高等数学第六版上下册同济大学出版社
- 格式:ppt
- 大小:1.42 MB
- 文档页数:29
同济大学第六版高等数学上下册课后习题答案8-6仅供学习与交流,如有侵权请联系网站删除 谢谢2习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12(-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2 π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T .因此在点)22 ,1 ,12(-π处, 切线方程为 22211121-=-=-+z y x π, 法平面方程为 0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程.解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t . 在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为仅供学习与交流,如有侵权请联系网站删除 谢谢3 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为 0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0. 3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程. 解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x 的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程. 解 设曲线的参数方程的参数为x , 对x 求导得,仅供学习与交流,如有侵权请联系网站删除 谢谢4⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程.解 令F (x , y , z )=e z -z +xy -3, 则仅供学习与交流,如有侵权请联系网站删除 谢谢5n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程. 解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++, 法线方程为 000000cz z z by y y ax x x -=-=-.仅供学习与交流,如有侵权请联系网站删除 谢谢68. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程. 解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z , 解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6).仅供学习与交流,如有侵权请联系网站删除 谢谢7 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为 0)(1)(1)(1000000=-+-+-z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为 a z y x a az ay ax =++=++)(000000.。
高等数学同济教材上下册高等数学是大学理工科专业的重要基础课程之一。
同济大学编写的高等数学教材从上册到下册内容丰富全面,旨在帮助学生全面掌握高等数学的基本概念、原理和方法。
本文将对高等数学同济教材上下册进行简要介绍。
上册内容主要包括函数与极限、一元函数微分学、一元函数积分学。
其中,“函数与极限”一章是高等数学的基础,涵盖了极限的概念、运算法则以及函数的连续性等内容。
学生通过学习此章可以加深对函数性质的理解,为后续章节打下坚实基础。
“一元函数微分学”一章主要介绍了导数的概念、性质和求导法则,并通过一些实例应用帮助学生理解导数的几何意义。
“一元函数积分学”一章则是导数的逆运算,介绍了不定积分的概念、基本性质和常用积分法等,通过解决一些微分方程的问题,培养学生的应用能力。
下册内容则进一步深入,包括多元函数微分学、多元函数积分学以及常微分方程。
其中,“多元函数微分学”一章介绍了多元函数的极限、连续性以及偏导数的概念和性质,为后续章节打下基础。
“多元函数积分学”一章则介绍了重积分、曲线积分和曲面积分的概念和计算方法,并通过具体的应用问题,帮助学生理解积分的几何意义。
“常微分方程”一章则介绍了常微分方程的基本概念和解法,通过求解一些具体的常微分方程问题,培养学生应用数学知识解决实际问题的能力。
高等数学同济教材上下册内容丰富全面,配有大量习题和例题,供学生进行练习和巩固。
