无砟轨道病害维修
- 格式:pptx
- 大小:1.10 MB
- 文档页数:34
高速铁路无砟轨道病害问题及维修方案分析摘要:2016年底,我国铁路运营总里程12.4万公里,仅次于美国;高速铁路运营总里程2.2万公里,规模位居世界第一。
预计未来几年铁路每年投资总额为6000至8000亿元,到2020年铁路总里程将超过14万公里,高速铁路里程将超过3万公里。
根据远景规划分析,到2030年铁路总里程约20万公里,高速铁路里程将超过6万公里,建成“八横八纵”干线,形成非常完善的高速铁路网。
2014年APEC会上,我国提出“一带一路”发展战略,将尽快使铁路“走出去”发展战略落地,将为高速铁路发展提供更多的机会。
关键词:高速铁路;无砟轨道;病害;维修方案;分析1 引言高速铁路一般是指运行速度达200公里/小时以上的铁路,是由适合于高速运行的基础设施、固定设备、移动设备,完善且科学的安全保障系统和运输组织方法有机结合起来的庞大系统工程,是当代高新技术的综合集成。
为了提高列车运行速度,使铁路适应社会发展,从20世纪初至50年代,德、法、日等国都开展了大量的有关高速列车的理论研究和试验工作。
1998年3月,我国人大会在“十五”计划纲要草案中提出建设高速铁路。
2008年8月1日,中国第一条具有完全自主知识产权、世界一流水平的高速铁路—京津城际高铁通车运营,京津城际铁路的开通,拉开了中国高速铁路建设和运营的序幕。
2011年6月30日,京沪高铁开通运行,并于2017年9月21日采用自主研发的复兴号动车站提速350/小时运营。
2012年12月26日,京广高铁全线贯通,成为当时世界最长的高速铁路。
在它们的背后,是正在编织着的中国高速铁路网和正在实现的中国经济再一次跨越式发展。
2 高速铁路的发展趋势及作用2.1高速铁路的发展趋势铁路的发展水平如何,直接影响到国家的工业化进程。
我国铁路与发达国家相比,存在较大的差距,我国每万平方公里的国土上铁路的覆盖不到75公里,而德国等发达国家均超过了1000公里,是中国的13.33倍。
无砟轨道路基沉降病害整治摘要:路基沉降引起轨道高程异常变化,最大沉降量超出扣件调整范围,通过采取无砟轨道拆除、重建措施彻底消除病害,保证行车安全,为后期同类病害整治提供借鉴。
关键词:路基沉降无砟轨道拆除重建一、概述因路基路肩、线间封闭层破损、开裂,路基填料粒径较大不均,地表水顺间隙下渗浸泡软化基底粉土、粉质黏土沉降,引起轨面高程异常变化,最大轨面高程处低于设计高程40mm。
目前靠扣件调整维持线路平顺,确保行车安全。
二、设备概况1.地形地貌及路基形式沉降路基段为填土高度1-7.5m的路堤,边坡设骨架护坡防护,骨架内栽植灌木。
路基两侧设宽2.0m、高1.5m护道,护道边坡及护道平台采用浆砌片石防护,坡脚处地面下设1.0m高片石混凝土脚墙,线路右侧设挡水结构,挡水结构与坡脚之间设排水沟。
2.地基处理挖除换填或清除地表耕植土后强夯处理,处理深度3~6m,加固深度内压缩模量大于15MPa。
地面下设0.5m垫层,内铺二层抗拉强度不小于120KN/m的高强双向经编土工格栅。
3.基床表层基床表层采用级配碎石填筑,基床底层采用A、B组填料,基床以下采用A、B组或C组中的粗砾土填料。
4.轨道结构基床表层滑膜摊铺宽度3.4m、厚度0.255m,水硬性支承,支撑层上部浇筑单元长度19.5m的宽2.8m、厚度0.265m的钢筋混凝土道床板。
线间距5.0m、线间填充级配碎石,上部0.1m厚的C25混凝土封闭。
线间及路肩每间隔6.5m,设置深度0.1m假缝,19.5m设置一道宽0.1m真缝。
扣件为福斯罗-300型扣件。
5.变形数据分析5.1轨面数据分析从轨面数据对比分析,可以看出累计沉降最大约80mm,呈区域波浪线形,侧向偏移最大约15mm。
上行轨面情况下行轨面情况5.2CPⅢ精测数据分析开通运营后4年三次CPⅢ精测数据对比分析来看,个别单位高程数据偏差±3mm,得出结论,路基沉降趋于稳定。
