有限元-梁系结构的有限元法
- 格式:ppt
- 大小:350.50 KB
- 文档页数:18
《有限元分析基础教程》(曾攀)笔记⼆-梁单元有限元⽅程推导不得不说,Mathematica 真是个好东西,以前学习有限元的时候,对于书中的⽅程推导,看到了就看过去了,从没有想过要⾃⼰推导⼀遍,原因是⼿⼯推导太复杂。
有了MM ,原来很复杂的东西突然变得简单了。
1.单元⼏何描述上图是纯弯梁单元,长度l ,弹模E ,⾯积A ,惯性矩I 。
两个节点1和2的位移列阵为q e =[v 1,θ1,v 2,θ2]Tv 是挠度(defection),或者叫位移;θ是转⾓(slope)。
需注意的是v 和θ的⽅向,⼀个是向上,⼀个是逆时针。
两个节点的节点⼒矩阵为P e =[P v 1,M 1,P v 2,M 2]T当然实际情况往往是在梁的长度⽅向上作⽤有荷载,⽽不是只在节点处有,这时就要进⾏荷载等效,后⾯会有说明。
注意这两个矩阵都是列矩阵。
需要注意的是,节点⼒矩阵表⽰的的是节点上的所有的⼒,不仅包括荷载引起的等效节点⼒,还包括节点的反⼒,反⼒矩等。
2.单元位移场表达由于有4个位移节点的已知条件,那么假设纯弯曲梁单元的位移挠度函数具有四个待定系数,如下形式v (x )=a 0+a 1x +a 2x 2+a 3x 3对于两端节点,位移和转⾓分别为v 1,θ1,v 2,θ2,注意挠曲线⽅程在⼀点出的导数值即为改点的转⾓,所以四个边界条件为v (0)=v 1v ′(0)=θ1v (L )=v 2v ′(L )=θ2使⽤MM 求解⽅程组将求得的待定系数带⼊原⽅程,可得将四个位移合并同类项,可以得到即最终的挠曲线⽅程vfea 为 vfea =θ1x 3L 2−2x 2L +x +θ2x 3L 2−x 2L +v12x 3L 3−3x 2L 2+1+v23x 2L 2−2x 3L 3如果令ζ=x L ,上式中位移前的系数组成的矩阵称之为形函数矩阵,也就是常说的形函数。
即v (x )=N (x )q e 3.单元应变场,应⼒场的表达应变的表达式为ε=−yv ″其中B(x)=-yN''(x),B(x)叫做单元的⼏何矩阵,表⽰应变与位移的⼏何关系。
杆梁结构的有限元分析原理杆梁结构是工程中常用的一种结构形式,它由多个杆件或梁组成,用于承担载荷和传递力量。
有限元分析是一种通过将结构离散为许多小单元,利用数学方法对结构进行分析的技术。
下面将详细介绍杆梁结构的有限元分析原理。
一、杆件离散化在有限元分析中,首先需要将杆梁结构离散化为一组子结构,即离散化为一组离散的杆件。
离散后的每个杆件可以看作是一个子系统,每个子系统由两个节点组成,节点之间以杆件连接。
通过节点与杆件的连接方式,能够模拟出整个杆梁结构的受力特点。
离散化的过程中,需要确定杆件的几何形状、截面以及材料特性等参数,并根据实际情况设置合适的杆件单元数目。
通常,单元数目越多,离散程度越高,结果越接近真实情况,但计算成本也会增加。
二、有限元法的基本原理有限元方法的基本原理是将结构分成许多小的单元,每个单元内的行为可以用简单的数学函数来表示。
对于杆梁结构,常用的单元有梁单元和杆单元。
梁单元适用于承受弯曲强度较大的杆件,而杆单元适用于承受轴向载荷的杆件。
通过将结构分成小单元后,可以建立一个与原结构相似的离散模型,并在每个单元上建立相应的方程。
三、应力应变关系在进行有限元分析时,需要获得每个杆件的应变和应力。
应变与杆件的变形有关,而应力与应变之间的关系则与材料的本构关系有关。
对于线弹性材料,应力与应变之间可以通过胡克定律来描述。
胡克定律表明,应力与应变之间成线性关系,材料的弹性模量E、泊松比ν以及应变关系能够决定应力。
应根据结构中不同材料的应变特性来选择相应的材料模型。
四、施加边界条件在进行有限元分析前,需要施加适当的边界条件。
边界条件用于模拟实际情况中的约束和限制。
常见的边界条件有固定边界、弹性边界和施工阶段边界。
五、求解位移和应力当离散化杆梁结构、建立了位移和应变关系、施加了边界条件之后,可以通过数值求解方法,例如有限元法中的坐标变形法,计算得到结构的位移和应力。
坐标变形法能够基于得到的位移结果,进一步计算应力。
