一元线性回归模型习题和答案解析
- 格式:doc
- 大小:693.50 KB
- 文档页数:12
一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。
AA 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系 2、相关关系是指__________。
DA 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。
AA 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以 4、表示x 和y 之间真实线性关系的是__________。
CA 01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性是指__________。
B A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆi i iY X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。
BA i i ˆˆ0Y Y 0σ∑=时,(-)=B 2i i ˆˆ0Y Y σ∑=时,(-)=0C i i ˆˆ0Y Y σ∑=时,(-)为最小D 2i i ˆˆ0Y Y σ∑=时,(-)为最小7、设样本回归模型为i 01i iˆˆY =X +e ββ+,则普通最小二乘法确定的i ˆβ的公式中,错误的是__________。
DA ()()()ii 12iX X Y -Y ˆX X β--∑∑=B ()i i i i 122i i n X Y -X Y ˆn X -X β∑∑∑∑∑=C i i 122iX Y -nXY ˆX -nXβ∑∑=D i i i i12xn X Y -X Y ˆβσ∑∑∑=8、对于i 01i i ˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。
第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归样本回归模型与样本回归函数这两组概念开始,在现实中只能先从总体中抽取一个样本,本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所统计检验包括两个方面,本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以参数估计量统计性质的分析,例1、令kids运用样本回归函数进行预测,建立了回归分析的基本思想。
由总体回归模型在若干基本假设下得到,获得样本回归函数,ML)以及矩估计法(一是先检验样本回归函数与样本点的Goss-markov包括被解释变量条件均值与个educ表示该妇女接受过教育的年数。
生总体回但它只是并用它对总OLS)MM)。
“拟合优度”,t检验完成;第二,OLS估计量1函数、归函数是对总体变量间关系的定量表述,建立在理论之上,体回归函数做出统计推断。
的学习与掌握。
同时,也介绍了极大似然估计法(谓的统计检验。
第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
定理表明是最佳线性无偏估计量。
其三,值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析表示一名妇女生育孩子的数目,育率对教育年数的简单回归模型为(1)随机扰动项包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。
AA 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系 2、相关关系是指__________。
DA 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。
AA 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以 4、表示x 和y 之间真实线性关系的是__________。
CA 01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性是指__________。
B A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆi i iY X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。
B A ii ˆˆ0Y Y 0σ∑=时,(-)=B 2ii ˆˆ0Y Y σ∑=时,(-)=0 C ii ˆˆ0Y Y σ∑=时,(-)为最小 D 2iiˆˆ0Y Yσ∑=时,(-)为最小 7、设样本回归模型为i 01i iˆˆY =X +e ββ+,则普通最小二乘法确定的i ˆβ的公式中,错误的是__________。
DA ()()()i i 12i X X Y -Y ˆX X β--∑∑= B ()i i i i 122i i n X Y -X Y ˆn X -X β∑∑∑∑∑=C i i 122i X Y -nXY ˆX -nX β∑∑= D i i i i12xn X Y -X Y ˆβσ∑∑∑=8、对于i 01i iˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。
第8章一元线性回归教材习题答案8.1从某一行业中随机抽取12家企业,所得产量与生产费用的数据如下:企业编号产量(台)生产费用(万元)企业编号产量(台)生产费用(万元)1401307841652421508100170350155911616745514010125180r5651501113017567815412140185(1)绘制产量与生产费用的散点图,判断二者之间的关系形态。
a=0.05),(2)计算产量与生产费用之间的线性相关系数,并对相关系数的显著性进行检验并说明二者之间的关系强度。
详细答案:(1)散点图如下:140120-产1QO—H6060-40—130140150160170100190卡产黄用产量与生产费用之间为正的线性相关关系(2)r=0920232。
检验统计量f=14.4222,P-1.722E-08<Q=0.05,拒绝原假设,相关系数显著。
8.2下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据:1地区人均GDP(元) 人均消费水平(元)r-北京2246073261112264490辽宁上海3454711546江西48512396河南54442208贵州26621608陕西45492035(1)绘制散点图,并计算相关系数,说明二者之间的关系。
(2)人均GDP作自变量,人均消费水平作因变量,利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。
(3)计算判定系数和估计标准误差,并解释其意义。
(4)检验回归方程线性关系的显著性(值二加5)(5)如果某地区的人均GDP为5000元,预测其人均消费水平。
(6)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。
详细答案:(1)散点图如下:12D00-1000050006000-4000-2000100002000030000人均GDP二者之间为高度的正线性相关关系r=0.998123,二者之间为高度的正线性相关关系(2)估计的回归方程为:,二7346928+0,3087工回归系数由二°-3087表示人均GDP每变动1元,人均消费水平平均变动0.3087元。
一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。
