高考物理100考点最新模拟题千题精练专题3.11牛顿运动定律相关的极值问题(含解析)
- 格式:doc
- 大小:247.00 KB
- 文档页数:11
高考物理力学知识点之牛顿运动定律技巧及练习题附答案一、选择题1.在空气阻力大小恒定的条件下,小球从空中下落,与水平地面相碰(碰撞时间极短)后弹到空中某一高度.以向下为正方向,其速度随时间变化的关系如图所示,取g=10 m/s 2,则以下结论正确的是( )A .小球弹起的最大高度为1.0mB .小球弹起的最大高度为0.45 mC .小球弹起到最大高度的时刻t 2=0.80 sD .空气阻力与重力的比值为1∶52.甲、乙两球质量分别为1m 、2m ,从同一地点(足够高)同时静止释放.两球下落过程中所受空气阻力大小f 仅与球的速率v 成正比,与球的质量无关,即f=kv(k 为正的常量),两球的v−t 图象如图所示,落地前,经过时间0t 两球的速度都已达到各自的稳定值1v 、2v ,则下落判断正确的是( )A .甲球质量大于乙球B .m 1/m 2=v 2/v 1C .释放瞬间甲球的加速度较大D .t 0时间内,两球下落的高度相等3.关于一对平衡力、作用力和反作用力,下列叙述正确的是( )A .平衡力应是分别作用在两个不同物体上的力B .平衡力可以是同一种性质的力,也可以是不同性质的力C .作用力和反作用力可以不是同一种性质的力D .作用力施加之后才会产生反作用力,即反作用力总比作用力落后一些4.如图甲所示,在升降机的顶部安装了一个能够显示拉力大小的传感器,传感器下方挂上一轻质弹簧,弹簧下端挂一质量为m 的小球,若升降机在匀速运行过程中突然停止, 并以此时为零时刻,在后面一段时间内传 感器显示弹簧弹力F 随时间t 变化的图象 如图乙所示,g 为重力加速度,则( )A .升降机停止前在向下运动B .10t -时间内小球处于失重状态,12t t -时间内小球处于超重状态C .13t t -时间内小球向下运动,动能先增大后减小D .34t t -时间内弹簧弹性势能变化量小于小球动能变化量5.一物体放置在粗糙水平面上,处于静止状态,从0t =时刻起,用一水平向右的拉力F 作用在物块上,且F 的大小随时间从零均匀增大,则下列关于物块的加速度a 、摩擦力f F 、速度v 随F 的变化图象正确的是( )A .B .C .D .6.质量分别为m 1、m 2的甲、乙两球,在离地相同高度处,同时由静止开始下落,由于空气阻力的作用,两球到达地面前经时间t 0同时到达稳定速度v 1、v 2,已知空气阻力大小f 与小球的下落速率v 成正比,即f =kv (k >0),且两球的比例常数k 完全相同,两球下落的v -t 关系如图所示,下列说法正确的是( )A .甲球质量m 1较小B .稳定速度与质量成正比C .释放瞬间甲球的加速度较大D .t 0时间内两球下落的高度相等7.质量为M 的人站在地面上,用绳通过光滑定滑轮将质量为m 的重物从高处放下,如图所示,若重物以加速度a 下降(a g <),则人对地面的压力大小为( )A .()M m g ma +-B .()M g a ma --C .()M m g ma -+D .Mg ma -8.如图所示,一个箱子中放有一个物体,已知静止时物体对箱子的下底面压力大小等于物体的重力大小,且物体与箱子上底面刚好接触现将箱子以初速度v 0竖直向上抛出,已知运动时箱子所受空气阻力大小不变,且箱子运动过程中始终保持图示姿态,重力加速度为g 。
