轴对称图形复习
- 格式:ppt
- 大小:335.50 KB
- 文档页数:14
《轴对称图形》全章复习【知识网络】【要点梳理】要点一、轴对称1.轴对称图形和轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.2.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.3.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.4.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).要点二、线段、角的轴对称性1.线段的轴对称性(1)线段是轴对称图形,线段的垂直平分线是它的对称轴.(2)线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;(3)线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线2.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴.(2)角平分线上的点到角两边的距离相等.(3)角的内部到角两边距离相等的点在角的平分线上.要点三、等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半.。
轴对称图形与中心对称复习一、轴对称图形轴对称图形是指能够沿着一个轴线折叠后两边完全重合的图形。
在平面几何中,轴对称图形具有以下特点:1.轴线对称性:轴对称图形具有一个轴线,该轴线对称地分割图形成两部分,两部分图形在轴线上的所有对应点完全重合。
2.对称点:轴对称图形的轴线上的每一个点都有一个对应点,称为对称点,对称点关于轴线对称。
3.对称性:轴对称图形的任意一点关于轴线对称的对应点也在图形中。
常见的轴对称图形包括正方形、长方形、圆形以及许多字母和数字等。
轴对称图形在日常生活和设计中广泛应用,具有美学和功能性的优点。
二、中心对称图形中心对称图形是指存在一个中心点,将图形绕该中心点旋转一定角度后重合的图形。
中心对称图形具有以下特点:1.中心对称性:中心对称图形具有一个中心点,该中心点的任意一条射线上的对称点与中心点距离相等,图形通过旋转保持对称。
2.对称点:中心对称图形的中心点对称地分割图形,对称点与中心点距离相等。
3.对称性:中心对称图形的任意一点关于中心点对称的对应点也在图形中。
常见的中心对称图形包括五角星、六角星、雪花等。
中心对称图形在艺术、布局设计等领域中具有重要的应用,给人以和谐、平衡的感觉。
三、轴对称与中心对称的异同轴对称和中心对称有许多相似之处,但也存在一些不同点。
相似之处:1.对称性:轴对称和中心对称图形都具有对称性,在空间上都有一种平衡的美感。
2.对称点:轴对称和中心对称图形都有对称点,关于轴线/中心点对称。
不同之处:1.轴线或中心点的位置:轴对称图形的轴线位于图形的一侧,将图形分割成两个镜像对称的部分;而中心对称图形的中心点位于图形的中心位置,图形旋转后能够实现重合。
2.对称方式:轴对称是通过沿轴线进行折叠实现对称,对称后左右两侧完全一致;中心对称是通过旋转实现对称,对称后图形相同角度旋转后完全一致。
四、应用实例1.建筑设计:轴对称和中心对称图形常用于建筑设计中,如对称的立面设计和室内布局,能够给人一种和谐、平衡的感觉。
1.轴对称的性质:像窗花一样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,称这两个图形为轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点.把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴.2.性质:(1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.分析:依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,据此即可进行解答.解:据分析可知:如果把一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.故答案为:一条直线、完全重合、轴对称图形.点评:此题主要考查轴对称图形的意义.1.对称轴的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它的对称轴.2.找到对应点的连线,如果连线的中点都在一条直线上,说明是其图形的对称轴.3.掌握一般图形的对称轴数目和位置对于快速判断至关重要.例1:下列图形中,()的对称轴最多.A、正方形B、等边三角形C、等腰三角形D、圆形分析:依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,从而可以作出正确选择.