三、整治方案选比确定1.方案选比确定目前无砟轨道沉降整治方案有机械抬升、化学注浆抬升、拆除重建等方案,综合对比经济投入、整治效果、整治条件等,选定无砟轨道拆除重建方案。
高速铁路轨道病害分析与修理方法现在高速铁路飞速发展,大规模修建高速铁路客运专线,发展了各种类型的无砟轨道、有砟轨道、无砟道岔等,运行速度达到350km/h,最高速度达到了394km/h,在修建高速铁路技术方面已列居世界首位。
但是,我国自首条350km/h 高速客运专线京津城际开通运行以来,陆续开通了石太、武广等多条客运专线,工务设备的养护维修问题就成了当前首要研究项目。
特别是晃车问题的整治,更是需要探索的问题。
一、定位法整治线路病害在轨道上人工查找各种动态检测仪器检查发现的晃车地点,如车载、便携式添乘仪的重复二三级超限处所及轨检车二三级病害超限处所时,仪器的检测报告中只提供了病害里程和超限值,而仪器提供的超限里程往往与现场实际里程有一定的差距,个别处所的差距甚至达到200米,因此准确定位仪器报警地点的现场位置至关重要。
方法一:人工乘车感觉法。
对于峰值较大的车载及便携式添乘仪报警点(当峰值达到0.08及以上时),乘车人体就能够感觉到,当峰值达到0.10及以上时人体就能感觉到明显的晃动,因此对于惯性晃车地点,派有经验的技术人员上车,感觉和观察晃车的具体地点和晃动的形式,定位病害的地点和特征。
方法二:对于便携式添乘仪,人工进行里程校核。
带添乘仪添乘机车,每10公里根据现场公里标对仪器里程进行校核,根据报警里程与实际的差距定位报警点现场实际的位置方法三:根据轨检车图纸进行确定。
首先根据轨检车图纸上的道岔、护轨锁头等地面标志和曲线位置信息核对轨检车图纸里程与现场实际里程的差距,将轨检车图纸里程修订为现场实际里程。
其次将仪器的报警点在轨检车波形图上相应的地点附近去比对,轨检车、动检车检测项目均有水平加速度和垂直加速度,根据报警点的里程去查看轨检车波形图,两者虽然数值上会有差异,但一般车载及添乘仪报警地点在近期的轨检车波形图水平加速度或垂直加速度波形上会有相应的反映,因此可以通过轨检车波形图来确定报警点的准确位置。
高速铁路无砟轨道的维修与养护摘要:当前,我国部分地区城市交通出现较大压力,高速公路、航空、高铁等出行方式在一定程度上缓解了部分交通压力,其中,高铁在我国发展相对较快,也出现了一些问题,由于高速列车对碎石道床长期冲击,导致有砟轨道稳定性与平顺性发生改变。
所以,为了避免这种问题的发生,高速铁路逐步采用无砟轨道。
无砟轨道具有较好的美观性、稳定性、整体性与平顺性,并且具有后期养护维修工作量小、使用寿命长等优点。
但我国目前对无砟轨道的维修经验不足,需要在应用中总结经验,充分发挥无砟轨道的作用。
关键词:高速铁路;无砟轨道;维修养护在列车荷载反复作用下,有砟轨道残余变形累积较快,影响行车舒适性,增大养护维修工作量。
为了提高轨道在列车高速运行条件下的稳定性和平顺性,将散体道砟式的轨下基础改为混凝土类整体道床轨下基础,由此发展成无砟轨道结构形式。
目前,无砟轨道已成为我国高速铁路的主要轨道结构类型。
随着高速铁路无砟轨道线路运营里程的增多,如何对其进行科学的养护维修管理成为亟待解决的问题,备受国内外相关学者的关注。
1无砟轨道养护维修特点无砟轨道采用混凝土或沥青混合料等材料取代传统散粒道砟道床,其养护维修也出现了新的特点:(1)由“道砟+扣件”共同提供的轨道弹性基本上改为仅由扣件提供,无砟轨道对扣件的弹性精度要求也随之更高。
(2)无砟轨道几何形位由“道砟+扣件”调整变为主要通过扣件调整,扣件调整量的有限性决定了运营阶段通过养护维修作业对线路状态的调整量也非常有限。
当几何状态的修正量超过扣件可调整量时,为恢复线路质量状态进行的养护维修作业难度和养修成本大大增加。
(3)由于无砟道床的整体性,其可维修性较差,出现伤损后的维修难度大。
2无砟轨道的养护维修存在的问题现场工作的方式形式比较单一,效率不高,作业的质量也不高;检查工期的作用没有被充分发挥,分析数据的能力还有些欠缺;另一方面,养护维修无砟轨道的专业性人才较少,即使有维修养护的专业型人才,他们对于无砟轨道的理解和见识也是远远不够的。