最新高中物理牛顿运动定律的应用专项训练100( 附答案 )一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m=0.5 kg、长L=1 m的平板车 B 静止在圆滑水平面上,某时辰质量M=l kg 的物体 A(视为质点)以v0=4 m/s 向右的初速度滑上平板车 B 的上表面,在 A 滑上 B 的同时,给 B 施加一个水平向右的拉力.已知 A 与 B 之间的动摩擦因数μ=0.2,重力加快度 g 取 10 m/s 2.试求:(1)假如要使 A 不至于从 B 上滑落,拉力 F 大小应知足的条件;(2)若 F=5 N,物体 A 在平板车上运动时相对平板车滑行的最大距离.【答案】 (1) 1N F 3N(2)x0.5m【分析】【剖析】物体 A 不滑落的临界条件是 A 抵达 B 的右端时, A、 B 拥有共同的速度,联合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界状况是A、 B 速度同样后,一同做匀加快直线运动,依据牛顿第二定律求出拉力的最大值,进而得出拉力 F 的大小范围.【详解】(1)物体 A 不滑落的临界条件是 A 抵达 B 的右端时, A、 B 拥有共同的速度v1,则:v02 -v12v12+L2a A2a B又:v-v1 =v1 a A a B解得: a B=6m/s 2再代入 F+μMg=ma B得: F=1N若 F<1N,则 A 滑到 B 的右端时,速度仍大于 B 的速度,于是将从 B 上滑落,因此 F 一定大于等于 1N当 F 较大时,在 A 抵达 B 的右端以前,就与 B 拥有同样的速度,以后, A 一定相对 B 静止,才不会从 B 的左端滑落,则由牛顿第二定律得:对整体: F=(m+ M)a对物体 A:μMg=Ma解得: F=3N若F 大于 3N, A 就会相对 B 向左滑下综上所述,力 F 应知足的条件是 1N≤F≤3N(2)物体 A 滑上平板车 B 此后,做匀减速运动,由牛顿第二定律得:μ Mg=Ma A解得: a A=μg=2m/s 2平板车 B 做匀加快直线运动,由牛顿第二定律得:F+μMg=ma B解得: a B=14m/s2二者速度同样时物体相对小车滑行最远,有:v 0- a A t=a B t解得: t=0.25s1 215 A 滑行距离 x A =v 0t -a A t =m216B 滑行距离: x B = 1 a B t 2= 7m216最大距离: Δx =x A - x B =0.5m【点睛】解决此题的重点理清物块在小车上的运动状况,抓住临界状态,联合牛顿第二定律和运动学公式进行求解.2. 如下图,质量为 M =10kg 的小车停放在圆滑水平面上.在小车右端施加一个F=10N 的水平恒力.当小车向右运动的速度达到2.8m/s 时,在其右端轻轻放上一质量 m=2.0kg 的小黑煤块(小黑煤块视为质点且初速度为零),煤块与小车间动摩擦因数 μ 0.20.假设小 = 车足够长.( 1)求经过多长时间煤块与小车保持相对静止 ( 2) 求 3s 内煤块行进的位移( 3)煤块最后在小车上留下的印迹长度【答案】 (1) 2s (2) 8.4m (3) 2.8m【分析】【剖析】分别对滑块和平板车进行受力剖析,依据牛顿第二定律求出各自加快度,物块在小车上停止相对滑动时,速度同样,依据运动学基本公式即能够求出时间.经过运动学公式求出位移.【详解】(1)依据牛顿第二定律,刚开始运动时对小黑煤块有:F Nma 1F N -mg =0代入数据解得: a 1=2m/s 2刚开始运动时对小车有:FF NMa 2解得: a 2=0.6m/s 2经过时间 t ,小黑煤块和车的速度相等,小黑煤块的速度为:v 1=a 1t车的速度为:v 2=v+a 2 t解得: t=2s;(2)在 2s 内小黑煤块行进的位移为:x11a1t 24m22s 时的速度为:v1 a1t1 2 2m/s 4m/s今后加快运动的加快度为:a F 5m/s23M m6而后和小车共同运动t 2=1s 时间,此 1s 时间内位移为:x2v1t21a3t22 4.4m 2因此煤块的总位移为:x1x28.4m (3)在 2s 内小黑煤块行进的位移为:x11a1t 24m2小车行进的位移为:x v1t 1a1t2 6.8m 2二者的相对位移为:x x x1 2.8m即煤块最后在小车上留下的印迹长度 2.8m.【点睛】该题是相对运动的典型例题,要仔细剖析两个物体的受力状况,正确判断两物体的运动状况,再依据运动学基本公式求解.3.如图,质量M=4kg 的长木板静止处于粗拙水平川面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v0=14m/s 的速度从一端滑上木板,恰巧未从木板上滑下,滑块与长木板的动摩擦因数μ2,求:2=0.5,g取10m/s(1)木块刚滑上木板时,木块和木板的加快度大小;(2)木板长度;(3)木板在地面上运动的最大位移。
