(完整版)命题的概念及四种命题
- 格式:doc
- 大小:57.01 KB
- 文档页数:7
命题类型与含义
一、命题的定义
在逻辑学和数学中,命题是一个陈述句,它具有真或假两种状态。
一个命题的真假,要么是确定的,要么是未定的。
确定的命题是真或假的,例如:“2+2=4”是一个真命题,“地球是方的”是一个假命题。
二、命题的类型
根据其构造和使用的语境,命题可以有不同的分类。
下面介绍四种常见的命题类型:
1.单称命题:表示个体性质的命题,它适用于单个的对象,如“乔治是一个
工人”。
2.全称命题:表示全体性质的命题,它适用于所有的对象,如“所有的猫都
是哺乳动物”。
3.特称命题:表示特定范围的命题,它适用于某一集合的对象,如“有些猫
喜欢吃鱼”。
4.条件命题:表示一个命题的真假依赖于另一个命题的真假,如“如果下雨,
那么地面会湿”。
三、命题的含义
命题的含义指的是一个命题所表达的思想或概念。
一个命题的含义通常由其构成部分来决定,这些部分包括主语、谓语和可能的表语。
例如,在命题“所有的人都是有死的”中,“人”是主语,“有死的”是谓语,“所有”是表语。
这个命题的含义是:不存在永远不死的人。
总的来说,理解和分析命题是逻辑推理和数学证明的重要基础。
对于不同类型的命题,我们需要了解它们的结构和含义,以便更准确地评估它们的真假值。
高中数学命题的基本概念一、命题的基本概念命题:可以判断真假的陈述句叫做命题。
也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件。
真命题:判断为真的语句叫做真命题。
假命题:判断为假的语句叫做假命题。
命题的否定:就是对命题的结论加以否定。
原命题逆命题否命题逆否命题若,则若,则若,则若,则另一个命题的结论和条件,那么我们就把这样的两个命题叫做互逆命题。
一般地,对于是互逆命题的两个命题,其中一个命题叫做原命题,另一个命题叫做原命题的逆命题。
一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的的条件和结论的否定,那么我们把这样的两个命题叫做互否命题。
其中一个命题叫做原命题,另一个命题叫做原命题的否命题。
一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论和条件的否定,那么我们把这样的两个命题叫做互为逆否命题。
其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题。
四种命题的相互关系图三、充分条件和必要条件的概念1、若,我们就说是的充分条件,是的必要条件。
2、一般地,如果既有,又有,就记作。
此时,我们说是的充分必要条件,简称充要条件。
3、一般地,若p⇒q,但q ≠>p,则称p是q的充分但不必要条件;若p≠>q,但q ⇒ p,则称p是q的必要但不充分条件;若p≠>q,且q ≠>p,则称p是q的既不充分也不必要条件。
四、重要结论1、互为逆否命题的两个命题真值相同:原命题与它的逆否命题等价;否命题与逆命题等价。
2、对于充分条件、必要条件的判定,我们需要将命题转化为集合,充分利用集合的关系进行判定,可以更加直观形象。
3、命题的否定和否命题是两个不同的概念。
典型例题知识点一:命题的基本概念以及四种命题的相互关系例1、判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5);(6)平面内不相交的两条直线一定平行;(7)明天下雨。
四种命题及其关系一、四种命题的概念1. 原命题- 定义:若用p表示条件,q表示结论,则原命题为“若p,则q”,例如“若x = 1,则x^2=1”。
2. 逆命题- 定义:将原命题的条件和结论互换得到的命题,即“若q,则p”。
对于上面的例子,其逆命题为“若x^2=1,则x = 1”。
3. 否命题- 定义:将原命题的条件和结论都进行否定得到的命题,即“若¬ p,则¬q”。
对于“若x = 1,则x^2=1”,其否命题为“若x≠1,则x^2≠1”。
4. 逆否命题- 定义:将逆命题的条件和结论都进行否定得到的命题,即“若¬ q,则¬p”。
对于“若x = 1,则x^2=1”,其逆否命题为“若x^2≠1,则x≠1”。
二、四种命题之间的关系1. 原命题与逆命题- 关系:原命题的条件和结论是逆命题的结论和条件,它们之间是互逆的关系。
原命题为真时,逆命题不一定为真。