AA 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系 2、相关关系是指__________。
DA 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。
AA 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以 4、表示x 和y 之间真实线性关系的是__________。
CA01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性是指__________。
B A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆii i Y X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。
B A i i ˆˆ0Y Y 0σ∑=时,(-)= B 2iiˆˆ0Y Yσ∑=时,(-)=0 C i i ˆˆ0Y Y σ∑=时,(-)为最小D2i i ˆˆ0Y Y σ∑=时,(-)为最小7、设样本回归模型为i 01i iˆˆY =X +e ββ+,则普通最小二乘法确定的iˆβ的公式中,错误的是__________。
DA ()()()i i 12iX X Y -Y ˆX X β--∑∑=B ()i iii122iin X Y -X Y ˆn X -X β∑∑∑∑∑=C ii122iX Y -nXY ˆX -nXβ∑∑= D i i ii12xn X Y -X Y ˆβσ∑∑∑=8、对于i 01i iˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。
第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。
总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。
本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。
同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。
本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。
统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
一元线性回归模型一. 单项选择题 1、 变量之间的关系可以分为两大类 __________ o A A 函数关系与相关关系 B 线性相关关系和非线性相关关系 C 正相关关系和负相关关系 D 简单相关关系和复杂相关关系 2、 相关关系是指 __________ o D A 变量间的非独立关系 B 变量间的因果关系 C 变量间的函数关系 D 变咼间不确左性的依存关系 3、 进行相关分析时的两个变屋 __________ ° A A 都是随机变量 B 都不是随机变量 C 一个是随机变量,一个不是随机变量 D 随机的或非随机都可以 4、 表示x 和y 之间真实线性关系的是 ____________ ° CA Y t =P.+p {X tB E (Z )= 0(〉+ 0疋C X=0()+0K+“,D Y^p^p.X,5、 参数0的估计量p 具备有效性是指 ____________ . B A var (y^)=0 B var (fl )为最小 C (p —0)=0D (直一0)为最小6、 对于Yi=B°+B\Xi 七冲 以&表示估计标准误差,P 表示回归值,则 __________________ E 时込(Y 厂丫)=0 吐 0 时,工(丫一丫)2=0 Q0时,工(Y 厂刃为最小 Q0时,工(乂一 丫)2为最小7、设样本回归模型为Y 严则普通最小二乘法确泄的鸟的公式中,错误 的是件2心$$_吃兀丫迄%艺Y, P\ b,28、对于以&表示估计标准误差小表示相关系数,则有 9、产量(X,台)与单位产品成本(Y,元/台)之间的回归方程为9=356 —1.5X,这 说明 o DBA B C D_______ 。
DA S(X,-X )(Y-Y )1Z(x.-x)2詰吃XjYj 》X 送Yj A &=0 时, B *0 时, C &=0 时,D &=0 时, r=l r=-l r=0r=l 或 r=-lA 产量每增加一台,单位产品成本增加356元B 产量每增加一台,单位产品成本减少1・5元C 产量每增加一台,单位产品成本平均增加356元D 产量每增加一台,单位产品成本平均减少1・5元10、 在总体回归直线E (Y) =A J +AX 中,几表示 _______________ 。
第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。
总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。
本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。
同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。
本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。
统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
8.2 一元线性回归模型及其应用(精练)【题组一 样本中心求参数】1.(2021·全国·高二单元测试)某公司生产某种婴幼儿纸尿裤的产量x 与相应的生产能耗y 有如下样本数据:已知这组样本数据具有线性相关关系,由表中数据,求得回归直线的斜率为0.72,则这组样本数据的回归直线方程是( )A .ˆ0.72 2.05yx =+ B .ˆ0.720.35yx =+ C .ˆ0.720.26yx =+ D .ˆ0.350.72yx =+ 【答案】C【解析】设回归直线方程为ˆˆ0.72yx a =+,由样本数据,可得 4.5x =, 3.5y =, 因为回归直线经过点(),x y ,所以ˆ3.50.72 4.5a=⨯+,解得ˆ0.26a =, 所以回归直线方程为ˆ0.720.26yx =+. 故选:C .2.(2021·江西·吉安一中高二开学考试 )已知x 与y 之间的一组数据:()()()()13253749,,,,,,,,则y 与x 的线性回归方程为y bx a =+必过( )A .()26,B .()38,C .()2.56,D .()3.58,【答案】C【解析】由题意可知:1234 2.54x +++==,357964y +++==, ∴y 与x 的线性回归方程必过点()2.5,6.故选:C.3(2021·河南·孟津县第一高级中学 )为了庆祝建党100周年,某网站从7月1日开始推出党史类书籍免费下载活动,已知活动推出时间x (单位:天)与累计下载量y (单位:万次)的统计数据如表所示:根据上表,利用最小二乘法得到回归直线方程 1.4ˆˆyx a =+,据此模型预测,活动推出11天的累计下载量约A .13.8万次B .14.6万次C .16万次D .18万次【答案】C【解析】由表格数据知4567868910126,955x y ++++++++====,由回归直线方程的性质,得ˆ1.469a⨯+=,所以ˆ0.6a =,故ˆ 1.40.6y x =+, 所以当11x =时, 1.4110.616y =⨯+=(万次), 故选:C.4.(2021·河北·藁城新冀明中学高二月考)(多选)随着养生观念的深入,国民对餐饮卫生条件和健康营养的要求逐渐提高.据了解,烧烤食品含有强致癌物,因此吃烧烤的人数日益减少,烧烤店也随之减少.某市对2014年至2018年这五年间全市烧烤店盈利店铺的个数进行了统计,具体统计数据如下表所示:根据所给数据,得出y 关于t 的回归直线方程为273y bt =+,则下列说法正确的是( ) A .