高考物理最新力学知识点之牛顿运动定律技巧及练习题附答案(3)一、选择题1.荡秋千是一项娱乐,图示为某人荡秋千时的示意图,A点为最高位置,B点为最低位置,不计空气阻力,下列说法正确的是()A.在A点时,人所受的合力为零B.在B点时,人处于失重状态C.从A点运动到B点的过程中,人的角速度不变D.从A点运动到B点的过程中,人所受的向心力逐渐增大2.如图所示,质量为m的小物块以初速度v0冲上足够长的固定斜面,斜面倾角为θ,物块与该斜面间的动摩擦因数μ>tanθ,(规定沿斜面向上方向为速度v和摩擦力f的正方向)则图中表示该物块的速度v和摩擦力f随时间t变化的图象正确的是()A.B.C.D.3.下列单位中,不能..表示磁感应强度单位符号的是()A.T B.NA m⋅C.2kgA s⋅D.2N sC m⋅⋅4.如图所示,A、B两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B受到的摩擦力A.方向向左,大小不变B.方向向左,逐渐减小C.方向向右,大小不变D.方向向右,逐渐减小5.如图所示,质量为m的小球用水平轻质弹簧系住,并用倾角θ=37°的木板托住,小球处于静止状态,弹簧处于压缩状态,则( )A .小球受木板的摩擦力一定沿斜面向上B .弹簧弹力不可能为34mg C .小球可能受三个力作用D .木板对小球的作用力有可能小于小球的重力mg6.在水平地面上运动的小车车厢底部有一质量为m 1的木块,木块和车厢通过一根轻质弹簧相连接,弹簧的劲度系数为k .在车厢的顶部用一根细线悬挂一质量为m 2的小球.某段时间内发现细线与竖直方向的夹角为θ,在这段时间内木块与车厢保持相对静止,如图所示.不计木块与车厢底部的摩擦力,则在这段时间内弹簧的形变为( )A .伸长量为 1tan m gkθ B .压缩量为1tan m gk θ C .伸长量为1m gk tan θD .压缩量为1m gk tan θ7.如图所示,质量为10kg 的物体,在水平地面上向左运动,物体与水平地面间的动摩擦因数为0.2,与此同时,物体受到一个水平向右的拉力F =20N 的作用,则物体的加速度为( )A .0B .2m/s 2,水平向右C .4m/s 2,水平向右D .2m/s 2,水平向左8.如图所示,倾角为θ的光滑斜面体始终静止在水平地面上,其上有一斜劈A,A 的上表面水平且放有一斜劈B ,B 的上表面上有一物块C ,A 、B 、C 一起沿斜面匀加速下滑。
高考物理最新力学知识点之牛顿运动定律知识点训练及答案(3)一、选择题1.为了研究超重和失重现象,某同学站在力传感器上做“下蹲”和“站起”的动作,力传感器将采集到的数据输入计算机,可以绘制出压力随时间变化的图线。
某次实验获得的图线如图所示,a 、b 、c 为图线上的三点,有关图线的说法可能正确的是A .a →b →c 为一次“下蹲”过程B .a →b →c 为一次“站起”过程C .a →b 为“下蹲”过程,b →c 为“站起”过程D .a →b 为“站起”过程,b →c 为“下蹲”过程2.如图所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力A .方向向左,大小不变B .方向向左,逐渐减小C .方向向右,大小不变D .方向向右,逐渐减小3.甲、乙两球质量分别为1m 、2m ,从同一地点(足够高)同时静止释放.两球下落过程中所受空气阻力大小f 仅与球的速率v 成正比,与球的质量无关,即f=kv(k 为正的常量),两球的v−t 图象如图所示,落地前,经过时间0t 两球的速度都已达到各自的稳定值1v 、2v ,则下落判断正确的是( )A .