有限元-梁系结构的有限元法
- 格式:ppt
- 大小:350.50 KB
- 文档页数:18
《有限元分析基础教程》(曾攀)笔记⼆-梁单元有限元⽅程推导不得不说,Mathematica 真是个好东西,以前学习有限元的时候,对于书中的⽅程推导,看到了就看过去了,从没有想过要⾃⼰推导⼀遍,原因是⼿⼯推导太复杂。
有了MM ,原来很复杂的东西突然变得简单了。
1.单元⼏何描述上图是纯弯梁单元,长度l ,弹模E ,⾯积A ,惯性矩I 。
两个节点1和2的位移列阵为q e =[v 1,θ1,v 2,θ2]Tv 是挠度(defection),或者叫位移;θ是转⾓(slope)。
需注意的是v 和θ的⽅向,⼀个是向上,⼀个是逆时针。
两个节点的节点⼒矩阵为P e =[P v 1,M 1,P v 2,M 2]T当然实际情况往往是在梁的长度⽅向上作⽤有荷载,⽽不是只在节点处有,这时就要进⾏荷载等效,后⾯会有说明。
注意这两个矩阵都是列矩阵。
需要注意的是,节点⼒矩阵表⽰的的是节点上的所有的⼒,不仅包括荷载引起的等效节点⼒,还包括节点的反⼒,反⼒矩等。
2.单元位移场表达由于有4个位移节点的已知条件,那么假设纯弯曲梁单元的位移挠度函数具有四个待定系数,如下形式v (x )=a 0+a 1x +a 2x 2+a 3x 3对于两端节点,位移和转⾓分别为v 1,θ1,v 2,θ2,注意挠曲线⽅程在⼀点出的导数值即为改点的转⾓,所以四个边界条件为v (0)=v 1v ′(0)=θ1v (L )=v 2v ′(L )=θ2使⽤MM 求解⽅程组将求得的待定系数带⼊原⽅程,可得将四个位移合并同类项,可以得到即最终的挠曲线⽅程vfea 为 vfea =θ1x 3L 2−2x 2L +x +θ2x 3L 2−x 2L +v12x 3L 3−3x 2L 2+1+v23x 2L 2−2x 3L 3如果令ζ=x L ,上式中位移前的系数组成的矩阵称之为形函数矩阵,也就是常说的形函数。
即v (x )=N (x )q e 3.单元应变场,应⼒场的表达应变的表达式为ε=−yv ″其中B(x)=-yN''(x),B(x)叫做单元的⼏何矩阵,表⽰应变与位移的⼏何关系。
杆梁结构的有限元分析原理杆梁结构是工程中常用的一种结构形式,它由多个杆件或梁组成,用于承担载荷和传递力量。
有限元分析是一种通过将结构离散为许多小单元,利用数学方法对结构进行分析的技术。
下面将详细介绍杆梁结构的有限元分析原理。
一、杆件离散化在有限元分析中,首先需要将杆梁结构离散化为一组子结构,即离散化为一组离散的杆件。
离散后的每个杆件可以看作是一个子系统,每个子系统由两个节点组成,节点之间以杆件连接。
通过节点与杆件的连接方式,能够模拟出整个杆梁结构的受力特点。
离散化的过程中,需要确定杆件的几何形状、截面以及材料特性等参数,并根据实际情况设置合适的杆件单元数目。
通常,单元数目越多,离散程度越高,结果越接近真实情况,但计算成本也会增加。
二、有限元法的基本原理有限元方法的基本原理是将结构分成许多小的单元,每个单元内的行为可以用简单的数学函数来表示。
对于杆梁结构,常用的单元有梁单元和杆单元。
梁单元适用于承受弯曲强度较大的杆件,而杆单元适用于承受轴向载荷的杆件。
通过将结构分成小单元后,可以建立一个与原结构相似的离散模型,并在每个单元上建立相应的方程。
三、应力应变关系在进行有限元分析时,需要获得每个杆件的应变和应力。
应变与杆件的变形有关,而应力与应变之间的关系则与材料的本构关系有关。
对于线弹性材料,应力与应变之间可以通过胡克定律来描述。
胡克定律表明,应力与应变之间成线性关系,材料的弹性模量E、泊松比ν以及应变关系能够决定应力。
应根据结构中不同材料的应变特性来选择相应的材料模型。
四、施加边界条件在进行有限元分析前,需要施加适当的边界条件。
边界条件用于模拟实际情况中的约束和限制。
常见的边界条件有固定边界、弹性边界和施工阶段边界。
五、求解位移和应力当离散化杆梁结构、建立了位移和应变关系、施加了边界条件之后,可以通过数值求解方法,例如有限元法中的坐标变形法,计算得到结构的位移和应力。
坐标变形法能够基于得到的位移结果,进一步计算应力。
《讲座论文》OlANG UNIVERSITY 简述有限元模式下的桥梁结构分析 建筑工程学院 交通土建 李新平 谢涛 20072201012 路桥083班 论 文题 目: 所 属院 系: 专业: 指 导老 师: 学 生姓 名: 学号: 班级: 上 交日 期: 成绩:2010年12月6日简述有限元模式下的桥梁结构分析班级:路桥083 姓名:谢涛学号:20072201012 前言有限元法(finite element method)是一种高效能、常用的计算方法。
有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。
自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerki n)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。
基本思想:由解给定的泊松方程化为求解泛函的极值问题。
关键词结构划分分割单元分析一、有限元运用原理在过去的30年里,有限元法作为一种通用工具在物理系统的建模和模拟仿真领域已经得到了广泛的接受。
在许多学科它已经成为至关重要的分析技术,例如结构力学、流体力学、电磁学等等。
1 、结构有限元法的基本原理:结构有限元法的基本思想是将连续弹性体的求解的区域离散为一组有限个、且按一定方式相互联结在一起的单元的组合体。
由于单元能按不同的联结方式组合,且单元本身又可以有不同的形状,因此可以模型化几何形状复杂的求解域。
有限元法的基本思想就相当于高等数学中的微积分。
例如:求某复杂区域的面积,按照数学方法是先将复杂区域的面积分为小块,然后按一定的方法对这些小块进行叠加求和,构成积分的计算式进行计算。
因此在结构有限元的基本思想,按通俗的说法就是:对于复杂连续弹性体的求解的问题,先从该连续体中选取微小单元体,然而按照能量守恒原理将这些微小单元进行整合建立线性求解方程来进行求解。