该市2014年至2018年全市烧烤店盈利店铺个数的平均数219y = B .y 关于t 的回归直线方程为18273y t =-+ C .估计该市2020年烧烤店盈利店铺的个数为147D .预测从2025年起,该市烧烤店盈利店铺的个数将不超过100 【答案】ABC【解析】由已知数据得3t =,219y =,故A 正确;因为y 关于t 的回归直线过点()3,219,所以2193273b =+,所以18b =-, 所以y 关于t 的回归直线方程为18273y t =-+.故B 正确;2020年的年份代码为7,故2020年该市烧烤店盈利店铺的个数约为187273147y =-⨯+=.故C 正确; 令18273100t -+≤,由*t N ∈,得10t ≥,故从2023年起,该市烧烤店盈利店铺的个数将不超过100.故D 不正确,故选:ABC.5.(2021·广东惠州 )(多选)某种产品的价格x (单位:元/kg )与需求量y (单位:kg )之间的对应数据如根据表中的数据可得回归直线方程为14.4y bx =+,则以下结论正确的是( ) A .y 与x 正相关 B .y 与x 负相关C .样本中心为()20,8D .该产品价格为35元/kg 时,日需求量大约为3.4kg【答案】BC【解析】由表格数据,随着价格x 的增加,需求量y 随之减少,所以y 与x 负相关. 因为1015202530205x ++++==,111086585y ++++==,故样本中心为()20,8由回归直线14.4y bx =+必过样本点的中心()20,8, 所以有82014.4b =⨯+,解得0.32b =-,所以当35x =时,0.323514.4 3.2y =-⨯+=,日需求量不为最大 故选:BC6.(2021·重庆市秀山高级中学校 )(多选)已知变量x ,y 之间的线性回归方程为0.710.3y x =-+,且变量x ,y 之间的一组相关数据如表所示,则下列说法正确的是( )A .变量x ,y 之间呈负相关关系B .可以预测,当20x 时, 3.7y =-C .4m =D .该回归直线必过点()9,4 【答案】ABD【解析】对于A :由线性回归方程为0.710.3y x =-+可知:0.70-<,所以变量x ,y 之间呈负相关关系,故对于B :当20x 时,0.72010.3 3.7y =-⨯+=-,故选项B 正确;对于C :68101294x +++==,6321144m m y ++++==,因为回归直线过样本中心点,所以110.7910.34m+=-⨯+,解得:5m =,故选项C 不正确; 对于D :由C 可知5m =,所以11544y +==,所以该回归直线必过样本中心点()9,4,故选项D 正确; 故选:ABD.7.(2021·贵州·贵阳一中 )某产品的广告费用x 与销售额y 的统计数据如下表:根据上表已得回归方程为8.6.8ˆ5yx =-,表中一数据模糊不清,请推算该数据的值为___________. 【答案】12【解析】由题中数据可得3,8.63 5.820x y ==⨯-=,故空白数据为12. 故答案为:128.(2021·全国·高二课时练习)已知x ,y 的取值如下表所示,由散点图分析可知y 与x 线性相关,且回归直线方程为ˆ0.95 2.6yx =+,那么表格中的数据m 的值为______.【答案】6.7 【解析】013424x +++==, 2.2 4.3 4.811.344m m y ++++==, 把(),x y 的坐标代入回归直线方程得11.30.952 2.64m+=⨯+, 解得 6.7m =. 故答案为:6.79.(2021·全国·高二课时练习)蟋蟀鸣叫的频率P (每分钟鸣叫的次数)与气温T (单位:℃)有着很大的关系.某观测人员根据下表中的观测数据计算出P 关于T 的线性回归方程ˆ 5.2168PT =-,则下表中k 的值为______.【答案】51【解析】计算()138414239404T =⨯+++=,()110929443644k P k +=⨯+++=, 将点10940,4k +⎛⎫ ⎪⎝⎭的坐标代入P 与T 的线性回归方程ˆ 5.2168P T =-中,得109 5.2401684k +=⨯-, 解得51k =. 故答案为:51.10.(2021·福建宁德·高三期中)某电子产品的成本价格由两部分组成,一是固定成本,二是可变成本,为确定该产品的成本,进行5次试验,收集到的数据如表:由最小二乘法得到回归方程ˆ0.6754.9yx =+,则a =___________. 【答案】75 【解析】1020304050305x ++++==,62688189600.25a y a ++++==+,因为线性回归方程过样本中心点,所以600.20.673054.975a a +=⨯+⇒=,故答案为:75 【题组二 线性回归方程】1.(2021·河北·藁城新冀明中学高二月考)假定产品产量x (千件)与单位成本y (元/件)之间存在相关关系.数据如下:(1)以x 为解释变量,y 为预报变量,作出散点图;(2)求y 与x 之间的回归直线方程,对于单位成本70元/件时,预报产量为多少; (3)计算各组残差,并计算残差平方和;【答案】(1)散点图见解析;(2)ˆ 1.8277.37yx =-+,4.050千件;(3)各组残差见解析,残差平方和为3.8182. 【解析】(1)解:散点图如下:(2)解:因为2343453.56x +++++==,737271736968716y +++++==,61279ii x==∑,611481i ii x y==∑,所以6162221614816 3.571ˆ 1.82796 3.56i i i i ix yx ybx x==-⋅-⨯⨯==≈--⨯-∑∑,ˆˆ71 1.82 3.577.37ay bx =-=+⨯=, 所以回归直线方程为ˆ 1.8277.37yx =-+,令70y =,则70 1.8277.37x =-+,解得 4.050x ≈, 所以单位成本70元/件时,预报产量约为4.050千件. (3)解:各组残差分别为:()11173 1.822ˆ77.370.73ˆey y =--⨯+=-=-, ()22272 1.82377.370.0ˆˆ9ey y =--⨯+==-, ()33371 1.82477.370.9ˆˆ1ey y =--⨯+==-, ()44473 1.82377.37 1.0ˆˆ9ey y =--⨯+==-, ()55569 1.824ˆ77.37 1.09ˆey y =--⨯+=-=-, ()66668 1.825ˆ77.370.27ˆey y =--⨯+=-=-, 残差的平方和为()()()2222621220.730.090.91 1.09 1.090.27 3.2ˆ818i i i y y=--+++--==++∑. 2.(2021·甘肃张掖)某家庭2015~2019年的年收入和年支出情况统计如表:(1)已知y 与x 具有线性相关关系,求y 关于x 的线性回归方程(系数精确到0.01);(2)假设受新冠肺炎疫情影响,该家庭2021年的年收入为9.5万元,请根据(1)中的线性回归方程预测该家庭2021年的年支出金额.附:回归方程ˆˆˆybx a =+中的斜率的最小二乘估计公式为()()()1122211ˆnni iiii i nniii i x ynx y xxy y b xnxxx====---==--∑∑∑∑.【答案】(1)ˆ0.780.24yx =+;(2)7.65万元. 【解析】(1)依题意,1(99.61010.411)105x =++++=,1(7.37.588.58.7)85y =++++=,则()5212.32i i x x=-=∑,()()511.8i ii x xy y =--=∑,则有()()()125151.8ˆ0.782.32iii ii x x y y bx x ==--==≈-∑∑,则ˆˆ0.24a y bx =-≈, 所以y 关于x 的线性回归方程为ˆ0.780.24yx =+; (2)当2021年的年收入为9.5万元时,即9.5x =,ˆ0.789.50.247.65y=⨯+=, 所以预测该家庭2021年的年支出金额为7.65万元.3.