铁水的合适温度,避免过热或过冷,以减少溅渣的风险。
4. 炉面保护措施:在倒铁水时可以采取炉面保护措施,如在炉膛内涂抹一层炉渣护炉剂,或在炉膛口附近搭建炉渣挡板,防止铁水溅落到炉膛。
5. 操作规范:操作人员应严格按照操作规范进行操作,避免操作不当导致的溅渣问题。
除了以上方法,还可以根据实际情况采取其他的溅渣护炉方法,如调整倒铁水的角度、增加保护罩等。
总之,溅渣护炉方法的关键是在操作前做好准备工作,合理控制铁水的温度和倒铁水的方式,同时加强操作人员的培训与管理,才能有效
减少溅渣对炉膛的损害。
溅渣护炉的基本原理溅渣护炉是一种常见的钢铁冶炼过程中的热力学现象。
其基本原理是通过在炉内加入适当的物料,将炉内产生的溅渣与炉壁进行反应,从而保护炉内的炉壁不被腐蚀,延长炉壁的使用寿命。
本文将具体介绍溅渣护炉的基本原理及其应用。
一、溅渣护炉的基本原理在钢铁冶炼过程中,高温下会产生大量的溅渣,这些溅渣不仅会降低冶炼效率,还会对炉壁造成破坏。
为此,需要通过添加适当的物料进行溅渣护炉。
溅渣护炉的基本原理是添加一些特殊的反应剂,使其在高温下与溅渣发生反应,生成一种新的化合物,从而消耗掉大部分的溅渣。
这种化合物可以形成一层保护膜,在钢水和炉壁之间形成一个隔离层,减少溅渣对炉壁的侵蚀,从而有效地延长炉壁的使用寿命。
溅渣护炉的物料有很多种,其选择主要依据于冶炼工艺和物料的性质。
在整个钢铁冶炼过程中,常用的物料有镁球、石灰石、硅石等。
二、溅渣护炉的应用在钢铁冶炼过程中,溅渣护炉是一种常见的技术。
其应用可以有效地提高冶炼效率,降低生产成本,提高冶炼质量。
下面我们将分别介绍其应用在各个环节中的具体情况。
1.高炉在高炉冶炼中,溅渣护炉对炉壁保护尤为重要,可以有效地减少高炉的磨损和锈蚀。
目前,高炉冶炼中主要采用的溅渣护炉物料是镁球和石灰石。
镁球主要用于抑制磷和硫的生成,从而提高炉膛的可控性;石灰石则可以中和酸性物质,减少炉壁的腐蚀。
2.转炉在转炉冶炼中,溅渣护炉主要用于中和氧化物和碱性物质。
其主要物料是硅石和石灰石。
硅石主要用于中和氧化物,而石灰石则可以中和碱性物质,从而减少炉壁的腐蚀。
3.电炉在电炉冶炼中,溅渣护炉主要用于中和酸性物质。
其主要物料是石灰石和麻粉。
石灰石可以中和酸性物质,麻粉则可以降低炉壁的温度,从而减少炉壁的腐蚀。
总之,溅渣护炉在钢铁冶炼过程中起着非常重要的作用。
通过添加适当的物料,可以有效地保护炉壁不受腐蚀,延长炉壁的使用寿命。
9.什么是转炉溅渣护炉技术?答:转炉溅渣技术是近年来开发的一种提高炉龄的新技术。
它是在20世纪70年代广泛应用过的、向炉渣中加入含MgO的造渣剂造黏渣挂渣护炉技术的基础上,利用氧枪喷吹高压氮气,在2—4min内将出钢后留在炉内的残余炉渣喷溅涂敷在整个转炉内衬表面上,形成炉渣保护层的护炉技术。
该项技术可以大幅度提高转炉炉龄,且投资少、工艺简单、经济效益显著。
此项技术是由美国Praxair气体公司开发、在美国共和钢公司的GreatLakes(大湖)分厂最先应用,在大湖厂和GraniteCity厂实施后,并没有得到推广。
1991年美国LTV公司的Indiana HaBOr厂用溅渣作为全面护炉的一部分。
1994年9月该厂252t顶底复吹转炉的炉衬寿命达到15658炉,喷补料消耗降到0.37kg /t钢,喷补料成本节省66%,转炉作业率由1987年的78%提高到1994年的97%。
溅渣护炉技术能使炉衬在炉役期中相当长的时间内保持均衡,实现“永久性”炉衬。
10.溅渣护炉技术的基本原理是什么?答:溅渣护炉技术的基本原理,是在转炉出钢后,调整余留终点渣成分,利用MgO含量达到饱和或过饱和的终点渣,通过高压氮气的吹溅,在炉衬表面形成一层与炉衬很好烧结附着的高熔点溅渣层,如图2—1所示。
这个溅渣层耐蚀性较好,并可减轻炼钢过程对炉衬的机械冲刷,从而保护了炉衬砖,减缓其损坏程度,使得炉衬寿命得以提高。
11.溅渣护炉对炉渣的组成与性质有哪些要求?答:炉渣成分是指构成炉渣的各种矿物的成分,它决定了炉渣的基本性质。
一般说来,初期渣的主要成分是SiO2、MnO、CaO、MgO和FeO等,随着吹炼过程进行,石灰熔化、渣量增加,使SiO2、MnO的含量逐渐降低,CaO、MgO的含量逐渐增加。
13.底吹对复吹转炉溅渣的影响有哪些?答:在复吹转炉溅渣过程中,由于底吹射流的介入,熔池中炉渣的搅动增强。
