磁性复合材料
- 格式:pptx
- 大小:929.60 KB
- 文档页数:13
2023年软磁复合材料行业概况及现状:软磁复合材料是电子工业中的重要材料网讯,软磁复合材料主要应用在消费电子和医疗器械以及汽车等领域,生产技术和工艺的不断进步创新下应用领域也渐渐拓宽。
不同的产品应用在不同的市场,智能家居和新能源汽车等都推动着软磁复合材料市场的进展。
软磁复合材料行业进展现状软磁复合材料是一种由软磁材料和非磁性材料组成的复合材料。
它具有高磁导率和低磁滞损耗等优点,广泛应用于电力电子、通信、计算机、汽车电子、医疗器械等领域中的电感器、变压器、电源、磁头、传感器等电子元器件中。
它可以提高电子元器件的效率和稳定性,降低能耗和噪音,并且具有小体积、轻重量、易加工等优点。
近年来,随着电子信息产业的快速进展,软磁复合材料行业也得到了快速进展。
据软磁复合材料行业概况及现状统计,全球软磁复合材料市场规模已经达到数十亿美元,将来还有很大的进展空间。
国内软磁复合材料行业也在不断壮大,已经形成了以国电电气、天津松江、广东鸿图、中航西飞等企业为代表的一批优秀企业。
目前,软磁复合材料行业的主要产品包括软磁芯、磁性传感器、变压器等。
其中,软磁芯是应用最为广泛的产品之一,主要用于电力电子、通信电子、计算机电子等领域。
磁性传感器则主要用于汽车、航空航天、工业自动化等领域,具有高精度、高灵敏度、高稳定性等特点。
变压器是电力电子领域最为基础的产品之一,广泛应用于电力系统、通信系统、铁路系统等领域。
总体来说,软磁复合材料行业进展前景宽阔,但也存在一些问题,如市场竞争激烈、技术含量不高、产品同质化严峻等。
因此,企业需要加强技术研发,提高产品质量,拓展市场渠道,才能在激烈的市场竞争中立于不败之地。
软磁复合材料行业前景分析软磁复合材料是指由软磁性粉末和绝缘材料组成的复合材料,具有软磁性和绝缘性能。
它广泛应用于电子、通信、电力、机械等领域,是现代电子工业中不行缺少的材料之一。
随着新能源汽车、智能家居等领域的进展,软磁复合材料的需求量也将逐步增加。
磁场屏蔽材料磁场屏蔽材料是用于屏蔽外部磁场的材料。
在现实生活中,我们经常会遇到一些对电子设备的正常运行产生影响的外部磁场,例如来自电磁脉冲、无线通信和电力设施的干扰。
为了保护电子设备的正常工作,我们需要使用磁场屏蔽材料来隔离这些外部磁场。
磁场屏蔽材料主要有以下几种类型:1. 软磁材料:软磁材料具有高导磁率和低剩磁,一般是由铁、镍和钴等金属制成。
这些材料能够吸引和吸收磁场,从而减小外部磁场的影响。
在电子设备中,软磁材料常常被用于制作磁芯,如变压器和感应线圈的磁芯。
2. 高导电材料:高导电材料具有较好的电磁屏蔽性能,能够将外部磁场引导到自己内部,从而降低对周围电子设备的干扰。
一些常见的高导电材料有铜、铝和银等。
在电子设备中,高导电材料常常被用于制作屏蔽罩和屏蔽膜。
3. 磁性复合材料:磁性复合材料是由软磁材料和高导电材料混合制造而成的。
这类材料不仅具有高导磁率,同时也有较好的电导率,能够同时发挥两种材料的屏蔽效果。
磁性复合材料常常被用于制作磁屏蔽材料,如屏蔽膜和屏蔽罩等。
4. 有机材料:有机材料在磁场屏蔽方面的应用越来越广泛。
有机材料具有较好的柔韧性和可塑性,能够根据需要进行形状定制。