(2021·云南师大附中)大气污染物PM 2.5的浓度超过一定的限度会影响人的健康.为了研究PM 2.5的浓度是否受到汽车流量的影响,研究人员选择了24个社会经济发展水平相近的城市,在每个城市选择一个交通点统计24小时内过往的汽车流量x (单位:千辆),同时在低空相同的高度测定该时间段空气中的PM 2.5的平均浓度y(单位:μg/m 3),制作了如图所示的散点图:(1)由散点图看出,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明(精确到0.01); (2)建立y 关于x 的回归方程;(3)我国规定空气中的PM 2.5浓度的安全标准为24小时平均依度75μg/m 3,某城市为使24小时的PM 2.5浓度的平均值在60~130μg/m 3,根据上述回归方程预测汽车的24小时流量应该控制在什么范围内?附:参考数据: 1.4x =,95y =,2421() 2.1i i x x =-=∑,2421()60343i i y y =-=∑,241()()294i i i x x y y =--=∑,357.参考公式:相关系数()()nii xx y y r --∑,回归方程ˆˆˆya bx =+中斜率和截距的最小二乘估计公式分别为:121()()ˆ()niii nii x x yy b x x ==--=-∑∑,ˆˆay bx =-. 【答案】(1)答案见解析;(2)140101y x =-;(3)24小时的车流量应该控制在1150~1650辆. 【解析】1)由题得2940.82357r =≈, 因为y 与x 的相关系数近似为0.82,说明y 与x 具有很强的相关性, 从而可以用线性回归模型拟合y 与x 的关系.(2)由95y =得2412421()()ˆ()iii ii x x y y bx x ==--=-∑∑2941402.1==,95140 1.4101a y bx =-=-⨯=-, 所以y 关于x 的回归方程为140101y x =-. (3)当60y =时,由14010160x -=得 1.15x =; 当130y =时,由140101130x -=得 1.65x =. 所以24小时的车流量应该控制在1150~1650辆.4.(2021·全国·高三专题练习)实施新规后,某商场2020年1月份至10月份的收入情况如表.并计算得101890i i i x y ==∑,1021385i i x ==∑,101150i i y ==∑75.99.(1)是否可用线性回归模型拟合y 与x 的关系?请用相关系数r 加以说明;(当0.751r ≤≤时,那么变量x ,y 有较强的线性相关关系)(2)建立y 关于x 的回归方程ˆˆˆybx a =+(结果保留1位小数),并预测该商场12月份的收入情况.(结果保留整数)附:()()()1122211ˆn niii ii i nniii i x x y y x y nx ybx x xnx====---==--∑∑∑∑,ˆˆay bx =-. 【答案】(1)y 与x 有较强的线性相关关系,可用线性回归模型拟合,说明答案见解析;(2)ˆ0.810.7yx =+,预测该商场12月份的收入为20万元.【解析】(1)由题中数据得1011155 5.51010i i x x ===⨯=∑,10111150151010i i y y ===⨯=∑,1010 5.515825x y =⨯⨯=,于是得1010111()()1089082565i i i i i x x y y x y y x ==--=-=-=∑∑,75.99,从而10()()650.8675.99iix x y y r --==≈∑,0.75||1r ≤≤, 所以y 与x 有较强的线性相关关系,可用线性回归模型拟合;(2)由(1)知1011065i i i x y x y =-=∑,而1021385i i x ==∑,221010 5.5302.5x =⨯=,从而得10122110106565ˆ0.8385302.582.510i ii i i x y ybx xx ==-===≈--∑∑,65ˆˆ15 5.510.782.5ay bx =-=-⨯=, 所以y 关于x 的线性回归方程为ˆ0.810.7yx =+,当12x =时,ˆ0.81210.720y =⨯+≈, 从而预测该商场12月份的收入为20万元.5(2021·河南许昌 )某新型外贸出口公司对2021年过去9个月的出口销售数据进行整理,得到了今年第x 个月份与截止该月底的销售额y (单位:万元)之间的关系,如下表:(1)若y 与x 满足线性关系,求出y 关于x 的回归方程;(ˆa,ˆb 精确到整数位) (2)预测该公司10月份的销售额附:参考数据:913087i i y ==∑;9117524i i i x y ==∑;921285i i x ==∑;参考公式:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【答案】(1)ˆ35169yx =+;(2)答案见解析. 【解析】(1)5x =,343y =,919175249534317524154352089i i i x y xy =∴-=-⨯⨯=-=∑92221952859560ii x=-⨯=-⨯=∑,2089ˆ3560b ∴=≈, 2089ˆ343516960a=-⨯≈, ˆ35169yx ∴=+ (2)当10x =时,ˆ3510169519y=⨯+=, 所以预测该公司10月份销售额为519万元.6.(2021·福建·莆田第二十五中学高三月考)2021年东京奥运会,中国举重选手8人参赛,7金1银,在全世界面前展现了真正的中国力量;举重比赛根据体重进行分级,某次举重比赛中,男子举重按运动员体重分为下列十级:每个级别的比赛分为抓举与挺举两个部分,最后综合两部分的成绩得出总成绩,所举重量最大者获胜,在该次举重比赛中,获得金牌的运动员的体重以及举重成绩如下表 (1)根据表中的数据,求出运动员举重成绩y 与运动员的体重x 的回归直线方程(保留1位小数); (2)某金牌运动员抓举成绩为170公斤,挺举成绩为204公斤,则该运动员最有可能是参加的哪个级别的举重?参考数据:()()()992112620,7076i i i i i x x x x y y ==-=--=∑∑;参考公式:()()()121ˆˆˆ,niii nii x x yy bay bx xx ==--==--∑∑. 【答案】(1) 2.7155.4y x =+;(2)83公斤级举重. 【解析】(1)依题意,5459647076839199106789x ++++++++==,2913043373533633894064214303669y ++++++++==,()()()1217076ˆ 2.702620nii i nii xx y y bxx ==--===-∑∑, 则366 2.778155.4a y bx =-=-⨯=, 故回归方程为: 2.7155.4y x =+.(2)该运动员的抓举和挺举的总成绩为374公斤,根据回归方程可知:374 2.7155.4x =+, 解得81x ≈,即该运动员的体重应该在81公斤左右,即参加的应该是83公斤级举重.7.(2021·西藏·拉萨中学高二月考)珠海国际赛车场(简称ZIC)位于珠海经济特区金鼎镇.创建于1996年,是中国国内第一座符合国际汽车联盟一级方程式标准的国际级赛车场.目前该赛事已打造成集赛车竞技运动、汽车文化极致体验、主题休闲度假为一体的超级汽车文化赛事娱乐综合体.为了减少对环境的污染,某环保部门租用了特制环保车清洁现场垃圾.