底吹气体涌起熔渣高度与底吹气体射流搅拌能有关:εv. b=2×371KQT1/Vm ln (1+9.8ρL/P)式中εv. b——底吹气体射流的搅拌能,W/m3.s K——喷体体积增加率,%;Q——底吹气体流量(标态),m3/min;TL——底吹气体温度,℃;Vm——熔池体积,m3;ρL——熔池液体(熔渣)密度,m3/min;p——大气压力,Pa理论上分析增加底吹气体量Q,即增大底吹搅拌能εv. b ,有利于溅渣。
转炉溅渣护炉系统优化技术基础理论研究摘要:在“转炉溅渣护炉系统优化技术开发”项目中,着重进行了熔池溅渣动力学、溅渣层粘结机理、炉渣对溅渣层的蚀损机理及合理的终渣成分控制等基础理论方面的研究工作。
介绍了上述几项研究工作的初步结果。
1前言溅渣护炉技术是在转炉吹炼结束后,通过顶吹氧枪高速喷吹氮气射流,冲击残留在熔池内的部分高熔点炉渣,使熔渣均匀地喷溅粘附在转炉炉衬表面,形成炉渣保护层,达到护炉的目的。
该技术在美国LTV厂成功后,使转炉炉龄从5000炉提高到15000炉以上,创造了目前世界上最高的转炉炉龄记录。
该项先进技术介绍到中国后,我国许多工厂结合本厂的资源、工艺特点,进行开发采用,获得了明显的经济效益。
尽管溅渣护炉技术已经在生产中广泛应用,并获得了巨大的成功。
但在溅渣护炉技术的基础理论研究方面,却处于空白状态。
最近该方面的研究已经引起国内外广大冶金学者的重视。
本文将简单总结钢铁研总院工艺所在下述领域里的研究结果:(1)熔池溅渣动力学的研究;(2)溅渣层与炉衬的结合机理;(3)溅渣层的浸蚀试验;(4)合理的终渣成分控制。
2熔池溅渣动力学的研究如何有效地利用高速氮气射流将炉渣均匀地喷溅在炉衬表面,是溅渣护炉的技术关键。
其效果决定于以下控制因素:(1)熔池内留渣量和渣层厚度;(2)熔渣的物理状态:炉渣熔点、过热度、表面张力与粘度;(3)溅渣气动力学参数:喷吹压力、枪位以及喷枪夹角和孔数等。
通过水力学模型试验和理论分析,研究了熔池溅渣动力学过程,初步提出优化溅渣的工艺参数。
2.1水模型测定(1)喷吹工艺对溅渣高度的影响1)对不同的介质,不同高度条件下的溅渣量的分布基本相似,随着溅渣高度的升高,溅渣量逐渐降低。
2)当溅渣高度hs/D=1.0时,不同高度下的溅渣量的分布规律发生变化。
当hs/D≤l.0时,溅渣量的比例高达总渣量的30%~60%,随着高度的增加,溅渣量将迅速降低。
在hs/D≥1.0以后溅渣量随高度增加,溅渣量减少的速率降低。
转炉溅渣护炉的效果,决定于溅渣层与炉衬间的结合状态。
溅渣层与炉衬的结合原理包括炉渣如何与炉衬砖有机地相结合,炉渣层如何有效地保护转炉炉衬。
1 溅渣层的成分与结构生产实践证明,采用溅渣护炉在转炉炉衬表面形成的溅渣层,在成分和岩相结构方面,不仅和炉衬砖有明显的差距,而且和转炉终渣(或改质处理后的炉渣)也有区别。
这种区别是由于反复溅渣过程中,炉衬耐火材料与炉渣间经过长时间的高温化学反应扩散渗透与溶解脱熔、熔化与析出、剥落与烧结等复杂的过程逐步形成的。
2 溅渣层成分的变化(1)在溅渣过程中,炉渣成分(指终渣溅后渣和溅在炉壁表面上的炉渣)不会发生明显的变化,喷溅到炉壁上的炉渣(或溅后渣)成分与终渣大致相同。
(2)由于炉衬表面温度不同和炉衬传热热流密度的差别,在溅渣过程中炉渣成分也会发生微小的变化。
这主要是由于溅渣中发生了“异相分流”效应,使渣射到炉衬表面上的一些液态低熔氧化物流失。
这就导致溅渣层表面高熔点化合物浓度稍有增加(如MgO结晶,C2S 和C3S),而低熔点氧化物(如FeO等)减少(溅后渣成分变化的趋势则相反),溅渣中“异相分流”引起的成分变化一般不超过2%。
(3)溅渣层的成分与转炉终渣有明显的区别,高熔点化合物(MgO结晶,C2S和C3S)的浓度明显增加;有一些氧化物(如MnO,P2O5,Al2O3,SiO2等)显著减少。
(4)对于不同的溅渣工艺,溅渣层的成分有明显的区别。
采用高FeO炉渣溅渣,溅渣层中MgO含量很高,达到58.4%;而TFe含量比终渣略有降低,CaO、SiO2等成分显著降低。
这说明高FeO炉渣溅渣形成的溅渣层主要以MgO,(MgO,Fe2O3)为主相。
采用低FeO 炉渣溅渣,溅渣层中CaO和MgO含量富集,SiO2含量略有降低,碱度升高,说明该溅渣层是以C3S为主相,以C2S和MgO结晶为辅相。
根据上述溅渣层与转炉中渣有成分上的明显差异,可以得到进一步推论如下:(1)溅渣层是通过炉渣与炉衬耐火材料间在较长时间内发生化学反应逐渐生成的。