甲球质量大于乙球B .m 1/m 2=v 2/v 1C .释放瞬间甲球的加速度较大D .t 0时间内,两球下落的高度相等4.关于一对平衡力、作用力和反作用力,下列叙述正确的是()A.平衡力应是分别作用在两个不同物体上的力B.平衡力可以是同一种性质的力,也可以是不同性质的力C.作用力和反作用力可以不是同一种性质的力D.作用力施加之后才会产生反作用力,即反作用力总比作用力落后一些5.如图所示,质量为10kg的物体,在水平地面上向左运动,物体与水平地面间的动摩擦因数为0.2,与此同时,物体受到一个水平向右的拉力F=20N的作用,则物体的加速度为()A.0B.2m/s2,水平向右C.4m/s2,水平向右D.2m/s2,水平向左6.如图所示,小球从高处落到竖直放置的轻弹簧上,则小球从开始接触弹簧到将弹簧压缩至最短的整个过程中()A.小球的动能不断减少B.小球的机械能在不断减少C.弹簧的弹性势能先增大后减小D.小球到达最低点时所受弹簧的弹力等于重力7.以初速度v竖直向上抛出一质量为m的小物块,假定物块所受的空气阻力f大小不变。
高考物理最新力学知识点之牛顿运动定律知识点训练含答案一、选择题1.如图(甲)所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F 随时间t 变化的图像如图(乙)所示,则A .1t 时刻小球动能最大B .2t 时刻小球动能最大C .2t ~3t 这段时间内,小球的动能先增加后减少D .2t ~3t 这段时间内,小球增加的动能等于弹簧减少的弹性势能2.下列关于超重和失重的说法中,正确的是( )A .物体处于超重状态时,其重力增加了B .物体处于完全失重状态时,其重力为零C .物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小了D .物体处于超重或失重状态时,其质量及受到的重力都没有变化3.如图,物块a 、b 和c 的质量相同,a 和b 、b 和c 之间用完全相同的轻弹簧S 1和S 2相连,通过系在a 上的细线悬挂于固定点O ;整个系统处于静止状态;现将细绳剪断,将物块a 的加速度记为a 1,S 1和S 2相对原长的伸长分别为∆x 1和∆x 2,重力加速度大小为g ,在剪断瞬间( )A .a 1=gB .a 1=3gC .∆x 1=3∆x 2D . ∆x 1=∆x 24.甲、乙两球质量分别为1m 、2m ,从同一地点(足够高)同时静止释放.两球下落过程中所受空气阻力大小f 仅与球的速率v 成正比,与球的质量无关,即f=kv(k 为正的常量),两球的v−t 图象如图所示,落地前,经过时间0t 两球的速度都已达到各自的稳定值1v 、2v ,则下落判断正确的是( )A.甲球质量大于乙球B.m1/m2=v2/v1C.释放瞬间甲球的加速度较大D.t0时间内,两球下落的高度相等t 时刻起,用一水平向右的拉力F 5.一物体放置在粗糙水平面上,处于静止状态,从0作用在物块上,且F的大小随时间从零均匀增大,则下列关于物块的加速度a、摩擦力F、速度v随F的变化图象正确的是()fA.B.C.D.6.如图所示,质量为1.5kg的物体A静止在竖直固定的轻弹簧上,质量为0.5kg的物体B 由细线悬挂在天花板上,B与A刚好接触但不挤压.现突然将细线剪断,则剪断细线瞬间A、B间的作用力大小为(g取210m/s)()A.0B.2.5N C.5N D.3.75N7.如图所示,在水平地面上有一辆小车,小车内底面水平且光滑,侧面竖直且光滑。
高考物理牛顿运动定律专项训练100(附答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。
已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。
求:(1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。