例如原命题“若a = 0,则ab=0”是真命题,其逆命题“若ab = 0,则a = 0”是假命题(因为当b = 0时,a可以不为0)。
2. 原命题与否命题- 关系:原命题与否命题是互否的关系,原命题为真时,否命题不一定为真。
例如原命题“若x>2,则x>1”是真命题,其否命题“若x≤slant2,则x≤slant1”是假命题。
3. 原命题与逆否命题- 关系:原命题与逆否命题是同真同假的关系。
例如原命题“若a = b,则a^2=b^2”是真命题,其逆否命题“若a^2≠ b^2,则a≠ b”也是真命题;原命题“若x = 1且y = 2,则x + y=3”是真命题,其逆否命题“若x + y≠3,则x≠1或y≠2”也是真命题。
4. 逆命题与否命题- 关系:逆命题与否命题是互为逆否的关系,所以它们也是同真同假的关系。
例如对于原命题“若p,则q”,其逆命题“若q,则p”和否命题“若¬ p,则¬q”,若逆命题为真,则否命题也为真;若逆命题为假,则否命题也为假。
四种命题112四种命题学习目标四种命题的内在联系,能根据一个命题构造它的逆命题、否命题和逆否命题学习过程四种命题的概念(1)对两个命题,如果一个命题的条和结论分别是另一个命题的结论和条,那么我们这样的两个命题叫做,其中一个命题叫做原命题为:“若,则”,则逆命题为:“ ”(2) 一个命题的条和结论恰好是另一个命题的条的否定和结论的否定, 我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的若原命题为:“若,则”,则否命题为:“ ”(3)一个命题的条和结论恰好是另一个命题的结论的否定和条的否定, 我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的若原命题为:“若,则”,则否命题为:“ ”练习:下列四个命题:(1)若是正弦函数,则是周期函数;(2)若是周期函数,则是正弦函数;(3)若不是正弦函数,则不是周期函数;(4)若不是周期函数,则不是正弦函数(1)(2)互为(1)(3)互为(1)(4)互为(2)(3)互为例3 命题:“已知、、、是实数,若子,则”写出逆命题、否命题、逆否命题变式:设原命题为“已知、是实数,若是无理数,则、都是无理数”,写出它的逆命题、否命题、逆否命题动手试试写出下列命题的逆命题、否命题和逆否命题并判断它们的真假:(1)若一个整数的末位数是0,则这个整数能被整除;(2)若一个三角形的两条边相等,则这个三角形的两个角相等;(3)奇函数的图像关于原点对称小结这节你学到了一些什么?你想进一步探究的问题是什么?后作业1写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假(1)若都是偶数,则是偶数;(2)若,则方程有实数根2把下列命题改写成“若,则”的形式,并写出它们的逆命题、否命题和逆否命题,并判断它们的真假:(1)线段的垂直平分线上的点到这条线段两个端点的距离相等;(2)矩形的对角线相等6命题“如果,那么”的逆否命题是()A如果,那么B如果,那么如果,那么D如果,那么7若ab=0则a=0或b=0写出它们的逆命题、否命题和逆否命题,并判断它们的真假:8若则a=0且b=0写出它们的逆命题、否命题和逆否命题,并判断它们的真假:四种命题二时学习目标1四种命题关系图;2四种命题真假关系3,命题的否定与原命题真假关系,否命题及命题的否定形式区别。
常用逻辑用语—、命题1、命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题•其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2、四种命题及其关系(1) 、四种命题(2) 、四种命题间的逆否关系(3) 、四种命题的真假关系**两个命题互为逆否命题,它们有相同的真假性;*两个命题为互逆命题或互否命题,它们的真假性没有关系.、充分条件与必要条件1、定义1 .如果p? q,则p是q的充分条件,q是p的必要条件.2•如果p? q, q? p,则p是q的充要条件.2、四种条件的判断1.如果若p则q ”为真,记为p q,如果若p则q ”为假,记为p q .2.若p q,则p是q的充分条件,q是p的必要条件3.判断充要条件方法:p q p q(1 )定义法:①p是q的充分不必要条件p q ②p是q的必要不充分条件p qp q p q③p是q的充要条件q p ④p是q的既不充分也不必要条件p q(2)集合法:设P={p}, Q={q},①若P Q,则p是q的充分不必要条件,q是p的必要不充分条件②若P=Q,则p是q的充要条件(q也是p的充要条件).