在学习过程中,学生可以结合课本中的例题进行思考和分析,理解数学概念和方法的应用。
通过反复的习题练习可以加深对知识点的理解和记忆,提高解题能力。
此外,高等数学同济教材上下册的排版整洁美观,语句通顺,表达流畅,给读者带来良好的阅读体验。
章节内容之间的联系和逻辑顺序清晰明了,帮助学生逐步建立起完整的高等数学知识体系。
综上所述,高等数学同济教材上下册是一本具有权威性、全面性和应用性的教材。
通过系统学习和实践,学生能全面掌握高等数学的基本理论和方法,为将来的学习和科研打下坚实的数学基础。
高等数学同济6版教材解析高等数学是大学数学的一门基础课程,对于理工科学生来说至关重要。
而同济大学出版社出版的高等数学6版教材,作为一本常用的教材,其内容与解析十分重要。
本文将对《高等数学同济6版》教材进行解析与评价。
首先,我们来看一下该教材的整体结构。
《高等数学同济6版》共分为两册,分别涵盖了微积分、数学分析和数学定理证明等内容。
每一章节的内容都经过合理的编排,由浅入深,层层递进。
例如,在微积分部分,从函数的概念开始介绍,逐步引入导数、不定积分、定积分等概念与定理,最后深入讲解微积分的应用。
其次,我们来看一下该教材的内容解析。
教材中的每一个章节都对知识点进行了详细的介绍,给出了清晰的定义和定理,配以充分的例题和习题,帮助学生理解和掌握相关概念和方法。
而且,教材中数学公式的演绎过程也给出了详细的解析,使学生能够更好地理解数学原理。
此外,教材还对常用的数学工具和求解方法进行了介绍,如级数展开、多元函数的偏导数计算等,这对于培养学生的数学思维和解题能力非常有帮助。
然后,我们来评价一下该教材的优点。
首先,教材内容的编排合理,能够满足大多数学生的学习需求。
其次,教材中的例题和习题丰富多样,既有基础题目,也有扩展题目,能够满足不同层次学生的学习需求。
此外,在教材中还穿插了一些历史知识和数学思想的发展历程,使学生能够更好地理解数学的本质和发展过程。
最后,教材中的数学公式和定理解析详尽,使学生能够理解公式的来源和应用方法,而不是死记硬背。
接下来,我们来分析一下该教材的不足之处。
首先,教材中的一些证明过程可能比较抽象,对于初学者来说可能不易理解。
其次,教材的难度可能有些过低,对于数学基础较好的学生来说可能显得过于简单。
此外,在一些章节的习题中,可能存在一些小错误或者不完全准确的地方,需要学生在解题时进行辨别和纠正。
综上所述,《高等数学同济6版》教材在内容与解析方面都具备许多优点,可以作为大学高等数学课程的主要教材之一。
高等数学主要版本教材高等数学作为大学的一门基础课程,对于学生的数学素养和逻辑思维能力的培养具有重要意义。
不同于中学的数学教学,高等数学的内容更加深入和抽象,因此教材的选择对于学生的学习效果具有决定性的影响。
本文将就高等数学主要版本教材进行探究和分析,并提出一些建议。
一、教材一:《高等数学》(第六版),同济大学出版社同济大学出版社的《高等数学》(第六版)是目前国内高等数学教材中最主要的版本之一。
该教材以数学分析为主线,全面系统地阐述了高等数学的基本概念、理论和方法。
教材内容丰富,涵盖了微积分、线性代数、概率统计等多个领域,并且难度层次适宜,能够满足大多数高校本科数学专业的教学需求。
该教材的编写特点是注重理论与实践的结合。
每一章的开始都有一幅生活中的实例,通过具体问题引入数学概念和方法,增强了学生的兴趣和理解。
同时,教材注重基本概念的讲解和推理证明的引导,可以帮助学生建立扎实的数学基础和逻辑思维能力。
二、教材二:《数学分析》(第二版),高等教育出版社高等教育出版社的《数学分析》(第二版)是在国内多所高校使用的一本主要版本教材。
该教材注重数学分析的方法和技巧,以及概念的严密性和推导的准确性。
教材所涉及的内容包括微积分、级数、向量和多元函数等,并对这些概念和方法进行了详细的阐述。
教材的编写风格注重推导和证明的完整性,对于数学公式和定理的推导过程进行了详细的描述和解释,能够帮助学生建立起严谨的数学思维和证明能力。
此外,教材还提供了大量的练习题和例题,能够帮助学生巩固所学的知识并培养解决实际问题的能力。
三、教材三:《高等数学》(第七版),人民教育出版社人民教育出版社的《高等数学》(第七版)是一本经典的高等数学教材,深受广大学生和教师的喜爱。
该教材继承了前几版教材的特点,强调数学思维、积累和应用,通过具体的应用问题引导学生掌握数学分析的基本方法。
该教材的编写风格干练简练,语言通俗易懂,条理清晰,符合大学生的学习习惯。