【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】(1)设释放后,滑块会相对于平板向下滑动,对滑块m :由牛顿第二定律有:011sin 37mg f ma -=其中01cos37N F mg =,111N f F μ= 解得:00211sin 37cos374/a g g m s μ=-=对薄平板M ,由牛顿第二定律有:0122sin 37Mg f f Ma +-= 其中002cos37cos37N F mg Mg =+,222N f F μ=解得:221m/s a =12a a >,假设成立,即滑块会相对于平板向下滑动。
设滑块滑离时间为t ,由运动学公式,有:21112x a t =,22212x a t =,12x x L -= 解得:1s t =2.在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。
如图所示,水平传送带匀速运行速度为v=2m/s ,传送带两端AB 间距离为s 0=10m ,传送带与行李箱间的动摩擦因数μ=0.2,当质量为m=5kg 的行李箱无初速度地放上传送带A 端后,传送到B 端,重力加速度g 取10m/2;求:(1)行李箱开始运动时的加速度大小a ; (2)行李箱从A 端传送到B 端所用时间t ; (3)整个过程行李对传送带的摩擦力做功W 。
【物理】 高考物理牛顿运动定律专项训练100(附答案)一、高中物理精讲专题测试牛顿运动定律1.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得 2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.2.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N3.某研究性学习小组利用图a 所示的实验装置探究物块在恒力F 作用下加速度与斜面倾角的关系。
高考物理最新力学知识点之牛顿运动定律技巧及练习题含答案一、选择题1.荡秋千是一项娱乐,图示为某人荡秋千时的示意图,A 点为最高位置,B 点为最低位置,不计空气阻力,下列说法正确的是( )A .在A 点时,人所受的合力为零B .在B 点时,人处于失重状态C .从A 点运动到B 点的过程中,人的角速度不变D .从A 点运动到B 点的过程中,人所受的向心力逐渐增大2.在匀速行驶的火车车厢内,有一人从B 点正上方相对车厢静止释放一个小球,不计空气阻力,则小球( )A .可能落在A 处B .一定落在B 处C .可能落在C 处D .以上都有可能3.如图所示,质量m =1kg 、长L =0.8m 的均匀矩形薄板静止在水平桌面上,其右端与桌子边缘相平.板与桌面间的动摩擦因数为μ=0.4.现用F =5N 的水平力向右推薄板,使它翻下桌子,力F 做的功至少为( )(g 取10m/s 2)A .1JB .1.6JC .2JD .4J4.甲、乙两球质量分别为1m 、2m ,从同一地点(足够高)同时静止释放.两球下落过程中所受空气阻力大小f 仅与球的速率v 成正比,与球的质量无关,即f=kv(k 为正的常量),两球的v−t 图象如图所示,落地前,经过时间0t 两球的速度都已达到各自的稳定值1v 、2v ,则下落判断正确的是( )A.甲球质量大于乙球B.m1/m2=v2/v1C.释放瞬间甲球的加速度较大D.t0时间内,两球下落的高度相等5.关于一对平衡力、作用力和反作用力,下列叙述正确的是()A.平衡力应是分别作用在两个不同物体上的力B.平衡力可以是同一种性质的力,也可以是不同性质的力C.作用力和反作用力可以不是同一种性质的力D.作用力施加之后才会产生反作用力,即反作用力总比作用力落后一些t 时刻起,用一水平向右的拉力F 6.一物体放置在粗糙水平面上,处于静止状态,从0作用在物块上,且F的大小随时间从零均匀增大,则下列关于物块的加速度a、摩擦力F、速度v随F的变化图象正确的是()fA.B.C.D.7.如图所示,质量为1.5kg的物体A静止在竖直固定的轻弹簧上,质量为0.5kg的物体B 由细线悬挂在天花板上,B与A刚好接触但不挤压.现突然将细线剪断,则剪断细线瞬间A、B间的作用力大小为(g取210m/s)()A.0B.2.5N C.5N D.3.75N8.如图所示,一个箱子中放有一个物体,已知静止时物体对箱子的下底面压力大小等于物体的重力大小,且物体与箱子上底面刚好接触现将箱子以初速度v0竖直向上抛出,已知运动时箱子所受空气阻力大小不变,且箱子运动过程中始终保持图示姿态,重力加速度为g。