此外,有机材料还具有较好的绝缘性能,可以有效隔离外部电磁波的干扰。
目前,有机材料已经被广泛应用于电子设备的屏蔽膜、屏蔽垫以及屏蔽涂料等。
总之,磁场屏蔽材料的应用范围十分广泛,涉及电子设备、通信设备和电力设备等多个领域。
随着技术的进步,人们对磁场屏蔽材料的要求也越来越高,希望能够在保护设备的同时,尽可能地减小材料的尺寸和重量,以提高设备的便携性和性能。
磁性材料的用途及原理
磁性材料是一类具有磁性的材料,其主要由铁、钴、镍等金属或者铁氧体、钕铁硼等复合材料组成。
磁性材料在现代社会中广泛应用于许多领域,包括以下几个方面的用途。
1. 电子技术和电气工程:磁性材料广泛应用于电感、电机、变压器等电子和电气设备中。
原理是利用磁性材料的磁场吸引和排斥的特性,实现电能的传递和转换。
2. 计算机和通信设备:磁性材料用于制造磁盘驱动器、硬盘等存储设备,通过磁性材料上的磁性信息的读写,存储和检索大量的数据。
3. 医疗设备和生物技术:磁性材料在医学成像领域,如磁共振成像(MRI)和磁性共振成像(MRS)中起着重要作用。
此外,磁性材料还用于制造磁性纳米颗粒,用于药物传递、磁性治疗等生物技术应用。
4. 汽车工业:磁性材料用于汽车制动系统、电动汽车驱动系统等。
磁性材料的原理是通过磁力产生摩擦力或者转动力,实现汽车的制动和驱动。
5. 磁存储介质:磁性材料被广泛用于制造磁带、软磁盘等磁存储介质,通过磁性材料上磁留信息的记录和读写实现数据的存储和检索。
磁性材料工作原理主要有两个方面。
一方面,磁性材料通常由微小的磁性颗粒组成,这些颗粒具有自旋磁矩,能够产生磁场。
磁性材料在外部磁场作用下,这些磁矩会被排列成一定的方向,从而形成强磁性。
另一方面,磁性材料还具有磁导性,其内部的电子可以自由运动,并且可以对外界的磁场作出响应。
这种响应主要表现为磁性材料对磁场的吸引和排斥的行为。
磁性纳米复合材料的制备及其应用研究近年来,纳米复合材料因其独特的性质和广泛的应用前景得到了越来越多的关注。
尤其是磁性纳米复合材料,因其具备磁性和纳米晶体两种特殊性质,已被广泛应用于医学、环保、电子、能源和生物领域等方面。
本文将介绍磁性纳米复合材料的制备方法和其在各个领域中的应用研究。
磁性纳米复合材料的制备方法磁性纳米复合材料的制备方法主要包括物理法和化学法两种。
物理法包括溅射法、电化学沉积法、磁控溅射法等,其中最常用的是磁控溅射法。
这种方法利用高能量离子轰击靶材,将靶材中的原子或分子释放出来,并在基底上形成纳米颗粒。
通过控制制备过程中的工艺参数,如离子束能量、靶材组成、沉积时间等,可以控制纳米颗粒的大小、形状和分散性。
该方法制备出的磁性纳米复合材料具有高精度、高可控性和优异的尺寸控制效果,但由于需要高能量离子轰击靶材,因此制备成本较高。
化学法包括溶胶-凝胶法、共沉淀法、聚合物复合法等,其中最常用的是共沉淀法。
这种方法通过将化学试剂在溶液中混合反应,形成纳米颗粒。
通过控制反应条件,如温度、pH值、反应时间等,可以控制纳米颗粒的大小、形状和分散性。
该方法制备出的磁性纳米复合材料具有低成本、规模化生产和较好的可控性,但易受到反应条件的影响,制备难度较大。
磁性纳米复合材料的应用研究磁性纳米复合材料在医学领域中有着广泛的应用。