解:(1)因为正方形沿两组对边的中线及其对角线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,两组对边的中线及其对角线就是其对称轴,所以正方形有4条对称轴;(2)因为等边三角形分别沿三条边的中线所在的直线对折,对折后的两部分都能完全重合,则等边三角形是轴对称图形,三条边的中线所在的直线就是对称轴,所以等边三角形有3条对称轴;(3)因为等腰梯形沿上底与下底的中点的连线对折,对折后的两部分都能完全重合,则等腰梯形是轴对称图形,上底与下底的中点的连线就是其对称轴,所以等腰梯形有1条对称轴;(4)因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.所以说圆的对称轴最多.故选:D.点评:解答此题的主要依据是:轴对称图形的概念及特征.例2:下列图形中,对称轴条数最多的是()分析:先找出对称轴,从而得出对称轴最多的图形.解:A:根据它的组合特点,它有4条对称轴;B:这是一个正八边形,有8条对称轴;C:这个组合图形有3条对称轴;D:这个图形有5条对称轴;故选:B.点评:此题考查了轴对称图形的定义,要求学生能够正确找出轴对称图形的对称轴.三、轴对称图形的辨识知识归纳1.轴对称图形的概念:如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.2.学过的图形中,线段、角、等腰三角形、等边三角形、长方形、正方形、等腰梯形、圆形、扇形都是轴对称图形,各自有不同数目的对称轴.常考题型例:如图的交通标志中,轴对称图形有()A、4B、3C、2D、1 分析:依据轴对称图形的定义即可作答.解:图①、③沿一条直线对折后,直线两旁的部分能够互相重合,所以图①、③是轴对称图形;图②、④无论沿哪一条直线对折后,直线两旁的部分都不能够互相重合,所以它们不是轴对称图形.如图的交通标志中,轴对称图形有2个.故选:C.点评:此题主要考查轴对称图形的定义.¤¤拔拔高高训训练练备备考考一.选择题(共6小题)1.下面图形中,不是轴对称图形的是()A.正方形B.长方形C.平行四边形D.圆2.下列交通标志中,()是轴对称图形。
一、知识点:1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,得到另一个与它全等的图形,图形的这种变化叫做()这条直线叫做对称轴。
一个图形以某条直线为对称轴,经过轴对称后能够与另一个图形重合就说这两个图形关于这条直线(),重合的点叫做()。
特别的如果两个点关于一条直线成轴对称,其中一个点叫做另一个点关于这条直线的()。
成轴对称的两个图形一定是(),但是全等形()是轴对称图形。
2、什么叫轴对称图形:一个图形的一部分,以某一条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做()这条直线叫做对称轴。
3.轴对称与轴对称图形的区别与联系:区别:①轴对称涉及两个图形,而轴对称图形是对一个图形而言。
②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特殊形状。
③轴对称图形至少有一条对称轴,而成轴对称的两个图形只有一条对称轴。
联系:①两部分都完全重合,都有对称轴,都有对称点。
②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分的图形就成轴对称。
常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。
4.轴对称的基本性质(1)成轴对称的两个图形()。
(2)成轴对称的两个图形中,对应点的连线被对称轴()5.线段的垂直平分线:(1)垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。
(2)线段的垂直平分线上的点到线段两端的距离();(3)到线段两端距离相等的点在线段的()。
二、对应练习:1、如图,已知△ABC和△A′B′C′关于MN对称,并且AB=5,BC=3,则A′C′的取值范围是______2、如图,这两个四边形关于某直线对称,根据图形提供的条件,求x、y.3、如图,△ABC与△DEF关于直线a对称,若AB=2cm,∠C=55°,则DE=______,∠F=______.4、如图,表示长方形纸片ABCD沿对角线BD进行折叠后的情况求证: EB=ED5、如图,正六边形ABCDEF关于直线l的轴对称图形是六边形A′B′C′D′E′F′,下列判断错误的是()A.AB=A′B′B.BC∥B′C′C.直线l⊥BB′D.∠A′=120°6、如图所示,∠BAC=90°,点E为BC上的一点,点A和点E关于BD对称,点B和点C关于DE对称.求∠ABC和∠C的度数.7、已知点M(2a-b,5+a) N(2b-1,-a+b)在线等.