《讲座论文》OlANG UNIVERSITY 简述有限元模式下的桥梁结构分析 建筑工程学院 交通土建 李新平 谢涛 20072201012 路桥083班 论 文题 目: 所 属院 系: 专业: 指 导老 师: 学 生姓 名: 学号: 班级: 上 交日 期: 成绩:2010年12月6日简述有限元模式下的桥梁结构分析班级:路桥083 姓名:谢涛学号:20072201012 前言有限元法(finite element method)是一种高效能、常用的计算方法。
有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。
自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerki n)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。
基本思想:由解给定的泊松方程化为求解泛函的极值问题。
关键词结构划分分割单元分析一、有限元运用原理在过去的30年里,有限元法作为一种通用工具在物理系统的建模和模拟仿真领域已经得到了广泛的接受。
在许多学科它已经成为至关重要的分析技术,例如结构力学、流体力学、电磁学等等。
1 、结构有限元法的基本原理:结构有限元法的基本思想是将连续弹性体的求解的区域离散为一组有限个、且按一定方式相互联结在一起的单元的组合体。
由于单元能按不同的联结方式组合,且单元本身又可以有不同的形状,因此可以模型化几何形状复杂的求解域。
有限元法的基本思想就相当于高等数学中的微积分。
例如:求某复杂区域的面积,按照数学方法是先将复杂区域的面积分为小块,然后按一定的方法对这些小块进行叠加求和,构成积分的计算式进行计算。
因此在结构有限元的基本思想,按通俗的说法就是:对于复杂连续弹性体的求解的问题,先从该连续体中选取微小单元体,然而按照能量守恒原理将这些微小单元进行整合建立线性求解方程来进行求解。
目录.绪论 (2)第一章.有限元课程设计 (4)一.工程问题 (4)二.简化模型 (4)三.解析法求解 (5)四.ANSYS求解 (8)五.结果分析 (19)第二章.机械优化设计说明 (20)一.题目及解析 (20)二.黄金分割法计算框图 (23)三.C语言程序 (24)四.运行结果 (27)五.结果分析 (27)第三章.设计感言 (28)第四章.参考文献 (28)前言有限元法在解决圣维南扭转问题近似解时首先提出的。
有限元在弹性力学平面问题的第一个成功应用是由美国学者于1956年解决飞机结构强度时提出的、经过几十年得发展,有限元一惊成为现代结构分析得有效方法和主要手段。
它的应用已经从弹性力学的平面问题扩展到空间问题和板壳问题。
对于有限元法,从选择基本未知量的角度来看,他可以分为三种方法:位移法,力法,混合法。
从推导方法来看,它可以分为直线法,变分法,加权余数法。
但随后随着计算机的发展,有限元法如虎添翼。
国内外已有许多大型通用的有限元分析程序,并已经出现了将人工智能技术引入有限元分析软件,形成了比较完善得专家系统,逐步实现了有限元的智能化。
优化设计是现代设计方法的重要内容之一。
它以数学规划为理论基础以电子计算机为工具,在充分考虑多种设计约束的前提下,寻求满足预订目标的最佳设计。
优化设计理论于方法用于工程设计是在六十年代后期开始的,特别是今年来,随着有限元素法,可靠性设计,计算机辅助设计的理论与发展及优化设计方法的综合应用使整个工程设计过程逐步向自动化集成化智能化发展,其前景使令人鼓舞的。
因而工程设计工作者必须适应这种发展变化,学习,掌握和应用优化设计理论与方法。
今年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的机械制造都已离不开有限元分析计算,其再机械制造,材料加工,航空航天,汽车,土木建筑,电子电器,国防军土,船舶,铁道,石化能源,科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃,主要表现在以下几个方面:增加产品和工程的可靠性在产品的设计阶段发现潜在的问题经过分析计算,采用优化设计方案,降低原材料成本缩短产品投向市场的时间模拟试验方案,减少试验次数,从而减少试验经费ANSYS软件致力于耦合场的分析计算,能够进行结构,流体,热,电磁四种场的计算,已博得了世界上数千家用户的钟爱。