例如,磁性纳米复合材料可以作为MRI(磁共振成像)对比剂,提高成像的对比度,从而更精确地诊断疾病。
此外,通过将磁性纳米复合材料与药物分子结合,可以制备出具有定向、可控释放的靶向药物传递系统,从而提高药物的效果、减少副作用。
磁性纳米复合材料在环保领域中也有着广泛的应用。
例如,磁性纳米复合材料可以用来吸附重金属离子,在废水处理中发挥重要作用。
此外,磁性纳米复合材料还可以用来吸附有机污染物,如苯、甲苯等,解决城市空气污染。
磁性纳米复合材料在电子领域中也有不少应用。
例如,磁性纳米复合材料可以用来制备高密度磁盘、磁性条形媒体等。
纳米磁性功能复合材料摘要:磁性功能材料一直是国民经济和军事领域的重要基础材料。
早在1930年,Fe3O4 微粒就被用来做成磁带;此后,Fe3O4粉末和粘合剂结合在一起被制成涂布型磁带;后来,又采用化学共沉淀工艺制成纳米Fe3O4磁性胶体,用来观察磁畴结构。
20世纪60年代磁性液体的诞生亦与此有着密切的关系。
如今,磁性功能材料广泛的应用于通信、自动控制、电信和家用电器等领域,在信息存储、处理和传输中已经成为不可缺少的组成部分,尤其在微机、大型计算机中的应用具有重要地位。
面对纳米科技的发展浪潮,磁性材料无论在研究领域还是在应用领域,都已取得了长足的进步。
在磁性材料方面,量子理论的发展与磁性材料的结合,使得磁性材料的发展进入材料设计阶段。
正文:纳米磁性功能复合材料一、纳米磁性功能复合材料的定义。
<1>、磁性复合材料:以高分子材料为基体与磁性功能体复合而成的一类功能材料。
常用的磁性材料主要有铁磁性的软磁材料和硬(永)磁材料。
软磁材料的特点是低矫顽力和高磁导率。
硬磁材料则表现在高矫顽力和高磁能积。
除了上述磁性材料外,尚有铁磁材料和反(逆)铁磁材料。
<2>、纳米材料:尺度为1~100nm的超微粒经压制、烧结或溅射而成的凝聚态固体。
它具有断裂强度高、韧性好、耐高温等特性。
<3>、纳米复合材料:分散相尺度至少有一维小于100nm的复合材料。
二、纳米磁性微粒的磁学特性。
<1>磁畴结构:磁畴(Magnetic Domain)理论是用量子理论从微观上说明铁磁质的磁化机理。
所谓磁畴,是指磁性材料内部的一个个小区域,每个区域内部包含大量原子,这些原子的磁矩都象一个个小磁铁那样整齐排列,但相邻的不同区域之间原子磁矩排列的方向不同,如图所示。
各个磁畴之间的交界面称为磁畴壁。
宏观物体一般总是具有很多磁畴,这样,磁畴的磁矩方向各不相同,结果相互抵消,矢量和为零,整个物体的为零磁距,它也就不能吸引其它磁性材料。
纳米材料及纳米Fe3O4磁性材料的研究纳米是一个长度单位,1nm=10-9m。
纳米材料是指在结构上具有纳米尺度调制特征的材料,纳米尺度一般是指1-100nm。
当一种材料的结构进入纳米尺度特征范围时,其某个或某些性能会发生明显的变化。
纳米尺度和性能的特异变化是纳米材料必须同时具备的两个基本特征。
按材质,纳米材料可分为纳米金属材料、纳米非金属材料、纳米高分子材料和纳米复合材料。
其中纳米非金属材料又可细分为纳米陶瓷材料、纳米氧化物材料和其他非金属纳米材料。
按纳米尺度在空间的表达特征,纳米材料可分为零维纳米材料即纳米颗粒材料、一维纳米材料(如纳米线、棒、丝、管和纤维等)、二维纳米材料(如纳米膜、纳米盘和超晶格等)、纳米结构材料即纳米空间材料(如介孔材料)。