(1)若M N关于X轴对称,试求a 、b的值(2)若M N关于Y轴对称,试求(b+2a)的2015次幂的值8、如图,在△ABC中,DE是AC的垂直平分线.(1)若AC=6,△ABD的周长是13,则△ABC的周长是_______;(2)若△ABC的周长是30,△ABD的周长是25,则AC=_______.9、如图,在△ABC中,边AB、AC的垂直平分线分别交BC于点E、点D.(1)若BC=8,则△ADE的周长是_______;(2)若∠BAC=110°,那么∠EAD=______(3)若∠EAD=100°,那么∠BAC=______10、在四边形ABCD中AD平行BC,E是CD的中点,连接AE、BE,BE垂直于AE,延长AE交BC的延长现于点F,求证:FC=AD, AB=BC+AD轴对称的应用--------最短路径问题:1. 如图,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.2. 如图所示,四边形OABC为正方形,边长为6,点A,C分别在x轴,y轴的正半轴上,点D在OA上,且D的坐标为(2,0),P是OB上的一动点,试求PD+PA和的最小值是( )A.2B.3. 如图,菱形ABCD中,AB=4,∠A=120°,点M、N、P分别为线段AB、AD、BD上的任意一点,则PM+PN的最小值为_____.4.如图,设点A为马棚,点B为住房.牧马人从马棚牵出一匹马,先到草地吃草,再到河边饮水,然后回到住房.问牧马人怎样走才能使路程最短?。
一、基础知识梳理:1.什么是轴对称图形?性质:如果两个图形关于某条直线对称,那么对称轴是____________.或者说轴对称图形的对称轴,是______________.2.线段的垂直平分线有几条对称轴,性质是什么?3.角的平分线有几条对称轴,性质是什么?4.等腰三角形:有两条边相等的三角形,叫做等腰三角形.等腰三角形具有哪些性质?怎样判断一个三角形是等边三角形?5.三角形的三条角平分线交于一点,这点到距离相等。
6.三角形三边的垂直平分线交于一点,这点到距离相等,这点叫心,它与三角形的位置关系怎样?。
7.成轴对称的图形具有哪些性质?8.尺规作图:已知线段的垂直平分线、已知角的角平分线、等腰三角形的做法。
二、典型例题:轴对称:1.判断下列命题的正误:( )1.能够完全重合的两图形必关于某一直线对称.( )2.关于某一条直线对称的两个图形叫轴对称图形.( )3.等腰三角形底边中线是等腰三角形的对称轴.( )4.若两个三角形三个顶点分别关于同一直线对称,则这两个三角形关于该直线成轴对称.( )5.轴对称图形的对称轴有且只有一条.( )6.正方形的对称轴有四条.2.给出下列说法正确的有():(1)角的两边关于角平分线对称;(2)两点关于它们连接成的线段的中垂线对称;(3)成轴对称的两个三角形的对应点或对应线段或对应角也分别成轴对称;(4)到直线m距离相等的点关于m对称。
A、1个B、2个C、3个D、4个3.两个图形关于某直线对称,对称点一定在()A.直线的两旁B.直线的同旁C.直线上D.直线的两旁或直线上4.如图所示,将一张矩形纸片ABCD的角C沿着GF折叠 (F在BC边上,不与B,C 重合)使得C点落在矩形ABCD内部的E处,FH平分∠BFE,则∠GFH的度数α满足()A、90°<α<180° B、α=90°C、0°<α<90°D、α随着折痕位置的变化而变化镜面对称:1.2.一辆汽车的牌号在水中的倒影如图所示,则这辆汽车的牌号应为垂直平分线与角平分线:1.当△ABC为锐角三角形时,点P在△ABC的__________;当△ABC为直角三角形时,点P在△ABC的__________;当△ABC为钝角三角形时,点P在△ABC的__________;2.如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A、1处B、2处C、3处D、4处3.三角形内到三顶点的距离相等的点是()A、三角形的三条角平分线的交点B、三角形的三条高的交点C、三角形的三条中线的交点D、三角形的三边的垂直平分线的交点三线合一:1.如图,AD是等边△ABC的高,BE是AC边的中线,AD与BE交于点F,则∠AFE等于_________.第6题图.2.如图,已知△ABC中,∠1=∠2,AB=AC=BC,ED=EB,(1)试说明:CE=CD.(2)小红认为:将“∠1=∠2”的条件改改,也可以的带同样的结论。