通过查阅近5年参会人数(万人)与所需环保车辆数量(辆),得到如下统计表:(1)根据统计表所给5组数据,求出关于,x y 的线性回归方程ˆˆy bxa =+. (2)已知租用的环保车平均每辆的使用成本费用C (元)与数量(辆)的关系为3000200035,N 2900t t 35,N t t t C t +<<∈⎧=⎨≥∈⎩,主办方根据实际参会人数投入所需环保车,租车每辆支付费用6000元,超出实际需要的车辆,主办方不支付任何费用.预计本次赛车会大约有14万人参加,根据(1)中求出的线性回归方程,预测环保部门在确保清洁任务完成的前提下,应租用多少辆环保车?获得的利润是多少? (注:利润L =主办方支付费用-使用成本费用C ).参考公式:()()()1122211ˆ,ˆˆn niii ii i nniii i x x y y x y nxybay bx x x xnx ====---===---∑∑∑∑ 【答案】(1) 2.32y x =+;(2)为确保完成任务,需要租用35辆环保车,获得的利润108500元. 【解析】(1)11981012105x ++++==2823202529255y ++++== ()()()()()()()()()22222131******** 2.310111091081010101210ˆb ⨯+-⨯-+-⨯-++⨯===-+-+-+-+- ˆˆ2ay bx =-= 关于,x y 的线性回归方程 2.32y x =+ (2)将14x =代入 2.32y x =+得34.2y =为确保完成任务,需要租用35辆环保车, 所以290035101500C =⨯=获得的利润600035101500108500L =⨯-=元8.(2021·江西·新余市第一中学高二月考)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:(1)从3月1日至3月5日中任选2天,记发芽的种子数分别为m ,n ,求事件“m ,n 中至少有一个数小于25”的概率;(2)请根据3月2日至3月4日的数据,求出y 关于x 的线性回归方程y bx a =+.(参考公式:回归直线方程为y bx a =+,其中()1221ni ii nii x y nxyb xn x==-=-∑∑,a y bx =-)【答案】(1)710(2)532y x =-【解析】(1)从3月1日至3月5日中任选2天,m ,n 构成的基本事件(m ,n )有:(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),共有10个.记“m ,n 至少有一个数小于25”为事件A ,包括:(23,25),(23,30),(23,26),(23,16),(25,16),30,16),(26,16),共有7个基本事件 由古典概型概率公式:7()10P A = (2)11131225302612,27,33x y ++++==== 22221125133012263122751113123122b ⨯+⨯+⨯-⨯⨯==++-⨯. 于是,5271232a =-⨯=-故所求线性回归方程为532y x =- 9.(2021·全国·高二单元测试)某地区2013年至2019年居民纯收入y (单位:千元)的部分数据如表所示:2018和2019年的居民纯收入y (单位:千元)数据采用随机抽样的方式获得,用样本的均值来代替当年的居民人均纯收入,其数据如下:2018年抽取的居民纯收入(单位:千元)数据:5.2 4.8 6.5 5.6 6.0 7.1 6.1 7.3 5.9 7.5 2019年抽取的居民纯收入(单位:千元)数据:6.2 7.8 6.6 5.8 7.1 6.8 7.2 7.9 5.9 7.7 (1)求y 关于t 的线性回归方程;(2)当地政府为了提高居民收入水平,现从2018和2019年居民纯收入(单位:千元)高于7.0千元的样本中随机选择3人进行座谈,了解其工作行业及主要收入来源.设X 为选出的3人中2018年纯收入高于7.0千元的人数,求随机变量X 的分布列和数学期望.附:回归直线的斜率和截距的最小二乘法估计公式分别为:121()()()niii nii t t y y b tt ==--=-∑∑,a y bt =-.【答案】(1)ˆ0.5 3.3yt =+;(2)分布列见解析;期望为98. 【解析】(1)根据2018年的抽样数据可得2018年的人均纯收入为1(5.2 4.8 6.5 5.6 6.07.1 6.17.3 5.97.5) 6.210+++++++++= 千元,根据2019年的抽样数据可得2019年的人均纯收入为1(6.27.8 6.6 5.87.1 6.87.27.9 5.97.75) 6.910+++++++++=千元,由所给的数据得1(1234567)47t =++++++=,1(3.9 4.3 4.6 5.4 5.8 6.2 6.9) 5.37y =++++++=, ∴721()941014928i i t t =-=++++++=∑,71()()(3)( 1.4)(2)(1)(1)(0.7)00.110.520.93 1.614ii i tt y y =--=-⨯-+-⨯-+-⨯-+⨯+⨯+⨯+⨯=∑,∴71721()()14ˆ0.528()ii i ii tt y y btt ==--===-∑∑, 则ˆˆ 5.30.54 3.3ay bt =-=-⨯=, 则所求y 关于t 的线性回归方程为ˆ0.5 3.3yt =+; (2)由2018年和2019年的抽样数据可知,2018年居民纯收入高于7.0千元的有3人,2019年居民纯收入高于7.0千元的有5人,由题意可得,随机变量X 的可能取值为0,1,2,3,则35385(0)28C P X C ===,12353815(1)28C C P X C ===,21353815(2)56C C P X C ===,33381(1)56C P X C ===,∴随机变量X 的分布列为则X 的分布列为:则5151519()0123282856568E X =⨯+⨯+⨯+⨯= 【题组三 非线性回归方程】1.(2021·福建·泉州科技中学 )数独是源自18世纪瑞士的一种数学游戏,玩家需要根据99⨯盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫(33⨯)内的数字均含1﹣9,不重复.数独爱好者小明打算报名参加“丝路杯”全国数独大赛初级组的比赛.(1)赛前小明在某数独APP 上进行一段时间的训练,每天的解题平均速度y (秒)与训练天数x (天)有关,经统计得到如表的数据:现用by a x=+作为回归方程模型,请利用表中数据,求出该回归方程,并预测小明经过100天训练后,每天解题的平均速度y约为多少秒?(2)小明和小红在数独APP 上玩“对战赛”,每局两人同时开始解一道数独题,先解出题的人获胜,两人约定先胜4局者赢得比赛.若小明每局获胜的概率为34,已知在前3局中小明胜2局,小红胜1局.若不存在平局,请你估计小明最终赢得比赛的概率.参考数据(其中1i t x =)参考公式:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计公式分别为:1221ni i i nii u v nu vunuβ==-⋅=-∑∑,v u αβ=-⋅.【答案】(1)1000130y x=+,经过100天训练后,每天解题的平均速度y 约为140秒;(2)243256.【解析】(1)由题意,1(990990450320300240210)5007y =++++++=,令1t x=,设y 关于t 的线性回归方程为y bt a =+,则 717221184570.3750010000.5577i ii i i t y t yb t t==-⨯-⨯-===⋅∑∑,则50010000.37130a =-⨯=. ∴1000130y t =+,又1t x=,∴y 关于x 的回归方程为1000130y x=+, 故100x =时,140y =.∴经过100天训练后,每天解题的平均速度y 约为140秒.(2)设比赛再继续进行X 局小明最终赢得比赛,则最后一局一定是小明获胜, 由题意知,最多再进行4局就有胜负.