时齐的马氏链:马氏链{X (n), n 0,1,2,...} 若满足:P{ X n m j X n i} Pij (m)
则称 { X (n), n 0,1,2,...} 为时齐马尔可夫链
P (m) — 系统由状态i经过m 个时间间隔 ij
(或m 步)转移到状态j 的转移概率
n1
n
n
n
n1
n+1
系统达到平稳状态时:
pn pn (t ) P{N (t ) n}, (n 0,1,2...)
0 p0 1 p1 0 平衡方程: n 1 pn 1 n 1 pn 1 (n n ) pn
当
Cn
e t t0 b(t ) 0 t0 其中 0 ,为一常数。
服务时间分布:
(3)k阶爱尔朗(Erlang)分布:每个顾客接受服务 时间服从k阶爱尔朗分布,其密度函数为:
k (kt ) b(t ) (k 1)!
k 1
e
kt
排队系统的分类
符号表示: X/Y/Z
设 T X1 X 2 X k ,则T的密度函数为
bk (t ) E (T )
k ( kt ) k 1
( k 1)! 1
e kt , 1 k 2
t 0
,
D (T )
如k个服务台串联(k个服务阶段), 一个顾客接受k个服务共需的服务时间T, T爱尔朗分布。
n
定理1:设 N (t )为时间 0, t 内到达系统的顾客数 则{N (t ), t 0}为Poisson过程的充要条件是
充要条件是相继到达的时间间隔T服从相互 独立的参数为 的负指数分布。