第十三章轴对称、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合, 这个图形就叫做轴对称图形•⑵两个图形成轴对称:把一个图形沿某一条直线折叠, 如果它能够与另一个图形重合, 那么就说这两个图形关于这条直线对称 •铀对称图形AA\L区別只对f —冲-)ft-fKmr150对裤轴CF 一佥只冇一舉>(“轴对称旳睛(WK 予秤瓚的俭M 工菲.矗麹»JSt :t 鹽个、曲擢: 心)只有1一頭〉对務柄联系却晁把射对材囲宼泊对禅轴 曲卿撷甘"么卿牛曲癣 轶夭于迭条 W 鑽處抽对耕-如杲把.阿十庇抽对秤的国招 拼& — 妊呑虑一* 益林.外 也亡赣足一亍轴对STSJ 搭-(4) 线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直 平分线• (5) 等腰三角形:有两条边相等的三角形叫做等腰三角形 •相等的两条边叫做腰, 另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角(6) 等边三角形:三条边都相等的三角形叫做等边三角形 2.基本性质:⑴对称的性质:① 不管是轴对称图形还是两个图形关于某条直线对称, 对称轴都是任何一对对应点所连线段的垂直平分线.② 对称的图形都全等•③ 如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
④ 两个图形关于某条直线成轴对称, 如果它们的对应线段或延长线相交, 那么交点在对称轴上。
⑵线段垂直平分线的性质:① 线段垂直平分线上的点与这条线段两个端点的距离相等 ② 与一条线段两个端点距离相等的点在这条线段的垂直平分线上 ⑶关于坐标轴对称的点的坐标性质①点(x, y )关于x 轴对称的点的坐标为(x, -y ).②点(x, y )关于y轴对称的点的坐标为(-x, y ).③点(x, y )关于原点对称的点的坐标为(-x,- y )⑷等腰三角形的性质:①等腰三角形两腰相等•②等腰三角形两底角相等(等边对等角)③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合•④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等•②等边三角形三个内角都相等,都等于60 °③等边三角形每条边上都存在三线合一④等边三角形是轴对称图形,对称轴是三线合一(3条).(6)三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形•②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)•⑵等边三角形的判定:①三条边都相等的三角形是等边三角形•②三个角都相等的三角形是等边三角形•③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短•常考例题精选1. (2015 •三明中考)下列图形中,不是轴对称图形的是()2. (2015 •日照中考)下面所给的交通标志图中是轴对称图形的是()ABC3. (2015 •杭州中考)下列“表情图”中,属于轴对称图形的是()4. (2015 •凉山州中考)如图,/ 3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证/ 1的度数为()A.30 °B.45 °C.60 °D.755. (2015 •德州中考)如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()771 ~1 ~2 ~~ ~~6 ~7 d F A.(1,4) B.(5,0) C.(6,4)D.(8,3)6. (2015 •南充中考)如图,△ ABC中, AB=AC Z B=70,则/A的度数是()A.70 ° B.55C.50 °D.407. (2015 •玉溪中考)若等腰三角形的两边长分别为4和8,贝尼的周长为()A.12B.16C.20D.16 或208. (2014 •海门模拟)如图,在边长为1的正方形网格中,将△ ABC向右平移两个单位长度得到△ A B' C',则与点B'关于x轴对称的点的坐标是()A.(0,-1) B.(1,1) C.(2,-1)D.(1,-1)9. (2015 •绵阳中考)如图,AC BD相交于O, AB// DC AB=BC / D=40,/ ACB= 35°,则/ AOD= ______ .10. (2015 •丽水中考)如图,在等腰厶ABC中,AB=AC Z BAC=50,/ BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则/ CEF的度数1. (2015遵义)观察下列图形,是轴对称图形的是()2. 点P(5,—4)关于y轴的对称点是()A. (5,4)B. (5,—4)C. (4,—5)D. (—5,—4)3. 如图,△ ABC与厶ADC关于AC所在的直线对称,/ BCD= 70° ,/ BA B C D=80°,则/ DAC的度数为()D. 854. 如图,在Rt A ABC 中,/ C= 90° ,/ B = 15° ,DE 垂直平分AB 交BC于点E,BE = 4,则AC长为(),第4题图)A. 2B. 3C. 4 D .以上都不对6. 如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图 所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是8. 