同济大学第六版高等数学上下册课后习题答案5-2 1. 试求函数⎰=xtdt y 0sin 当x =0及4π=x 时的导数. 解 x tdt dx d y x sin sin 0=='⎰, 当x =0时, y '=sin0=0; 当4π=x 时, 224sin =='πy . 2. 求由参数表示式⎰=t udu x 0sin , ⎰=tudu y 0cos 所给定的函数y 对x 的导数.解 x '(t )=sin t , y '(t )=cos t , t t x t y dx dy cos )()(=''=. 3. 求由⎰⎰=+x y ttdt dt e 000cos 所决定的隐函数y 对x 的导数dxdy . 解 方程两对x 求导得0cos =+'x y e y ,于是 ye x dx dy cos-=. 4. 当x 为何值时, 函数⎰-=x t dt te x I 02)(有极值? 解 2)(x xe x I -=', 令I '(x )=0, 得x =0. 因为当x <0时, I '(x )<0; 当x >0时, I '(x )>0,所以x =0是函数I (x )的极小值点.5. 计算下列各导数:(1)⎰+2021x dt t dx d ; (2)⎰+32411x x dt tdx d ; (3)⎰x xdt t dx d cos sin 2)cos(π. 解 (1)dxdu dt t du d u x dt t dx d u x ⋅+=+⎰⎰02202112令 421221x x x u +=⋅+=.(2)⎰⎰⎰+++=+323204044111111x x x x dt tdx d dt t dx d dt t dx d ⎰⎰+++-=3204041111x x dt t dx d dt t dx d )()(11)()(11343242'⋅++'⋅+-=x x x x 12281312xx x x +++-=. (3)⎰⎰⎰+-=x x x x dt t dx d dt t dx d dt t dx d cos 02sin 02cos sin 2)cos()cos()cos(πππ ))(cos cos cos())(sin sin cos(22'+'-=x x x x ππ)cos cos(sin )sin cos(cos 22x x x x ππ⋅-⋅-=)sin cos(sin )sin cos(cos 22x x x x πππ-⋅-⋅-=)sin cos(sin )sin cos(cos 22x x x x ππ⋅+⋅-=)sin cos()cos (sin 2x x x π-=.6. 计算下列各定积分:(1)⎰+-adx x x 02)13(; 解 a a a x x x dx x x a a+-=+-=+-⎰230230221|)21()13(. (2)⎰+2142)1(dx xx ; 解 852)11(31)22(31|)3131()1(333321332142=---=-=+---⎰x x dx x x . (3)⎰+94)1(dx x x ; 解 94223942194|)2132()()1(x x dx x x dx x x +=+=+⎰⎰ 6145)421432()921932(223223=+-+=. (4)⎰+33121x dx ; 解 66331arctan 3arctan arctan 13313312πππ=-=-==+⎰x x dx . (5)⎰--212121x dx ; 解 3)6(6)21arcsin(21arcsin arcsin 1212121212πππ=--=--==---⎰x x dx .(6)⎰+a x a dx 3022; 解 a a a a xa x a dx aa 30arctan 13arctan 1arctan 1303022π=-==+⎰. (7)⎰-1024x dx ; 解 60arcsin 21arcsin 2arcsin 410102π=-==-⎰x x dx . (8)dx x x x ⎰-+++012241133; 解 013012201224|)arctan ()113(1133---+=++=+++⎰⎰x x dx x x dx x x x 41)1arctan()1(3π+=----=. (9)⎰---+211e x dx ; 解 1ln 1ln ||1|ln 12121-=-=+=+------⎰e x x dx e e . (10)⎰402tan πθθd ; 解 4144tan )(tan )1(sec tan 40402402πππθθθθθθπππ-=-=-=-=⎰⎰d d . (11)dx x ⎰π20|sin |; 解 ⎰⎰⎰-=ππππ2020sin sin |sin |xdx xdx dx x πππ20cos cos x x +-==-cos π +cos0+cos2π-cos π=4.(12)⎰20)(dx x f , 其中⎪⎩⎪⎨⎧>≤+=1 211 1)(2x x x x x f . 解 38|)61(|)21(21)1()(2131022121020=++=++=⎰⎰⎰x x x dx x dx x dx x f . 7. 设k 为正整数. 试证下列各题: (1)⎰-=ππ0cos kxdx ; (2)⎰-=ππ0sin kxdx ; (3)⎰-=πππkxdx 2cos ; (4)⎰-=πππkxdx 2sin . 