.研,穿上探,讨.关于高铁路基段无砟轨道病害整治的探索西安工程质量安全监督站李清摘要:本文以高铁路基段无砟轨道病害整治为题,制定相关整治方案,作为高铁路基段无砟轨道病害整治相关整治的探索。
关键词:轨道板;离缝;注浆封闭;销钉锚固0引言本文就管内最早开通的郑西高铁华山北站路基段无砟轨道设备病害整治为题,开展病害问题的出现及整治探索,希望对该类问题整修提供借鉴。
郑西高铁是我国徐兰高速主要组成区段之一,同武广、京津等属于最早开通的高铁线路之一,早 期髙铁相关设计及施工还存在探索及总结经验阶段,从而设计到施工均不同程度存在需进一步优化的情况。
华山北站位于路基地段,无砟 轨道结构型式为CRTSII型双块式 无砟轨道,由钢轨、扣件、轨枕、轨 道板、支承层组成。
路基段地基采用埋人式桩板结构,顶面填筑级配碎石,其上的 无砟轨道与普通路基地段无砟轨道结构相同。
1病害情况2014年设备检查发现,华山北 站路基段无砟轨道板与支撑层间图1路基段无砟轨道横断面图出现冒浆现象,通过对现场情况进行详细调查,发现华山北站无砟轨道离缝冒浆病害主要有以下几种类型:(1) 无砟轨道轨道板与支承层离缝。
(2) 轨道板及封闭层裂缝。
(3) 两线间混凝土封闭层和路肩混凝土封闭层掉块。
(4) 封闭层混凝土与道床或支承层伸缩缝封闭材料失效。
(5) 支承层肩部排水不畅。
全面检査发现华山北站区内轨道板与支承层间出现冒浆病害。
全面排查路基段冒浆段落共计9段总长1060米,现场测量轨道板与支撑层缝隙宽度和深度,经测量最严重处所位于上行K952 + 190处,轨道板与支撑层间缝宽0.8mm,横向深度60mm。
观测发现病害发展较快,经历两年时间,冒浆处所由9段落发展至12段落,总长由1060米发展至1760米;观测轨道板与支撑层间缝宽0.8mm、横向深度60mm发展至缝宽9mm、横向深度2.15m。
同时观测的轨距、水平、轨向、高低等轨道几何尺寸未发生变化。
96交通科技与管理技术与应用0 前言与发达国家相比,中国高铁的发展相对缓慢,经过长期的实践和理论研究,轨道养护的主要原则是实施“预防为主,预处理结合”的养护政策。
基于混凝土或沥青混合料的压载轨道是高速轨道的主要形式。
无砟轨道的突出优点是稳定性好,结构坚固,维修时的工作负荷低,因此道无砟轨道广泛用于高速铁路。
1 无砟轨道概述无砟轨道是用于高速铁路的主要轨道结构适用于时速超过300 km 的路线。
其特点是钢筋混凝土代替了压载轨道结构的压载材料,其强度,耐久性和稳定性均优于压载物。
如今,与压载轨道相比,世界上最先进的轨道技术具有卓越的稳定性,舒适性和耐用性,并且其结构高度低,重量轻,从而减轻了桥第二级的负荷并减少了隧道开挖。
道床整洁美观,整个轨道变形平缓,维护工作量大大减少,列车速度可以大大提高[1]。
缺点是初期投资成本高,刚度高,施工难度和要求高,履带弹性差,振动和噪音大。
由于无砟轨道的基本结构与压载轨道的基本结构相似,所以相同病害在文中就不再赘述,本文主要针对无砟轨道的特殊病害进行阐释,并将维修技术进行阐释。
2 高铁无砟轨道结构病害2.1 轨道道床破损道板的病害主要是混凝土结构问题,通常在混凝土表面存在垂直和水平的裂缝甚至接缝,另一种是对混凝土拐角和拐角的损坏。
裂纹的形状主要是由混凝土的变形引起的,当变形的压力超过混凝土结构本身的抗压强度时,就会发生裂纹。
混凝土材料的不均匀混合,施工过程中环境温度的不适当,浇筑后因大风天气而导致的收缩,不合格的钢筋质量和下沉都可能引起裂缝。
在履带板开裂后,结构的钢筋与外部环境接触,产生锈蚀,锈继续压缩并扩张履带板混凝土并扩展裂缝,造成块体损坏。
在长期使用中,混凝土会与空气中的二氧化碳发生化学反应,从而增加结构的脆性并降低履带床的承载能力和耐用性[2]。
2.2 无砟轨道砂浆层和轨道板离缝砂浆层和轨道平板之间的间隔是一种常见的疾病,也叫作离缝,间隔的大小通常在1 mm 之内,纵向延伸超过10 m。