高考物理牛顿运动定律的应用专项训练100(附答案)一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,长木板质量M=3 kg ,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg 的物块A ,右端放着一个质量也为m=1 kg 的物块B ,两物块与木板间的动摩擦因数均为μ=0.4,AB 之间的距离L=6 m ,开始时物块与木板都处于静止状态,现对物块A 施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s2.如图所示,一质量M=4.0kg 、长度L=2.0m 的长方形木板B 静止在光滑的水平地面上,在其右端放一质量m=1.0kg的小滑块A(可视为质点)。
高考物理100考点最新模拟题千题精练专题3.11牛顿运动定律相关的极值问题(含解析)一.选择题1.(2018安徽合肥三模)如图所示,点P位于倾角为37°的斜面底端Q的正上方22.5cm处。
现从P点向斜面搭建一光滑倾斜直轨道,使小物块从P点由静止开始沿该轨道滑至斜面,g取l0m/s2。
则小物块滑至斜面的最短时间为()A. 0. 1sB. 0. 2sC. 0. 3sD. 0. 4s【参考答案】.B【命题意图】本题考查等时圆模型、牛顿运动定律、匀变速直线运动规律及其相关的知识点。
【解题思路】在线段PQ上找一点O,O点到P点的距离和到斜面的距离相等,以O点为圆心,以PO为半径做一圆,该圆与斜面的切点为M,如图。
设OQ=L,PO=R,由图中几何关系得:R=Lsin53°,R+L=22.5cm,小物块沿PM滑至斜面的最短时间为t,小物块沿PM滑动的加速度为a,则有PM=2Rcos18.5°,ma=mgcos18.5°,PM=12at2,联立解得:t=0.2s,选项B正确。
【方法归纳】此题为等时圆模型。
从竖直面内等时圆的最高点沿光滑杆滑至等时圆周上任意点的时间都相等。
从竖直面内等时圆周上的任意点沿光滑杆滑至等时圆的最低点的时间都相等。
2.如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M点,与竖直墙相切于A点。
竖直墙上另一点B与M的连线和水平面的夹角为60°,C是圆环轨道的圆心。
已知在同一时刻a、b两球分别由A、B 两点从静止开始沿光滑倾斜直轨道AM、BM运动到M点;c球由C点自由下落到M点。
则( )A.a 球最先到达M 点B.b 球最先到达M 点C.c 球最先到达M 点D.b 球和c 球都可能最先到达M 点 【参考答案】C【名师解析】 如图所示,令圆环半径为R ,则c 球由C 点自由下落到M 点用时满足R =12gt 2c ,所以t c =2Rg ;对于a 球令AM 与水平面成θ角,则a 球下滑到M 用时满足AM =2R sin θ=12g sin θ·t 2a ,即t a =2Rg ;同理b 球从B 点下滑到M 点用时也满足t b =2rg(r 为过B 、M 且与水平面相切于M 点的竖直圆的半径,r >R )。
综上所述可得t b >t a >t c 。
3. 如图1所示,在倾角为θ的斜面上方的A 点处旋转一光滑的木板AB ,B 端刚好在斜面上,木板与竖直方向AC 所成角度为α,一小物块由A 端沿木板由静止滑下,要使物块滑到斜面的时间最短,则α与θ角的大小关系( )A.α=θB.α=θ2C.α=2θD.α=θ3【参考答案】 B【名师解析】如图所示,在竖直线AC 上选取一点O ,以适当的长度为半径画圆,使该圆过A 点,且与斜面相切于D 点。