有限元法中空间梁单元矩阵的组集有限元法是一种常用的工程分析方法,用于解决结构力学问题。
它将连续体分割成大量的小区域,即有限元,通过对每个小区域的应力和变形进行计算,进而得到整个结构体系的力学性能。
在有限元法中,梁单元是一种常用的元素类型,用于分析和设计梁结构。
空间梁单元是三维空间中的梁元素,用于分析和设计具有一定长度、截面和材料特性的结构。
它通常由两个节点和一些节点上的自由度组成。
在有限元法中,通过对空间梁单元的刚度矩阵进行组集,可以对梁结构进行强度和刚度等力学性能的计算和评估。
空间梁单元的刚度矩阵是一个重要的参数,它描述了梁元素在受力作用下的应力和变形关系。
在有限元法中,通过将梁单元划分为许多小单元,每个小单元的刚度矩阵可以通过材料性质和几何形状等参数进行计算和组集。
通过将所有小单元的刚度矩阵按照一定规则组合,可以得到整个梁单元的刚度矩阵。
组集空间梁单元的刚度矩阵需要考虑以下几个方面的因素:1. 几何因素:梁单元的几何形状对其刚度矩阵有很大的影响。
梁单元的长度和横截面形状将决定其自由度的数量和排列方式。
在组集刚度矩阵时,需要将这些几何因素考虑进去,确保计算结果的准确性。
2. 材料性质:梁单元的材料性质对其刚度矩阵的计算也有影响。
不同材料的弹性模量和剪切模量将导致不同的应力和变形响应。
在组集刚度矩阵时,需要将材料性质的影响考虑进去,以获得准确的结果。
3. 节点约束:梁单元的刚度矩阵还需要考虑节点约束的影响。
节点约束可以限制节点上的位移和旋转自由度,影响刚度矩阵的计算。
在组集刚度矩阵时,需要将节点约束的影响考虑进去,以获得准确的结果。
通过以上几个因素的考虑,可以得到空间梁单元的刚度矩阵。
该刚度矩阵可以用于计算梁单元的应力、变形、弯曲刚度、切割刚度等力学性能,也可以用于解决梁结构在受力作用下的静力分析和动力分析问题。
对于空间梁单元刚度矩阵的组集,可以按照如下步骤进行:1. 划分梁单元为若干个小单元:根据需要和几何形状,将梁单元划分为若干个小单元,每个小单元可以视为一个简单的线性结构,易于计算其刚度矩阵。
梁单元-有限元分析一、有限元法介绍有限元法的基本思想是将结构离散化,用有限个容易分析的单元来表示复杂的对象,单元之间通过有限个节点相互连接,然后根据变形协调条件综合求解。
由于单元的数目是有限的,节点的数目也是有限的,所以称为有限元法(FEM,Finite Element Method)。
是随着电子计算机的发展而迅速发展起来的一种弹性力学问题的数值求解方法。
有限元法是最重要的工程分析技术之一。
它广泛应用于弹塑性力学、断裂力学、流体力学、热传导等领域。
有限元法是60年代以来发展起来的新的数值计算方法,是计算机时代的产物。
虽然有限元的概念早在40年代就有人提出,但由于当时计算机尚未出现,它并未受到人们的重视。
随着计算机技术的发展,有限元法在各个工程领域中不断得到深入应用,现已遍及宇航工业、核工业、机电、化工、建筑、海洋等工业,是机械产品动、静、热特性分析的重要手段。
早在70年代初期就有人给出结论:有限元法在产品结构设计中的应用,使机电产品设计产生革命性的变化,理论设计代替了经验类比设计。
目前,有限元法仍在不断发展,理论上不断完善,各种有限元分析程序包的功能越来越强大,使用越来越方便。
二.梁单元的分类所谓梁杆结构是指其长度比横截面尺寸大很多的梁和杆件、以及由它们组成的系统,这一类结构的应力、应变和位移都是一个坐标的函数,所以属于一维单元问题。
1.平面桁架特点:杆件位于一个平面内,杆件间用铰节点连接,作用力也在该平面内。
单元特性:只承受拉力或压力。
单元划分:常采用自然单元划分。
即以两个铰接点之间的杆件作为一个单元。
为使桁架杆件只产生轴力,桁架的计算常作以下假定:①桁架中每根杆件的两端由理想铰联结;②每根杆件的轴线必须是直线;③所有杆件的轴线都只交于所联理想铰的几何中心。
④荷载均只作用于理想铰的几何中心。
在此条件下所算得的各种应力称为主应力。
实际上各种桁架结构不可能完全满足上述各假定,因而杆件将产生弯曲,由这种弯曲而在杆件中所引起的轴向应力称为次应力。