数值分析论文

  • 格式:doc
  • 大小:429.71 KB
  • 文档页数:11

下载文档原格式

  / 11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析论文

几种插值法的应用与比较

摘要:本文主要介绍了几种常用插值法的应用和比较,针对每个插值法,经过详细的论证和讨论,给出了每个插值法的优点和缺点,通过对数学插值法的研究、比较及应用的讨论及总结,从而得出所讨论插值方法的各自优势,以方便用户选择合适的插值法。

关键词:拉格朗日插值,重心拉格朗日插值,分段线性插值

正文:在许多实际问题及科学研究中,因素之间往往存在着函数关系,但是这些关系的显示表达式不一定都知道,通常只是由观察或测试得到一些离散数值,所以只能从这些数据构造函数的近似表达式,有时虽然给出了解析表达式,但由于解析表达式过于复杂,计算起来十分麻烦,这就需要建立函数的某种近似表达,而插值法就是构造函数的近似表达式的方法。

由于代数多项式是最简单而又便于计算的函数,所以经常采用多项式作为插值函数,称为多项式插值多项式插值法有拉格朗日插值法,牛顿插值法、埃尔米特插值法,分段插值法和样条插值法等。其基本思想都是用高次代数多项式或分段的低次多项式作为被插值函数的近似解析表达式。

拉格朗日插值法中,在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法,许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解,如对实践中的某个物理量进行观测,在若干个不同的地方得到,相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。这样的多项式称为拉格朗日(插值)多项式,数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数,拉格朗日插值法最早被英国数学家爱德华.华林于1779年发现,不久后由莱昂哈德·欧拉再次发现1795 年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起。

拉格朗日插值多项式图为:

图(1)

已知平面上四个点:(−9, 5), (−4, 2), (−1, −2), (7, 9),拉格朗日多项式:)(x L (黑色)穿过所有点.而每个基本多项式:)(00x l y ,)(11x l y , )(22x l y 以及)(x l y ςς各穿过对应的一点,并在其它的三个点的x 值上取零。

对于给定的若1+n 个点),(00y x ,),(11y x ,………),(n n y x ,对应于它们的次数不超过n 的拉格朗日多项式L 只有一个.如果计入次数更高的多项式,则有无穷个,因为所有与L 相差))((10x x x x --λ……)(n x x -的多项式都满足条件. 对某个多项式函数,已知有给定的1+k 个取值点:),(00y x ,……,),(k k y x , 其中i x 对应着自变量的位置,而i y 对应着函数在这个位置的取值。假设任意两个不同的i x 都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:)()(0x l y x L j k

j j ∑==,

其中每个)(x l j 为拉格朗日基本多项式(或称插值基函数),其表达式为:

)()

()()()()()()()(111100,0k

j k j j j j j j j k

j i i i j i j x x x x x x x x x x x x x x x x x x x x x l --------=--=++--≠=∏

, 拉格朗日基本多项式()x l i 的特点是在j x 上取值为1,在其它的点i x ,j i ≠ 上取值为0.

例:假设有某个多项式函数f ,已知它在三个点上的取值为:

• 10)4(=f , • 25.5)5(=f , •

1)6(=f ,

要求)18(f 的值.

首先写出每个拉格朗日基本多项式:

())64)(54()

6)(5(0----=x x x l ;

())65)(45()

6)(4(1----=x x x l ;

())

56)(46()

5)(4(2----=

x x x l ;

然后应用拉格朗日插值法,就可以得到p 的表达式(p 为函数f 的插值函数):

)()6()()5()()4()(210x l f x l f x l f x p ++=

)

56)(46()

5)(4(1)65)(45()6)(4(25.5)64)(54()6)(5(10----⨯+----⨯+----⨯

=x x x x x x

)13628(4

12

+-=

x x , 此时数值18就可以求出所需之值:11)18()18(-==p f . 插值多项式的存在性与唯一性:

存在性:对于给定的1+k 个点:),(),,(00k k y x y x 拉格朗日插值法的思路是找到一个在一点j x 取值为1,而在其他点取值都是0的多项式)(x l j .这样,多项式)(x l y j j 在点j x 取值为j y ,而在其他点取值都是0.而多项式()∑==k

j j j x l y x L 0)

(就可以满足∑==++++==k

i j j j i y y x l y x L 0

000)()( ,

在其它点取值为0的多项式容易找到,例如:

)())(()(110k j j x x x x x x x x ----+- ,它在点j x 取值为:

)()()(10k j j j i x x x x x x ---+ .由于已经假定i x 两两互不相同,因此上面的取

值不等于0.于是,将多项式除以这个取值,就得到一个满足“在j x 取值为1,而在其他点取值都是0的多项式”:

)()

()()()()()()(111100k j k j j j j j j j i j j x x x x x x x x x x x x x x x x x x x

x l --------=--=++--∏

, 这就是拉格朗日基本多项式.

唯一性:次数不超过k 的拉格朗日多项式至多只有一个,因为对任意两个次数不超过k 的拉格朗日多项式:1p 和2p ,它们的差21p p -在所有1+k 个点上取值都是0,因此必然是多项式)())((10k x x x x x x --- 的倍数.因此,如果这个差

21p p -不等于0,次数就一定不小于1+k .但是21p p -是两个次数不超过k 的多

项式之差,它的次数也不超过k ,所以021=-p p 也就是说21p p =.这样就证明了唯一性.

几何性质:拉格朗日插值法中用到的拉格朗日基本多项式n l l l ,,,10 (由某一组

n x x x <<< 10 确定)可以看做是由次数不超过n 的多项式所组成的线性空间:[]X n K 的一组基底.首先,如果存在一组系数:n λλλ,,,10 使得,

01100=+++=n n l l l P λλλ ,

那么,一方面多项式p 是满足n n x P x P x P λλλ===)(,,)(,)(1100 的拉格朗日插值多项式,另一方面p 是零多项式,所以取值永远是0.所以

010====n λλλ ,

这证明了n l l l ,,,10 是线性无关的.同时它一共包含1+n 个多项式,恰好等于

[]X n K 的维数.所以n l l l ,,,10 构成了[]X n K 的一组基底.

拉格朗日基本多项式作为基底的好处是所有的多项式都是齐次的(都是n 次多项式).

优点与缺点:拉格朗日插值法的公式结构整齐紧凑,在理论分析中十分方便,然而在计算中,当插值点增加或减少一个时,所对应的基本多项式就需要全部重新计算,于是整个公式都会变化,非常繁琐.这时可以用重心拉格朗日插值法或牛顿插值法来代替.此外,当插值点比较多的时候,拉格朗日插值多项式的次数可