由等时圆模型的特点知,由A 点沿斜面滑到D 点所用时间比由A 点到达斜面上其他各点所用时间都短。
将木板下端B 点与D 点重合即可,而∠COD =θ,则α=θ2。
选项B 正确。
4.(2018洛阳一模)如图所示,某科研单位设计了一空间飞行器,飞行器从地面起飞时,发动机提供的动力方向与水平方向夹角α=60°,使飞行器恰恰与水平方向成θ=30°角的直线斜向右上方匀加速飞行,经时间t 后,将动力的方向沿逆时针旋转60°同时适当调节其大小,使飞行器依然可以沿原方向匀减速飞行,飞行器所受空气阻力不计,下列说法中正确的是( )A .加速时动力的大小等于mgB .加速时加速度的大小为gC .减速时动力的大小等于23mg D .减速飞行时间t 后速度为零 【参考答案】.BC【命题意图】 本题考查力的合成、牛顿运动定律及其相关的知识点。
【解题思路】画出使飞行器恰恰与水平方向成θ=30°角的直线斜向右上方匀加速飞行时的受力矢量图,如图1所示,由2mg cos30°=F,可得加速时动力的大小等于3,选项A 错误;动力F 与飞船重力mg 的合力等于mg ,所以飞船加速时加速度的大小为g ,选项B 正确;画出使飞行器沿原方向匀减速飞行时的受力矢量图,如图2所示,由sin60°=F’/mg 可得减速时动力的大小等于F’=23mg ,选项C 正确;加速飞行时间t 后的速度为v=at=gt 。
减速飞行的合外力大小为mgcos60°=mg/2,减速飞行的加速度大小为g/2,减速飞行时间2t 后速度为零,选项D 错误。
图1 图25.(2018石家庄一模)如图所示,AB为竖直平面内某圆周的竖直直径,CD为过O点且与AB成60°夹角的固定光滑细直杆,两细直杆上各套有一个小球,小球可视为质点。
两小球分别从C点由静止释放,小球从C 点运动到D点所用的时间为t1,另一小球从C点运动到B点所用的时间为t2,则t1∶t2等于()A.1∶1 B.2∶1 C2∶1 D2∶2【参考答案】C【命题意图】本题考查牛顿运动定律、匀变速直线运动规律及其相关的知识点。
【解题思路】对沿CD光滑细杆上运动的小球,由牛顿第二定律,mg sin30°=ma1,解得a1=g/2;设CD=d,由匀变速直线运动规律,d=12a1t12,解得t1dgCB光滑细杆上运动的小球,由牛顿第二定律,mg sin60°=ma2,解得a23;光滑杆CB=d3/2,由匀变速直线运动规律,3/2=12a2t22,解得t2=2dg。
t1∶t2=2dg∶2dg=2∶1,选项C正确。
【易错警示】解答此题常见错误主要有:一是把该题的情景误认为是等时圆模型,导致错选A;二是不能正确运用相关数学知识得出CB光滑光滑杆的长度和倾角;三是没有正确运用牛顿运动定律和匀变速直线运动规律,导致计算错误。
二.计算题1.(12分)(2019河北邯郸一模)如图所示,足够长的木板与水平地面间的夹角θ可以调节,当木板与水平地面间的夹角为37°时,一小物块(可视为质点)恰好能沿着木板匀速下滑。
若让该物块以大小v0=10m/s 的初速度从木板的底端沿木板上滑,随着θ的改变,物块沿木板滑行的距离x将发生变化。
取g=10m/s2,sin37°=0.6,cos37°=0.8。
(1)求物块与木板间的动摩擦因数μ;(2)当θ满足什么条件时,物块沿木板向上滑行的距离最小,并求出该最小距离。
【名师解析】(1)当θ=37°时,设物块的质量为m,物块所受木板的支持力大小为F N,对物块受力分析,有:mgsin37°=μF NF N﹣mgcos37°=0解得:μ=0.75。
(2)设物块的加速度大小为a,则由牛顿第二定律得:mgsinθ+μtmgcosθ=ma设物块的位移为x,则有:v02=2ax解得:令tana=μ,可知当α+θ=90°,即θ=53°时x最小最小距离为:x min=4m。
答:(1)物块与木板间的动摩擦因数是0.75;(2)当θ=53°时,物块沿木板向上滑行的距离最小,最小距离是4m 。