③若P g.Q且Q ^ P,则p是q的既不充分也不必要条件.(3)逆否命题法:①q是p的充分不必要条件p是q的充分不必要条件②q是p的必要不充分条件p是q的充分不必要条件③q是p的充分要条件p是q的充要条件④q是p的既不充分又不必要条件p是q的既不充分又不必要条件三、简单的逻辑联结词⑴命题中的且”或”非”叫做逻辑联结词.①用联结词且”联结命题p和命题q,记作p A q,读作p且q”.②用联结词或”联结命题p和命题q,记作p V q,读作p或q”.③对一个命题p全盘否定,就得到一个新命题,记作?p,读作非p”或p的否定(2)简单复合命题的真值表:*p A q:p、q有一假为假, *p V q:一真为真, .四、量词1、全称量词与存在量词(1)常见的全称量词有:任意一个” 一切”每一个”任给”所有的”等.(2)常见的存在量词有:存在一个”至少有一个”有些”有一个”某个”有的”等.(3)全称量词用符号?”表示;存在量词用符号? ”表示.2全称命题与特称命题(1) 含有全称量词的命题叫全称命题:对M中任意一个x,有p(x)成立”可用符号简记为?x€ M, p(x),读作对任意x属于M,有p(x)成立”.(2) 含有存在量词的命题叫特称命题:存在M中的一个x o,使p(x o)成立"可用符号简记为?x o€ M , P(x o),读作存在M中的兀素x o,使p(x o)成立”3 命题的否定(1) 含有量词命题的否定全称命题p:x M , p(x) 的否定p:x M, p x ;全称命题的否定为存在命题存在命题p:x M, p x 的否定p:x M , p x ;存在命题的否定为全称命题其中p x p (x)是一个关于x的命题.(2) 含有逻辑连接词命题的否定“p 或q ”的否定:“ p 且q” ;p且q ”的否定:“ p或q”(3) “若p则q “命题的否定:只否定结论特别提醒:命题的“否定”与“否命题”是不同的概念,命题的否定:只否定结论;否命题:全否对命题p的否定(即非p)是否定命题p所作的判断,而否命题”是若p则q ”。
命题的四种形式举例
命题是逻辑学的基本概念,它指的是一个判断(陈述)所表达的观点或命题。
命题可以是直言命题、条件命题、模态命题和复合命题。
下面分别介绍这四种形式的命题,并给出相应的例子。
1.直言命题
直言命题是指直接陈述一个事物的本质或属性的命题。
例如:“所有猫都是哺乳动物。
”这个命题就属于直言命题,因为它直接陈述了猫的本质属性。
2.条件命题
条件命题是指陈述两个命题之间逻辑关系的命题。
条件命题通常由两个部分组成:前件和后件。
前件是条件,后件是结果。
例如:“如果天下雨,那么地会湿。
”这个命题就是一个条件命题,其中“天下雨”是前件,“地会湿”是后件。
3.模态命题
模态命题是指陈述事物的可能性或必然性的命题。
例如:“明天可能会下雨。
”这个命题就是一个模态命题,表达了明天下雨的可能性。
4.复合命题
复合命题是指由多个简单命题组合而成的复杂命题。
复合命题通常由多个子命题组成,每个子命题都是一个简单的判断(陈述)。
例如:“如果天下雨,那么地会湿,但是今天没下雨。
”这个命题就是一个复合命题,它由两个条件命题和一个否定命题组成。
以上就是四种形式的命题及其举例。
在逻辑学中,这些命题形式被广泛用于推理和论证。
一、命题的概念1、命题:把语言、符号或式子表达的,可以判断真假的陈述句称为命题;2、真命题、假命题:判断为真的语句称为真命题,判断为假的语句称为假命题。
注意:1、并不是所有的语句都是命题,只有能够判断真假的语句才是命题。
2、如果一个语句是命题,则它是真命题或是假命题,二者必具其一。
二、命题的否定与否命题有什么区别1.命题的否定只否定该命题的结论,而否命题则否定原命题的条件和结论。
比如:“若a>0.则a+b>0”这个命题的否定是“存在a>0,使得a+b<=0”,否命题是“存在a<=0,使得a+b<=0”;在大学阶段,“只否定命题结论”的说法不一定正确,根据真值表,在A为假命题的情况下,非(A=>B)与A=>非B并不是逻辑相等的。
参考:滑铁卢大学数学教材对于“若A则B”式命题的否定为“A且非B”。
2.一个命题与它的否定形式是完全对立的。
两者之间有且只有一个成立。
数学中常用到反证法,要证明一个命题,只需要证明它的否定形式不成立就可以了。
而对于否命题,它是否成立和原命题是否成立没有直接关系。