证明 (1)⎰--=-=--==ππππππ000)(sin 1sin 1|sin 1cos k k k k kx k kxdx . (2))(cos 1cos 1cos 1sin ππππππ-+-=-=--⎰k k k k x k k kxdx 0cos 1cos 1=+-=ππk kk k . (3)πππππππππ=+=+=+=---⎰⎰22|)2sin 21(21)2cos 1(21cos 2kx k x dx kx kxdx . (4)πππππππππ=+=-=-=---⎰⎰22|)2sin 21(21)2cos 1(21sin 2kx k x dx kx kxdx . 8. 设k 及l 为正整数, 且k ≠l . 试证下列各题:(1)⎰-=ππ0sin cos lxdx kx ; (2)⎰-=ππ0cos cos lxdx kx ;(3)⎰-=ππ0sin sin lxdx kx . 证明 (1)⎰⎰----+=ππππdx x l k x l k lxdx kx ])sin()[sin(21sin cos 0])cos()(21[])cos()(21[=----++-=--ππππx l k l k x l k l k . (2)⎰⎰---++=ππππdx x l k x l k lxdx kx ])cos()[cos(21cos cos 0])sin()(21[])sin()(21[=--+++=--ππππx l k l k x l k l k . (3)⎰⎰----+-=ππππdx x l k x l k lxdx kx ])cos()[cos(21sin sin . 0])sin()(21[])sin()(21[=--+++-=--ππππx l k l k x l k l k . 9. 求下列极限:(1)x dt t x x ⎰→020cos lim;(2)⎰⎰→x t x t x dt te dt e 0220022)(lim .解 (1)11cos lim cos lim 20020==→→⎰x x dt t x x x . (2)22222200002200)(2lim )(lim x xt x t x xt x t x xe dt e dt e dtte dt e '⋅=⎰⎰⎰⎰→→ 22222002002lim 2lim x x t x x x xt x xe dt e xe edt e ⎰⎰→→=⋅=2212lim 22lim 2020222=+=+=→→x e x e e x x x x x . 10. 设⎩⎨⎧∈∈=]2 ,1[ ]1 ,0[ )(2x x x x x f . 求⎰=x dt t f x 0)()(ϕ在[0, 2]上的表达式, 并讨论ϕ(x )在(0, 2)内的连续性.解 当0≤x ≤1时, 302031)()(x dt t dt t f x xx ===⎰⎰ϕ; 当1<x ≤2时, 6121212131)()(2211020-=-+=+==⎰⎰⎰x x tdt dt t dt t f x xx ϕ. 因此 ⎪⎩⎪⎨⎧≤<-≤≤=21 612110 31)(23x x x x x ϕ. 因为31)1(=ϕ, 3131lim )(lim 30101==-→-→x x x x ϕ, 316121)6121(lim )(lim 20101=-=-=+→+→x x x x ϕ, 所以ϕ(x )在x =1处连续, 从而在(0, 2)内连续.11. 设⎪⎩⎪⎨⎧><≤≤=ππx x x x x f 或0 00 sin 21)(. 求⎰=x dt t f x 0)()(ϕ在(-∞, +∞)内的表达式.解 当x <0时,00)()(00===⎰⎰xx dt dt t f x ϕ; 当0≤x ≤π时,21cos 21|cos 21sin 21)()(000+-=-===⎰⎰x t tdt dt t f x x xx ϕ; 当x >π时,πππϕ000|cos 210sin 21)()(t dt tdt dt t f x x x -=+==⎰⎰⎰ 10cos 21cos 21=+-=π. 因此 ⎪⎩⎪⎨⎧≥≤≤-<=ππϕx x x x x 10 )cos 1(210 0)(. 12. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0,⎰-=x adt t f a x x F )(1)(. 证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f x a -=⎰ξ. 于是有)(1)()(1)(2x f ax dt t f a x x F x a -+--='⎰ ))(()(1)(12a x f a x x f a x ----=ξ )]()([1ξf x f ax --=. 由 f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内, x -a >0, 所以在(a , b )内 0)]()([1)(≤--='ξf x f ax x F .。