如图,D ABC 内一点,CD 平分Z ACB ,BE 丄CD ,垂足为D ,交AC 于点 E ,Z A ABE ,AC = 5,BC = 3,贝U BD 的长为()9.如图,已知S A ABC = 12, AD 平分Z BAC ,且AD 丄BD 于点D ,则S ^ADC的值是( )5. 如图,AB = AC = AD ,若/ BAD = 80则/ BCD =(C. 140 D . 1607. (2015玉林)如图,在厶ABC正确的是( )EC C . 中,AB = AC ,DE // BC ,则下列结论中不 Z ADE = Z C D . DE = *BC,第5题图)(A . 10 B. 8 C . 610. 如图,C为线段AE上一动点(不与点A , E重合),在AE同侧分别作正三角形ABC和正三角形CDE, AD 与BE交于点O, AD与BC交于点P,BE 与CD交于点Q,连接PQ.以下五个结论:①AD = BE;②PQ// AE ;③AP= BQ; ④DE= DP;⑤/ AOB = 60° .其中正确的结论的个数是()A. 2个B. 3个C. 4个D. 5个12. 如图,D, E ABC两边AB , AC的中点,将厶ABC沿线段DE折叠,使点A落在点F处,若/ B = 55° ,则/BDF等于____________ .A「,第12题图)13. ____________________________________________________________ 如图,在3X 3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有________________________ 种.14. 如图,在厶ABC中,AB = AC , AB的垂直平分线交BC于点D ,垂足15. _______ 在厶ABC中,AC = BC,过点A作厶ABC的高AD ,若/ ACD = 30 贝B = __________ .16. ____ 如图,△ ABC中,D, E分别是AC , AB上的点,BD与CE交于点O. 给出下列三个条件:①/ EBO = /DCO;②/ BEO = /CDO:③BE = CD.上述三个条件中,哪两个条件可判定△ ABC是等腰三角形(用序号写出一种情形):.,第16题图)17. _________________________ 如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是2,则六边形的周长是 .' ,第17题图)18. __ 如图,已知/AOB = 30° ,OC平分/ AOB,在OA上有一点M,OM =10 cm,现要在OC, OA上分别找点Q,N,使QM + QN最小,则其最小值为.,第18题图)19. 如图,某校准备在校内一块四边形草坪内栽上一棵银杏树,要求银杏树的位置点P到边AB,BC的距离相等,并且点P到点A,D的距离也相等.请用尺规作图作出银杏树的位置点P.不写作法,保留作图痕迹)23.如图,△ ABC,△ ADE是等边三角形,B,求证:(1)CE=AC + DC; (2)Z ECD = 60° . C,D在同一直线上.20. 如图,在平面直角坐标系中,A( —2, 2), B( —3, —2).(1) 若点D与点A关于y轴对称,则点D的坐标为__________ ;(2) 将点B先向右平移5个单位再向上平移1个单位得到点C,则点C的坐标为________ ;(3) 求A,B,C,D组成的四边形ABCD的面积.■I r厂m ! I I_ ■i == = Ji1 l:-一十一4二* t: 1 ER I r21. 如图,在厶ABC 中,AB = AC, D 为BC 为上一点,/ B = 30° ,/ DAB45(1) 求/ DAC的度数;(2)求证:DC = AB.22. (2015潜江)我们把两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AB = CB,AD = CD,角或者对角线有关的一个结论,并证明你的结论.请你写出与筝形ABCD的24. 如图,在等腰Rt A ABC中,/ ACB = 90° , D为BC的中点,DE丄AB , 垂足为E,过点B作BF // AC交DE的延长线于点F,连接CF.(1) 求证:AD丄CF;(2) 连接AF ,试判断△ ACF的形状,并说明理由.25. 如图,已知AE丄FE,垂足为E,且E是DC的中点.(1) 如图①,如果FC丄DC, AD丄DC,垂足分别为C, D,且AD = DC,判断AE是/ FAD的角平分线吗?(不必说明理由)(2) 如图②,如果(1)中的条件“ AD = DC”去掉,其余条件不变,⑴中的结论仍成立吗?请说明理由;(3) 如图③,如果⑴的条件改为“ AD // FC” , (1)中的结论仍成立吗?请说明理由.。