当2X =时,小明4:1胜,∴339(2)4416P X ==⨯=;当3X =时,小明4:2胜,∴123339(3)144432P X C ⎛⎫==⨯⨯-⨯= ⎪⎝⎭;当4X =时,小明4:3胜,∴21333327(4)1444256P X C ⎛⎫==⨯⨯-⨯= ⎪⎝⎭.∴小明最终赢得比赛的概率为99272431632256256++=. 2.(2021·云南大理 )2021年6月17日9时22分,我国酒泉卫星发射中心用长征2F 遥十二运载火箭,成功将神舟十二号载人飞船送入预定轨道,顺利将聂海胜、刘伯明、汤洪波3名航天员送入太空,发射取得圆满成功,这标志着中国人首次进入自己的空间站.某公司负责生产的A 型材料是神舟十二号的重要零件,该材料应用前景十分广泛.该公司为了将A 型材料更好地投入商用,拟对A 型材料进行应用改造、根据市场调研与模拟,得到应用改造投入x (亿元)与产品的直接收益y (亿元)的数据统计如下:当017x <≤时,建立了y 与x 的两个回归模型:模型①: 4.1109ˆ.y x =+,模型②:ˆ14.4y =;当17x >时,确定y 与x 满足的线性回归方程为ˆˆ0.7yx a =-+. (1)根据下列表格中的数据,比较当017x <≤时模型①,②的相关指数2R 的大小,并选择拟合精度更高、更可靠的模型,预测对A 型材料进行应用改造的投入为17亿元时的直接收益;(2)为鼓励科技创新,当应用改造的投入不少于20亿元时,国家给予公司补贴5亿元,以回归方程为预测依据,根据(1)中选择的拟合精度更高更可靠的模型,比较投入17亿元与20亿元时公司收益(直接收益+国家补贴)的大小.附:刻画回归效果的相关指数()()22121ˆ1ni i i nii y yR y y ==-=--∑∑,且当2R 越大时,4.1≈.用最小二乘法求线性回归方程ˆˆˆybx a =+的截距:ˆˆa y bx =-. 【答案】(1)模型②拟合精度更高、更可靠,72.93亿;(2)投入17亿元比投入20亿元时收益小. 【解析】(1)对于模型①, 对应的15222740485460=387y ++++++=,故对应的()12222111271750i i i i y y y y ==-=-=∑∑,故对应的相关指数2179.1310.9551750R =-≈, 对于模型②,同理对应的相关指数2220.210.9881750R =-≈, 故模型②拟合精度更高、更可靠.故对A 型材料进行应用改造的投入为17亿元时的直接收益为ˆ14.472.93=≈y. (2)当17x >时, 后五组的2122232425235x ++++==,68.56867.5+66+65675y ++==,由最小二乘法可得()ˆ670.72383.1a=--⨯=, 故当投入20亿元时公司收益(直接收益+国家补贴)的大小为:0.72083.1+574.172.93-⨯+=>,故投入17亿元比投入20亿元时收益小.3.(2021·全国·高二单元测试)某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成,每件产品的非原料成本y (元)与生产的产品数量x (千件)有关,经统计得到如下数据:根据以上数据,绘制了如下散点图.参考数据:(其中1iu x =) (1)观察散点图判断,by a x=+与y c dx =+哪一个适宜作为非原料成本y 与生产的产品数量x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程; (3)试预测生产该产品10千件时,每件产品的非原料成本为多少元? 【答案】(1)b y a x =+;(2)100ˆ11y x=+;(3)21元.【解析】(1)由题意,根据题设中的散点图,可得这些点分布在b y a x =+的两侧,所以选择函数by a x=+作为非原料成本y 与生产的产品数量x 的回归方程类型. (2)令1u x =,则by a x=+可转化为y a bu =+,则y 与u 的关系可看成线性相关关系. 因为360458y ==,所以8182218183.480.344561ˆ1001.5380.1150.618i ii ii u yu y b uu==-⋅-⨯⨯====-⨯-∑∑,则ˆˆ451000.3411a y bu =-=-⨯=,所以ˆ11100y u =+,代入1u x =,得100ˆ11y x=+.(3)当10x =时,100ˆ112110y=+=,所以预测生产该产品10千件时,每件产品的非原料成本为21元. 4.(2021·全国·高三课时练习)某芯片公司为制订下一年的研发投入计划,需了解年研发资金投入量x (单位:亿元)对年销售额y (单位:亿元)的影响,该公司对历史数据进行对比分析,建立了两个函数模型:①2y x αβ=+,②e x t y λ+=,其中α,β,λ,t 均为常数,e 为自然对数的底数.现该公司对收集的近12年的年研发资金投入量i x 和年销售额i y (1,2,,12i =⋅⋅⋅)的数据作了初步处理,令2u x =,ln v y =,经计算得到如下数据:(1)设u 和y 的样本相关系数为1r ,x 和v 的样本相关系数为2r ,请从样本相关系数(精确到0.01)的角度判断,哪个模型拟合效果更好;(2)(i)根据(1)的选择及表中数据,建立y 关于x 的非线性经验回归方程;(ii)若下一年销售额y 需达到90亿元,预测下一年的研发资金投入量x 约为多少亿元? 参考数据为308477=⨯9.4868, 4.4998e 90≈.【答案】(1)模型e x t y λ+=的拟合效果更好;(2)(i)0.018 3.84ˆe x y+=;(ii)36.66亿元. 【解析】(1)()()121215000.8625000iiu u y y r --====∑,()()12214100.91770.211iix x v v r --====≈⨯∑,因为12r r <,所以从样本相关系数的角度判断,模型e x t y λ+=的拟合效果更好. (2)(i)先建立v 关于x 的经验回归方程. 由e x t y λ+=,得ln y x t λ=+,即v λx t =+.()()()121122114ˆ0.018770iii ii x x v v x x λ==--==≈-∑∑, ˆˆ 4.20.01820 3.84tv x λ=-=-⨯=, 所以v 关于x 的经验回归方程为0.01838ˆ.4vx +=, 所以0.0134ˆln 8.8x y=+,即0.018 3.84ˆe x y +=.(ii)若下一年销售额y 需达到90亿元,则由0.018 3.84ˆe x y+=,得0.018 3.8490e x +=, 又 4.4998e 90≈,所以4.49980.018 3.84x ≈+, 所以 4.4998 3.8436.660.018x -≈≈,所以预测下一年的研发资金投入量约为36.66亿元.5.(2021·全国·高二课时练习)噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了解声音强度D (单位:dB )与声音能量I (单位:2W cm -⋅)之间的关系,将测量得到的声音强度D 和声音能量I 的数据作了初步处理,得到如图所示的散点图:参考数据:111.0410I -⨯=,45.7D =,11.5W =-,()1022111.5610i i I I-=-=⨯∑,()10210.51i i W W=-=∑,()()101116.8810iii IID D -=--=⨯∑,()()1015.1i i i W W D D =-⋅-=∑,其中lg i i W I =,101110i i W W ==∑.(1)根据散点图判断,11D a b I =+与22lg D a b I =+哪一个适宜作为声音强度D 关于声音能量I 的回归模型?(给出判断即可,不必说明理由)(2)求声音强度D 关于声音能量I 的非线性经验回归方程.(3)假定当声音强度大于60dB 时,会产生噪声污染.