高等数学同济教材第六版高等数学是大学数学重要的一门课程,对于理工科学生来说是必修内容。
同济大学出版社出版的高等数学同济教材第六版是一本经典教材,被广大学生和教师广泛使用。
本文将对该教材进行全面分析和评价。
一、教材概述高等数学同济教材第六版于20xx年出版,是在前五版的基础上进行了更新和修订的版本。
该教材内容全面、系统,逻辑清晰,覆盖了大部分高等数学的主要内容,包括数列与极限、连续函数与导数、定积分与反常积分等。
该教材的编写团队由同济大学数学系的教授和专家组成,他们在教学和研究领域积累了丰富的经验。
因此,该教材不仅准确地反映了高等数学的理论与实践,而且融入了许多实例和习题,以帮助学生巩固所学知识。
二、教材特点1. 知识点详细全面:高等数学同济教材第六版在每个章节中详细介绍了各个知识点,并结合实例进行讲解。
每个知识点都给出了定义、必要条件和相关定理,能够满足学生对于理论知识的要求。
2. 题目丰富多样:该教材提供了大量的习题和例题,在不同难度层次上进行了分级,从基础到提高,充分满足了学生的不同需求。
习题形式多样,有选择题、填空题、计算题等,可以培养学生的各种解题能力。
3. 理论与实践结合:高等数学同济教材第六版注重将理论与实践相结合,通过例题和习题的设计,引导学生将所学的知识应用到实际问题中。
这有助于学生更好地理解和掌握知识,并提升解决实际问题的能力。
三、教材优势1. 难度适中:高等数学同济教材第六版的难度设置适中,能够满足大多数理工科学生的学习需求。
教材章节之间难度递进,有利于学生渐进地学习和掌握知识。
2. 理论严谨性:教材中的理论推导和证明过程准确严谨,能够帮助学生建立起扎实的数学基础和严密的逻辑思维能力。
3. 重点突出:高等数学同济教材第六版对于重点知识点进行了重点突出,以加深学生对于重要概念和定理的理解。
同时,在对应关键知识点下辅以大量的习题,以帮助学生加深对该知识点的掌握。
四、教材不足1. 缺乏应用示例:尽管教材在理论与实践结合方面有很大的优势,但有时缺乏具体的实际应用示例,这对于一些学生来说可能不够直观。
高等数学第六版上册课后习题答案第一章习题1-11.设A=(-∞,-5)⋃(5,+∞), B=[-10, 3),写出A⋃B, A⋂B, A\B及A\(A\B)的表达式.解A⋃B=(-∞, 3)⋃(5,+∞),A⋂B=[-10,-5),A\B=(-∞,-10)⋃(5,+∞),A\(A\B)=[-10,-5).2.设A、B是任意两个集合,证明对偶律: (A⋂B)C=A C ⋃B C .证明因为x∈(A⋂B)C⇔x∉A⋂B⇔ x∉A或x∉B⇔ x∈A C或x∈B C ⇔ x∈A C ⋃B C,所以(A⋂B)C=A C ⋃B C .3.设映射f : X →Y, A⊂X, B⊂X .证明(1)f(A⋃B)=f(A)⋃f(B);(2)f(A⋂B)⊂f(A)⋂f(B).证明因为y∈f(A⋃B)⇔∃x∈A⋃B,使f(x)=y⇔(因为x∈A或x∈B) y∈f(A)或y∈f(B)⇔ y∈f(A)⋃f(B),所以f(A⋃B)=f(A)⋃f(B).(2)因为y ∈f(A ⋂B)⇒∃x ∈A ⋂B , 使f(x)=y ⇔(因为x ∈A 且x ∈B) y ∈f(A)且y ∈f(B)⇒ y ∈ f(A)⋂f(B),所以 f(A ⋂B)⊂f(A)⋂f(B).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g =ο, Y I g f =ο, 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g(y)∈X , 且f(x)=f[g(y)]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f(x 1)≠f(x 2), 否则若f(x 1)=f(x 2)⇒g[ f(x 1)]=g[f(x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g(y)=x ∈X , 且满足f(x)=f[g(y)]=I y y =y , 按逆映射的定义, g 是f 的逆映射. 5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f(A))⊃A ;(2)当f 是单射时, 有f -1(f(A))=A .证明 (1)因为x ∈A ⇒ f(x)=y ∈f(A) ⇒ f -1(y)=x ∈f -1(f(A)), 所以 f -1(f(A))⊃A .(2)由(1)知f -1(f(A))⊃A .另一方面, 对于任意的x ∈f -1(f(A))⇒存在y ∈f(A), 使f -1(y)=x ⇒f(x)=y . 因为y ∈f(A)且f 是单射, 所以x ∈A . 这就证明了f -1(f(A))⊂A . 