三、举例命题的否定与否命题的易错题1、写出“若a,b都是正数,则a+b大于等于2√ab.”的否命题。
解答:若a,b不都是正数,则a+b大于等于2√ab.。
评注:“都是正数”的否定是“不都是正数”而不是“都不是正数”.如果把“a,b都是正数”理解成“a是正数且b是正数”,则其否定也可写成“a不是正数或b不是正数”。
2、写出“两个奇数的和是偶数”的否命题与命题的否定。
解答:否命题:若两个数不全是奇数,则它们的和不是偶数。
命题的否定:两个奇数的和不是偶数。
评注:(1)“两个奇数的和是偶数”意思是“有两个数全是奇数,则它们的和是偶数”。
(2)“是偶数”的否定是“不是偶数”,而不是“是奇数”。
3、写出下列命题的否定:(1)有些常数数列不是等比数列。
(2)平行四边形是菱形。
解答:(1)任意一个常数数列都是等比数列。
2命题及其关系、充分条件与必要条件作者杜老师1.命题的概念可以判断真假、用文字或符号表述的语句叫作命题,其中判断为真的语句叫作真命题,判断为假的语句叫作假命题。
2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为_______________,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有确定的关系。
3.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件。
(2)若p⇒q且q p,则p是q的_________________条件。
(3)若p q且q⇒p,则p是q的________________条件。
(4)若p⇔q,则p是q的____________条件。
(5)若p q且q p,则p是q的________________________条件。
[判一判](1)“x2>1”是命题。
( )(2)“cos x=3”是命题。
( )(3)四种形式的命题中,真命题的个数为0或2或4。
( )(5)否命题就是命题的否定。
( )(6)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件。
( )[练一练]1.下列命题是真命题的为()2.(2015·山东卷)设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( ) A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤03.(2015·天津卷)设x∈R,则“|x-2|<1”是“x2+x-2>0”的( )A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件4.命题“若b2-4ac>0,则方程ax2+bx+c=0(a≠0)有两个不相等的实根”的否命题、逆命题和逆否命题中,真命题的个数为( )A.0 B.1C.2 D.35.若“m≤a”是“方程x2+x+m=0有实数根”的必要不充分条件,则实数a的取值范围是________________。
四种命题的形式•概念命题:可以判断真假的语句叫做命题,命题通常用陈述句表示真命题:正确的命题叫做真命题假命题:错误的命题叫做假命题在数学中,常见的命题由条件和结论两部分组成(如:如果三角形的三条边相等,那么这两个三角形全等)命题的证明:1、要确定一个命题是假命题,只要举出一个满足命题条件,而不满足命题结论的例子就可以了,这在数学中称为举反例2、确定一个命题是真命题,就必须做出证明,证明若满足命题条件就一定能推出命题的结论一般来说,如果命题α成立可以推出命题β也成立,那么久说由α可以推出β,并用记号“α=>β”表示,读作“α推出β”,换言之,α=>β表示以α为条件,β为结论的命题是真命题;同理,α≠>β表示以α为条件,β为结论的命题是一个假命题等价命题:如果A 、B 是两个命题,A=>B ,B=>A ,那么A 、B 叫做等价命题,记作A<=>B 。
称A 与B 等价四种命题:(参见下图)若把一个已知命题定义为原命题(由条件和结论组成)把原命题的条件和结论交换,所得到的命题叫做原命题的逆命题把原命题的条件和结论都换成它们的否定形式,所得到的命题是原命题的否命题 (且α的否命题记为 )把原命题的结论的否定作条件,把条件的否定作结论,所得到的命题是原命题的逆否命题 (值得注意的是,否命题和逆命题也互为逆否命题)四种命题之间的相互关系:(参见上图)一般来说,原命题与逆否命题是同真或同假的,即,原命题与逆否问题是等价命题 (当我们证明某个命题有困难时,就可尝试用证明它的逆否命题来代替证明原命题) Eg.结合初中证明:已知BD 、CE 分别是△ABC 的∠B 、∠C 的角平分线,BD ≠CE 。