城市中某点P 处共受到两个声源的影响,这两个声源的声音能量分别是a I 和b I ,且101410a bI I +=.已知点P 处的声音能量等于a I 与b I 之和.请根据(2)中的非线性经验回归方程,判断点P 处是否受到噪声污染,并说明理由.【答案】(1)22lg D a b I =+更适合;(2)ˆ10lg 160.7DI =+;(3)P 会受到噪声污染,理由见解析. 【解析】(1)22lg D a b I =+更适合. (2)设ˆˆD bW a =+,则 ∵()()()10110215.1ˆ100.51iii i i W W D D bW W==--===-∑∑, ∴ˆˆ160.7a D bW=-=, ∴D 关于W 的经验回归方程是ˆ10160.7DW =+,则D 关于I 的非线性经验回归方程是ˆ10lg 160.7DI =+. (3)设点P 处的声音能量为1I ,则1a b I I I =+. ∵101410a bI I +=, ∴()101010141410105910b a a b a b a b a b I I I I I I I I I I I ---=+=++=++≥⎛⎫⎛⎫ ⎪⎝⨯ ⎪⎝⎭⎭(当且仅当10310a I =,93510bI =⨯时等号成立) 根据(2)中非线性经验回归方程,知点P 处的声音强度D 的预报值的最小值,()10min 10lg 910160.710lg960.760D -=⨯+=+>,∴点P 会受到噪声污染.6.(2021·福建·福州三中高二期中)某地从2月20日开始的连续7天的某传染病累计确诊人数如下表:由上述表格得到如下散点图.(1)根据散点图判断lg =+y a b x 与x y c d =⋅(,c d 均为大于0的常数)哪一个更适合作为累计确诊人数y 与天数x 的回归方程类型(给出判断即可,不必说明理由),并求出y 关于x 的回归方程;(2)3月20日,该地的疾控中心接受了1000份血液样本,假设每份样本的检验结果是阳性还是阴性是相互独立的,且每份样本是阳性的概率是0.6,试剂把阳性样本检测出阳性结果的概率是0.99(试剂存在阳性样本检测不出来的情况,但不会把阴性样本检测呈阳性样本),求这1000份样本中检测出呈阳性的份数的期望.参考数据:其中11lg ,7i i i i v y v v ===∑参考公式:对于一组数据()()()1122,,,,,,n n u v u v u v ⋯,其回归直线ˆvu αβ=+的斜率和截距的最小二乘估计公式分别为1221,ni i i ni i u v nuvv u unuβαβ==-==--∑∑,v u αβ=-.【答案】(1)0.253.4710x x y c d y =⋅=⨯; (2)594【解析】(1)由散点图可知,x y c d =⋅更适合作为累计确诊人数y 与天数x 的回归方程类型. 把x y c d =⋅两边取对数,得lg lg lg y c x d =+, 令lg v y =,则lg lg v c x d =+,1(1234567)47x =++++++=,7211.54140i i v x ===∑,, 7172221750.1274 1.54lg 0.25140747i i i i i x v xvd x x==--⨯⨯===-⨯-∑∑,所以lg 1.540.2540.54c =-⨯=,则0.540.25v x =+, 所以y 关于x 的回归方程为0.253.4710x y =⨯; (2)设这1000份样本中检测出呈阳性的份数为X , 每份样本检测出阳性的概率为0.60.990.594P =⨯=, 由题意可知,(10000.594)XB ,,所以()10000.594594E X =⨯=份.故这1000份样本中检测出呈阳性的份数的期望为594.7.(2021·山西太原·高二期中(文))为了更好的指导青少年健康饮食,某机构调查了本地区不同身高的未成年男性,得到他们的体重的平均值,并对数据作了初步处理,得到下面的散点图及一些统计量的值.表中ln i i w y =(1)根据散点图判断,可采用x y a b =⋅作为这个地区未成年男性体重y 千克与身高x 厘米的回归方程.利用表中数据建立y 关于x 的回归方程;(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该地区一名身高为175厘米,体重为78千克的在校男生的体重是否正常? 参考数据:0.020.71751.02,2,1.0231.99e e ===. 参考公式:对于一组数据()()()1122,,,,,,n n u v u v u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()121ˆˆˆ,nii i nii uu v v v u uu βαβ==--==--∑∑.【答案】(1)2 1.02x y =⨯;(2)体重偏胖. 【解析】(1)由x y a b =⋅,得ln ln ln y a x b =+⋅, 设ˆˆˆw cx d=+,由表格中数据,得801ˆ0.02400050c ===, ˆ 3.40.021350.7d=-⨯=, 则0.70.02ln 0.7,ln 0.02,2, 1.02a b a e b e ======, 则y 关于x 的回归方程为2 1.02x y =⨯.(2)当175x =时,1752 1.02231.9963.98y =⨯=⨯=,因为63.98 1.276.77678⨯=<,所以该名在校男生的体重偏胖.。
一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。
AA 函数关系与相关关系B 线性相关关系与非线性相关关系C 正相关关系与负相关关系D 简单相关关系与复杂相关关系 2、相关关系就是指__________。
DA 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。
AA 都就是随机变量B 都不就是随机变量C 一个就是随机变量,一个不就是随机变量D 随机的或非随机都可以 4、表示x 与y 之间真实线性关系的就是__________。
CA 01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性就是指__________。
B A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆi i iY X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。
B A i i ˆˆ0Y Y 0σ∑=时,(-)=B 2iiˆˆ0Y Y σ∑=时,(-)=0 C ii ˆˆ0Y Y σ∑=时,(-)为最小 D 2iiˆˆ0Y Yσ∑=时,(-)为最小 7、设样本回归模型为i 01i iˆˆY =X +e ββ+,则普通最小二乘法确定的i ˆβ的公式中,错误的就是__________。
DA ()()()i i 12iX X Y -Y ˆX X β--∑∑=B ()i iii122iin X Y -X Y ˆn X -X β∑∑∑∑∑=C ii122iX Y -nXY ˆX -nXβ∑∑= D i i ii12xn X Y -X Y ˆβσ∑∑∑=8、对于i 01i iˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。
D A ˆ0r=1σ=时, B ˆ0r=-1σ=时, C ˆ0r=0σ=时, D ˆ0r=1r=-1σ=时,或 9、产量(X,台)与单位产品成本(Y ,元/台)之间的回归方程为ˆY356 1.5X -=,这说明__________。
DA 产量每增加一台,单位产品成本增加356元B 产量每增加一台,单位产品成本减少1、5元C 产量每增加一台,单位产品成本平均增加356元D 产量每增加一台,单位产品成本平均减少1、5元10、在总体回归直线01ˆE Y X ββ+()=中,1β表示__________。