按形态,纳米材料可分为纳米颗粒材料、纳米固体材料(也称纳米块体材料)、纳米膜材料以及纳米液体材料(如磁性液体纳米材料和纳米溶胶等)。
按功能,纳米材料可分为纳米生物材料、纳米磁性材料、纳米药物材料、纳米催化材料、纳米智能材料、纳米吸波材料、纳米热敏材料以及纳米环保材料等。
当材料的结构具有纳米尺寸调制特征时,将呈现许多特异的性能。
下面以纳米Fe3O4磁性材料为例。
一、Fe3O4的介绍:磁铁矿Fe3O4是一种简单的铁氧化物,是一种非金属磁性材料,它是反尖晶石型结构。
磁铁矿可以写成【Fe3+】+【Fe2+Fe3+】O4,磁铁矿中每个Fe3+离子有五个3d电子,它们是自旋平行的,因此其磁矩为5.92BM,但由于在四面体空隙中Fe3+离子和八面体空隙中是我Fe3+磁矩取向相反,这就是它们的磁矩全部抵消。
铁氧体磁性材料是由金属氧化物组成的,可用MO。
XFe2O3表示,其中M是二加劲属离子,如:Fe,Mn,Co,Ni,Mg,Ba等,而X可取1,2,3,4,6。
事实上,铁氧磁性材料的自发此话与其中的金属氧化物的自发磁化密切相关。
现以MnO为例说明金属氧化物的间接交换作用,以进一步说明铁氧体材料中的自发磁化。
磁性复合材料及其应用摘要:纵观人类历史发展发现,材料是体现人类进步的重要物质基础。
每种重要的新型材料的应用,都会将人类支配和改造自然地能力提高到一个新的水平。
现在,人们又发现了一种新的材料复合材料他是一种由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
复合材料既可以保持原材料的某些特点,又能发挥组合后的新特征,最重要的是它可以根据需要自行设计,从而最合理的达到使用所要求的性能。
目前,关于功能性复合材料的研究有很多,如导电复合材料、磁性复合材料、耐火复合材料、耐高温复合材料、仿生复合材料、智能复合材料、纳米复合材料等,还有一些增强体纤维等等。
1.磁性复合材料简介磁性复合材料是20世纪70年代发展起来的一种新型高分子功能材料,是现代科学技术领域的重要基础材料之一。
磁功能复合材料按组成可分为结构型和复合型两种,结构型磁功能复合材料是指聚合物本身具有强磁性的磁体;复合型磁功能复合材料是指以橡胶或塑料为粘合剂与磁性粉末混合粘结加工而制成的磁体。
磁性复合材料的主要优点是:密度小、耐冲击强度大,制品可进行切割、钻孔、焊接、层压和压花纹等加工,而且使用时不会发生碎裂。
它可以采用一般塑料通用的加工方法(如注射、模压、挤出等)进行加工,易于加工成尺寸精度高、薄壁、复杂形状的制品,可成型带嵌件制品,对电磁设备实现小型化、轻量化、精密化和高性能化的目标起着关键的作用,因而越来越多为人们所重视,是一种很有前途的基础功能材料。
磁性复合材料是以高聚物或软金属为基体与磁性功能体复合而成的一类材料。
聚合物基磁性复合材料主要由强磁粉(功能体)、聚合物基体(黏结剂)和加工助剂三大部分组成。
由于磁性材料有软磁和硬磁之分,因此也有相应的软磁和硬磁复合材料。
典型的永磁材料包裹永磁铁氧体、铝镍钴以及稀土永磁材料。
1.1 复合型磁性复合材料复合型磁功能复合材料主要是由树脂及磁粉构成。
其中树脂起粘结作用,磁粉是磁性的主要受体,目前用于填充的磁粉主要是铁氧体磁粉和稀土永磁粉。