求证:AB ≠AC四种命题的真假常用结论:1.原命题为真,它的逆命题不一定为真。
例如:原命题为真:逆命题为假2.原命题为真,它的否命题不一定为真。
例如:原命题为真:否命题为假:3.原命题为真,它的逆否命题一定为真。
四种命题四种命题间的相互关系1、四种命题的概念,写出某个命题的逆命题、否命题和逆否命题。
2、四种命题之间的关系以及真假性之间的联系。
3、会用命题的等价性解决问题。
【核心扫描】:1、结合命题真假的判定,考查四种命题的结构。
(重点)2、掌握四种命题之间的相互关系。
(重点)3、等价命题的应用。
(难点)1、四种命题的概念(1) 互逆命题:对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这样的两个命题叫做互逆命题。
其中一个命题叫原命题,另一个叫做原命题的逆命题。
若原命题为“若p,则q”则逆命题为“若q,则P”(2) 互否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题。
也就是说,若原命题为若p,则q”则否命题为若非p,则非q。
(3) 互为逆否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题•也就是说,若原命题为若p,则q”,则逆否命题为若非q,则非p。
任何一个命题的结构都包含条件和结论,通过条件和结论的不同变换都可以得到这个命题的逆命题、否命题和逆否命题,因而任何一个命题都有逆命题、否命题和逆否命题。
2、四种命题的相互关系3、四种命题的真假性(1)四种命题的真假性,有且仅有下面四种情况:⑵四种命题的真假性之间的关系:①两个命题互为逆否命题,它们有相同的真假性.②两个命题为互逆命题或互否命题,它们的真假性没有关系.在四种命题中,真命题的个数可能会有几种情况?因为原命题与逆否命题,逆命题和否命题互为逆否命题,它们同真同假,所以真命题的个数可能为0, 2, 4.一般地,用p和q分别表示原命题的条件和结论,用非p和非q分别表示p与q的否定,则四种命题的形式可表示为:原命题:若P,则q;逆命题:若q,则p;否命题:若非P,则非q;逆否命题:若非q,则非p.(1) 关于四种命题也可叙述为:①交换命题的条件和结论,所得的新命题就是原命题的逆命题;②同时否定命题的条件和结论,所得的新命题就是原命题的否命题;③交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题.(2) 已知原命题,写出它的其他三种命题:首先,将原命题写成若p,则q”的形式,然后找出条件和结论,再根据定义写出其他命题。
命题的定义是什么
数学中,定义、公理、公式、性质、法则、定理都是数学命题。
我们通常把在一定范围内可以用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
命题的定义
数学中的定义、公理、公式、性质、法则、定理都是数学命题。
这些都是用推理方法判断命题真假的依据。
一般地,在数学中,我们把在一定范围内可以用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
命题的分类
1.原命题:一个命题的本身称之为原命题,如:若x>1,则f(x)=(x-1)2单调递增。
2.逆命题:将原命题的条件和结论颠倒的新命题,如:若f(x)=(x-1)2单调递增,则x>1。
3.否命题:将原命题的条件和结论全否定的新命题,但不改变条件和结论的顺序,如:若x≤1,则f(x)=(x-1)2不单调递增。
4.逆否命题:将原命题的条件和结论颠倒,然后再将条件和结论全否定的新命题,如:若f(x)=(x-1)2不单调递增,则x≤1。
定义和命题的区别
定义是认识主体使用判断或命题的语言逻辑形式,确定一个认识对象或事物在有关事物的综合分类系统中的位置和界限,使这个认识对象或事物从有关事物的综合分类系统中彰显出来的认识行为。
命题这个概念是可以被定义并观察的现象,命题不是指判断(陈述)本身,而是指所表达的语义。
当相异判断(陈述)具有相同语义的时候,他们表达相同的命题。
即定义是人为规定的,命题是判断句式,命题有真假,定义没有。