B A 当X 增加一个单位时,Y 增加1β个单位 B 当X 增加一个单位时,Y 平均增加1β个单位 C 当Y 增加一个单位时,X 增加1β个单位 D 当Y 增加一个单位时,X 平均增加1β个单位11、对回归模型i 01i i Y X u ββ+=+进行检验时,通常假定i u 服从__________。
CA 2i N 0) σ(, B t(n-2) C 2N 0)σ(, D t(n)12、以Y 表示实际观测值,ˆY表示回归估计值,则普通最小二乘法估计参数的准则就是使__________。
Di i 2i i i i 2i i ˆA Y Y 0ˆB Y Y 0ˆC Y Y ˆD Y Y ∑∑∑∑ (-)= (-)= (-)=最小 (-)=最小13、设Y 表示实际观测值,ˆY表示OLS 估计回归值,则下列哪项成立__________。
D ˆˆA YY B Y Y ˆˆC YY D Y Y = = = =14、用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点_________。
DˆA X Y B X YˆC X YD X Y (,) (,) (,) (,)15、以Y 表示实际观测值,ˆY表示OLS 估计回归值,则用OLS 得到的样本回归直线i 01iˆˆˆY X ββ+=满足__________。
A ii2i i 2i i 2i i ˆA Y Y 0B Y Y 0ˆC Y Y 0ˆD Y Y 0∑∑∑∑ (-)= (-)= (-)= (-)=16、用一组有30个观测值的样本估计模型i 01i i Y X u ββ+=+,在0、05的显著性水平下对1β的显著性作t 检验,则1β显著地不等于零的条件就是其统计量t 大于__________。
D A t0、05(30) B t0、025(30) C t0、05(28) D t0、025(28) 17、已知某一直线回归方程的判定系数为0、64,则解释变量与被解释变量间的线性相关系数为__________。
BA 0、64B 0、8C 0、4D 0、32 18、相关系数r 的取值范围就是__________。
DA r ≤-1B r ≥1C 0≤r ≤1D -1≤r ≤1 19、判定系数R 2的取值范围就是__________。
CA R2≤-1B R2≥1C 0≤R2≤1D -1≤R2≤120、某一特定的X 水平上,总体Y 分布的离散度越大,即σ2越大,则__________。
A A 预测区间越宽,精度越低 B 预测区间越宽,预测误差越小 C 预测区间越窄,精度越高 D 预测区间越窄,预测误差越大 22、如果X 与Y 在统计上独立,则相关系数等于__________。
C A 1 B -1 C 0 D ∞23、根据决定系数R 2与F 统计量的关系可知,当R 2=1时,有__________。
D A F =1 B F =-1 C F =0 D F =∞24、在C —D 生产函数βαK AL Y =中,__________。
A A 、α与β就是弹性 B 、A 与α就是弹性 C 、A 与β就是弹性 D 、A 就是弹性25、回归模型i i i u X Y ++=10ββ中,关于检验010=β:H 所用的统计量)ˆ(ˆ111βββVar -,下列说法正确的就是__________。
DA 服从)(22-n χ B 服从)(1-n t C 服从)(12-n χ D 服从)(2-n t26、在二元线性回归模型i i i i u X X Y +++=22110βββ中,1β表示__________。
A A 当X2不变时,X1每变动一个单位Y 的平均变动。
B 当X1不变时,X2每变动一个单位Y 的平均变动。
C 当X1与X2都保持不变时,Y 的平均变动。
D 当X1与X2都变动一个单位时,Y 的平均变动。
27、在双对数模型i i i u X Y ++=ln ln ln 10ββ中,1β的含义就是__________。
D A Y 关于X 的增长量 B Y 关于X 的增长速度 C Y 关于X 的边际倾向 D Y 关于X 的弹性26、根据样本资料已估计得出人均消费支出Y 对人均收入X 的回归模型为i i X Y ln 75.000.2ln +=,这表明人均收入每增加1%,人均消费支出将增加__________。
CA 2%B 0、2%C 0、75%D 7、5%28、按经典假设,线性回归模型中的解释变量应就是非随机变量,且__________。
A A 与随机误差项不相关 B 与残差项不相关 C 与被解释变量不相关 D 与回归值不相关29、根据判定系数R 2与F 统计量的关系可知,当R 2=1时有__________。
C A 、F=1 B 、F=-1 C 、F=∞ D 、F=0 30、下面说法正确的就是__________。
DA 、内生变量就是非随机变量B 、前定变量就是随机变量C 、外生变量就是随机变量D 、外生变量就是非随机变量31、在具体的模型中,被认为就是具有一定概率分布的随机变量就是__________。
A A 、内生变量 B 、外生变量 C 、虚拟变量 D 、前定变量 32、回归分析中定义的__________。
BA 、解释变量与被解释变量都就是随机变量B 、解释变量为非随机变量,被解释变量为随机变量C 、解释变量与被解释变量都为非随机变量D 、解释变量为随机变量,被解释变量为非随机变量33、计量经济模型中的被解释变量一定就是__________。
C A.控制变量 B.政策变量 C.内生变量 D.外生变量 二、多项选择题1、指出下列哪些现象就是相关关系__________。
ACDA 家庭消费支出与收入B 商品销售额与销售量、销售价格C 物价水平与商品需求量D 小麦高产与施肥量E 学习成绩总分与各门课程分数2、一元线性回归模型i 01i i Y X u ββ+=+的经典假设包括__________。
ABCDEA ()0t E u =B 2var()t u σ=C cov(,)0t s u u =D (,)0t t Cov x u =E 2~(0,)t u N σ3、以Y 表示实际观测值,ˆY表示OLS 估计回归值,e 表示残差,则回归直线满足__________。
ABEii2i i 2i i i i A X Y ˆB Y YˆC Y Y 0ˆD Y Y 0E cov(X ,e )=0∑∑∑∑ 通过样本均值点(,) = (-)= (-)= 4、ˆY表示OLS 估计回归值,u 表示随机误差项,e 表示残差。
如果Y 与X 为线性相关关系,则下列哪些就是正确的__________。
ACi 01ii1ii 01i i i1iii 01i A E Y X ˆˆB Y X ˆˆC Y X e ˆˆˆD YX e ˆˆE E(Y )X ββββββββββ+++++++ ()= = ===5、ˆY表示OLS 估计回归值,u 表示随机误差项。
如果Y 与X 为线性相关关系,则下列哪些就是正确的__________。
BEi 01i i 01i ii1iii 01i ii1iA Y XB Y X u ˆˆC Y X u ˆˆˆD Y X u ˆˆˆE YX ββββββββββ+++++++ = =+ ===6、回归分析中估计回归参数的方法主要有__________。
CDE A 相关系数法 B 方差分析法 C 最小二乘估计法 D 极大似然法 E 矩估计法7、用OLS 法估计模型i 01i i Y X u ββ+=+的参数,要使参数估计量为最佳线性无偏估计量,则要求__________。
ABCDEA i E(u )=0B 2i Var(u )=σC i j Cov(u ,u )=0D i u 服从正态分布E X 为非随机变量,与随机误差项i u 不相关。
8、假设线性回归模型满足全部基本假设,则其参数的估计量具备__________。
CDE A 可靠性 B 合理性C 线性D 无偏性E 有效性9、普通最小二乘估计的直线具有以下特性__________。