2.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m.已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33。
重力加速度g 取10 m/s 2。
(1)求物块加速度的大小及到达B 点时速度的大小。
(2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少? 【参考答案】(1)3 m/s 28 m/s (2)30°1335N 【名师解析】 (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得L =v 0t +12at2①v =v 0+at ②联立①②式,代入数据得a =3 m/s 2③v =8 m/s ④(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面间的夹角为α,受力分析如图所示,由牛顿第二定律得F cos α-mg sin θ-F f =ma ⑤ F sin α+F N -mg cos θ=0⑥又F f =μF N ⑦ 联立⑤⑥⑦式得F =mg (sin θ+μcos θ)+ma cos α+μsin α⑧由数学知识得cos α+33sin α=233sin(60°+α)⑨ 由⑧⑨式可知对应最小F 的夹角α=30°⑩ 联立③⑧⑩式,代入数据得F 的最小值为F min =1335N 3.(14分)图所示,在风洞实验室里,直细杆倾斜放置,一个m =2kg 小球穿在细杆上,风对小球的作用力的方向水平向右,作用力的大小恒定不变。
细杆与水平面之间的倾角为θ=37°,小球穿与斜面间的动摩擦因数为μ=0.5,从t =0时刻开始,物体运动的x t 与时间t 的关系如图所示xt t所示(x 为位移),t =2s 时关闭风洞撤去风力, g =10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)风力F 的大小;(2)物体向上运动过程中距计时点的最大距离。
(3)物体由斜面最高点返回计时点的时间 【参考答案】 (1)32N ;(2)52m ;(3)52s【名师解析】(1)由匀变速直线运动公式得对照图线可知,图线在纵轴截距表示初速度,图线斜率表示112a ,则有: v 0=12m/s ,a 1=4m/s 2在沿斜面上有解得(2)2秒末v 1=v 0+a 1t =20m/s0到2秒:2秒后物体向上做匀减速运动,其加速度为a 2=gsin37°+μgcos37°=10m/s 22秒后沿斜面向上位移:物体向上运动过程中距计时点的最大距离为x =x 1+x 2=52m (3)物体由斜面最高点返回计时点的过程中,做匀加速运动, 其加速度为a 3=gsin37°-μgcos37°=2m/s 2物体由斜面最高点返回计时点的时间4.(14分)如图所示,一质量m =2kg 的小球套在一根足够长的固定直杆上,直杆与水平夹角θ=37°,杆与球间的动摩擦因数μ=0.5,t=0时小球在水平向左的拉力F 作用下从A 点由静止出发沿杆开始做匀加速运动.加速度大小a 1=2m/s 2,小球运动t 1=5s 到达P 点(没画出)后撤去拉力F ,g =10m/s 2, sin37°=0.6,cos37°=0.8.(1)求力F 的大小;(2)求撤去力F 后,再经过2.5s ,小球的距离出发点A 的距离 (3)小球运动到距离P 点4m 处时,小球的运动时间(可用根式) 【参考答案】(1)48N ;(2)27.75m ; (3)3015s 5-或7s 或9s 【名师解析】(1)对小球受力分析,由牛顿第二定律得: 在平行斜面方向上有:①垂直斜面方向上有:②其中: f F N μ=③联立①②③解得: 48N F =;(2)有F 作用时,小球运动的距离为;当撤去F 后,由牛顿第二定律:,解得小球的加速度为;撤去F 时小球的速度为,所以小球停下来还需要;所以小球先沿杆向上运动t 2=1s ,然后沿杆向下运动t 3=1.5s 。