CRTSⅡ型板式无砟轨道CA砂浆离缝病害整治摘要:CRTSⅡ型板式无砟轨道结构主要由轨道板、水泥乳化沥青砂浆充填层、支承层(底座板)等组成,砂浆层离缝宽度1.5mm深度≥100mm为Ⅲ级伤损,应及时进行修补关键词:高铁 CA砂浆离缝整治一、基本概况京沪高铁于2011年6月30日正式通车运营,全长1318公里,设计时速300km/h。
京沪高铁全线主要采用CRTS Ⅱ型板式无砟轨道,我段管内988-997.784,1012.672-1075共计144.224km为CRTS Ⅱ型板式无砟轨道。
CRTSⅡ型板式无砟轨道结构主要由轨道板、水泥乳化沥青砂浆充填层、支承层(底座板)等组成,砂浆层离缝宽度1.5mm深度≥100mm为Ⅲ级伤损,应及时进行修补。
二、原因分析CRTS Ⅱ型板式无砟轨道CA砂浆离缝原因比较复杂,轨道板温度梯度引起的板端翘曲、轴向温度荷载导致轨道板伸缩、砂浆层灌注不饱满、列车动力荷载及基础不均匀沉降等都会造成这类离缝伤损。
产生离缝之后,砂浆垫层与轨道板之间的粘结会逐渐失效,无砟道床的整体性被严重削弱,严重影响轨道的静态几何形位和动态稳定性。
三、处理过程一季度结合线路平推检查工作对管内CA砂浆离缝病害进行检查、复核,工作量确认。
4月份待确认工作量后准备修补工机具材料,配备劳务工成立整治小组,由经验丰富的工班长带队,并对小组人员进行培训教育、方案交底。
一个整治一组配备10民左右的劳务工和2名经验丰富的职工,结合作业地点和天窗情况按照每天2-3块板的工作量进行整治。
要求整治小组详细记录轨道板病害整治过程,填写轨道板整治写实表,并执行人员、机具、材料三确认制度,每日施工完成后,将作业资料上报车间汇总。
主要作业流程:a、离缝注浆前的准备(1)到达现场首先用轨距尺查出大板中每块小板轨距水平,用弦线测量高低、轨向(20米弦),并记录。
(2)查清裂缝的长度、宽度、深度、走向、贯穿及漏水等情况,确定离缝注浆处理方案(注浆嘴的粘贴位置);(3)为保证最好的修补效果,需清理离缝表面的灰尘、浮渣及松散层,然后采用空压机尽量清除离缝内的灰尘杂物及积水。
CRTSⅡ型板式无砟轨道轨道板病害分析与整治摘要:CRTSⅡ型板式无砟轨道轨道板病害是由结构设计、结构施工、环境因素、原材料及其他相关产品质量可靠性等几个方面造成的。
本文依托某高速铁路:CRTSⅡ型板式无砟轨道轨道整治工程实践,通过对施工作业技术和流程的提炼和总结,形成了整治工艺流程,可为高速铁路同类工程养护维修提供参考和指导。
关键词:CRTSⅡ型板;无砟轨道;病害1 引言CRTSⅡ型板式轨道其原型为德国博格板式轨道,其结构拥有预制式、纵向连续、先张拉、高弹模砂浆调整高低水平、依靠整体性限位等特点。
根据下部基础不同CRTSⅡ型板式无砟轨道系统分为路基、隧道段CRTS Ⅱ型板式无砟轨道系统和桥梁上CRTS Ⅱ型板式无砟轨道系统。
路基上CRTSⅡ型板式无砟轨道系统结构由预制轨道板、水泥乳化沥青砂浆充填层及混凝土支承层等部分组成.2 CRTS Ⅱ型板式无砟轨道质量影响因素2.1结构设计方面设计人员素质、无砟轨道计算分析模型准确性、设计安全富裕量、设计标准、指标及相关运营实践经验。
2.2结构施工方面施工人员素质、施工装备、线下工程沉降控制、细部与关键部位质量控制(伸缩缝处易被混凝土填充;线下基础标高控制不到位,导致底座板太薄或太厚;支承层表面拉毛质量不到位,特别是连续道床板端部等)2.3环境因素方面如大跨度、特殊结构桥梁多,不良地质条件如膨胀土、软土多;同时自然环境差异大,如地区夏季昼夜气温差异大,高温持续期长等。
3CRTS Ⅱ型板式无砟轨道主要病害类型3.1CRTSⅡ型板式轨道夏季上拱局部地段在高温季节出现上拱现象,影响轨道平顺性,上拱位置大多出现在轨道板间接缝区域。
CRTSⅡ型轨道板胀板原因比较复杂。
外因是持续高温,内因是无砟轨道在温度效应下CA砂浆逐渐失去与轨道板的粘接力,导致在轨道板失去纵横、垂向约束,在最薄弱的宽接缝处出现纵向和横向变形,形成轨道板上拱和CA砂浆离缝,并引起轨面高低和方向的变化。