因此f -1(f(A))=A .6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211x y -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1,1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241xy -=; 解 由4-x 2>0得 |x|<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅). (7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞). 7. 下列各题中, 函数f(x)和g(x)是否相同?为什么?(1)f(x)=lg x 2, g(x)=2lg x ;(2) f(x)=x , g(x)=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f(x)=1, g(x)=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g(x)=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x)的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数x x y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有 0ln)()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f(x)为定义在(-l , l)内的奇函数, 若f(x)在(0, l)内单调增加,证明f(x)在(-l, 0)内也单调增加.证明对于∀x1, x2∈(-l, 0)且x1<x2,有-x1,-x2∈(0, l)且-x1>-x2.因为f(x)在(0, l)内单调增加且为奇函数,所以f(-x2)<f(-x1),-f(x2)<-f(x1), f(x2)>f(x1),这就证明了对于∀x1, x2∈(-l, 0),有f(x1)< f(x2),所以f(x)在(-l, 0)内也单调增加.11.设下面所考虑的函数都是定义在对称区间(-l, l)上的,证明:(1)两个偶函数的和是偶函数,两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.证明(1)设F(x)=f(x)+g(x).如果f(x)和g(x)都是偶函数,则F(-x)=f(-x)+g(-x)=f(x)+g(x)=F(x),所以F(x)为偶函数,即两个偶函数的和是偶函数.如果f(x)和g(x)都是奇函数,则F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-F(x),所以F(x)为奇函数,即两个奇函数的和是奇函数.(2)设F(x)=f(x)⋅g(x).如果f(x)和g(x)都是偶函数,则F(-x)=f(-x)⋅g(-x)=f(x)⋅g(x)=F(x),所以F(x)为偶函数,即两个偶函数的积是偶函数.如果f(x)和g(x)都是奇函数,则F(-x)=f(-x)⋅g(-x)=[-f(x)][-g(x)]=f(x)⋅g(x)=F(x),所以F(x)为偶函数, 即两个奇函数的积是偶函数. 如果f(x)是偶函数, 而g(x)是奇函数, 则F(-x)=f(-x)⋅g(-x)=f(x)[-g(x)]=-f(x)⋅g(x)=-F(x), 所以F(x)为奇函数, 即偶函数与奇函数的积是奇函数. 12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xx y +-=; (4)y =x(x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f(-x)=(-x)2[1-(-x)2]=x 2(1-x 2)=f(x), 所以f(x)是偶函数.(2)由f(-x)=3(-x)2-(-x)3=3x 2+x 3可见f(x)既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f(x)是偶函数.(4)因为f(-x)=(-x)(-x -1)(-x +1)=-x(x +1)(x -1)=-f(x), 所以f(x)是奇函数.(5)由f(-x)=sin(-x)-cos(-x)+1=-sin x -cos x +1可见f(x)既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f(x)是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =xcos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。