数学建模之因子分析法
- 格式:docx
- 大小:186.23 KB
- 文档页数:5
因子分析数学模型1、因子分析看基本思想因子分析是一种旨在寻找隐藏在多变量数据中,无法直接观察到却影响或支配可观测变量的潜在因子,并估计潜在因子对可观测变量的影响程度,以及潜在因子之间的相关性的一种多元统计分析方法。
其基本思想是从分析多变量数据的相关关系入手,找到支配这种相关关系的少数几个相关独立的潜在因子,并通过建立起这些潜在因子与原变量之间的数量关系来预测潜在因子的状态,帮助发现隐藏在原变量之间的某种客观规律性。
因子分析和主成分分析都能起到清理多个原始变量内在结构关系的作用,但主成分分子重在综合原始变量信息,而因子分析重在解释原始变量间的关系,是比主成分分析更深入的一种多元统计方法。
因子分析法就是这些潜在因子的数学模型方法,它是在主成分的基础上构筑若干个意义较为明确的潜在因子,以它们为框架分析原变量,以考察原变量间的联系与区别。
2、因子分析的基本原理3、因子分析的数学模型假设对n例样品观测了p个指标,即,,…,,得到观测数据。
我们的任务就是从一组观测数据出发,通过分析各指标,,…,之间的相关性,找出支配作用的潜在因子,使得这些因子可以解释各个指标之间的相关性。
因子分析模型描述如下:(1)X=(,,…,)是可观测随机变量,均值向量E(X)=0,协方差Cov(X)与相关矩阵R相等,(只要将变量标准化即可实现)。
(2)F=(,,…,)(m<=p)是不可测的向量,其均值E(F)=0,协方差矩阵Cov(F)=1,即向量的各分量是独立的。
(3)e=(,,…,)与F相互独立,且E(e)=0,e的协方差矩阵是对角矩阵,即各分量e之间是相互独立的。
则因子分析的数学模型如下:由于该模型是针对变量进行的,各因子是正交的,所以也称为R型正交因子模型。
其矩阵形式为:X=AF+e。
其中:X= A= F= ,e=对于因子分析,要求数据和模型满足以下假设条件:●是均值为0、方差为1的随机变量;●是均值为0 ,方差为常数的正太随机变量。
因子分析数学模型因子分析是一种统计方法,用于研究多个变量间的关系,并将其通过线性组合的方式转化为少数几个影响变量的因子。
因子分析模型是一种数学模型,旨在解释变量之间的相关性,找出潜在的因子影响变量的变异程度。
因子分析的数学模型可以分为两个阶段。
第一阶段是提取因子,通过主成分分析的方法从原始变量中提取出少数几个因子。
主成分分析的核心是将原始变量进行线性组合,使得新的变量能够解释尽可能多的原始变量的变异。
主成分分析将提取的因子按照解释的变异程度排序,选择解释性较好的因子作为主成分。
第二阶段是因子旋转,通过变换因子的坐标轴方向,使得因子能够具有较好的解释性和可解释性。
因子旋转可以使用正交旋转或斜交旋转的方法进行。
正交旋转将因子的坐标轴变换为正交的坐标轴,使得因子之间没有相关性;斜交旋转将因子的坐标轴变换为斜交的坐标轴,使得因子之间可以存在相关性。
根据具体问题的需求,选择适当的旋转方法。
因子分析的数学模型可以表示为:Y=λ1F1+λ2F2+…+λnFn+e其中,Y是观测变量的向量,包括m个变量;F是因子的向量,包括n个因子;λ是因子载荷的矩阵,表示观测变量对因子的影响程度;e是误差项。
因子载荷矩阵λ可以用来衡量观测变量与因子之间的关系,越大表示对应观测变量越受该因子的影响。
因子分析的数学模型还可以进一步扩展为混合因子分析模型。
混合因子分析模型考虑了因子间的相关性和观测变量间的相关性,通过引入协方差矩阵和错误项协方差矩阵,对因子和观测变量的相关性进行建模。
混合因子分析模型可以更准确地描述变量之间的关系,并提供更可靠的因子载荷和因子得分。
总之,因子分析是一种通过线性组合的方式转化变量间关系的统计方法,其数学模型可以用来解释变量之间的相关性,并提取出影响变量的少数几个因子。
因子分析的数学模型在社会科学、市场调研等领域具有广泛的应用价值。
数学模型中的因子分析法因子分析是一种常用的数学模型,用于解释多个变量之间的关系和发现潜在的因素。
它是一种降维技术,旨在将众多变量转化为较少数量的无关因子。
因子分析在统计学、心理学和市场研究等领域广泛应用,可用于数据降维、消除多重共线性、提取潜在特征、构建模型等等。
在因子分析中,有两种主要类型:探索性因子分析(Exploratory Factor Analysis,EFA)和验证性因子分析(Confirmatory Factor Analysis,CFA)。
探索性因子分析用于发现数据中的潜在因素,而验证性因子分析则用于验证已经提出的因素模型是否符合实际数据。
探索性因子分析的步骤如下:1.提出假设:确定为什么要进行因子分析以及预期结果,用于指导后续的数据分析。
2.数据准备:收集和整理要进行因子分析的数据,确保数据的可用性和准确性。
3.因子提取:通过主成分分析或最大似然法等方法,提取出能够解释数据变异最大的因子。
4.因子旋转:因子旋转是为了使提取出的因子更易于解释和理解。
常用的旋转方法有正交旋转和斜交旋转等。
5.因子解释和命名:对于每个提取出的因子,需要根据变量的载荷矩阵和旋转后的载荷矩阵进行解释和命名。
载荷矩阵表示每个因子与每个变量之间的关系。
6.结果评估:对于提取出的因子,需要进行信度和效度的评估。
信度评估包括内部一致性和稳定性等指标;效度评估包括构造效度和相关效度等指标。
验证性因子分析通常用于验证已经提出的因子模型是否符合实际数据。
其步骤包括:1.提出假设:确定已存在的因子模型,并对其进行理论和实际的验证。
2.选择分析方法:确定适合验证性因子分析的模型拟合方法,如最大似然法或广义最小二乘法等。
3.构建模型:将因子模型转化为测量模型,并建立测量方程。
4.模型拟合:对构建的测量模型进行拟合,评估模型的拟合度,如χ²检验、准则拟合指数(CFI)等。
5.修正模型:根据拟合域冒去改进模型的拟合,如剔除不显著的路径、修正测量方程等。
因子分析数学模型因子分析是一种常用的多元统计分析方法,主要用于分析多个观测变量之间的相关关系。
它通过寻找潜在因子,将多个观测变量转化为较少的几个因子,从而减少变量间的复杂性,进而更好地解释观测数据。
因子分析的数学模型可以表示为:X=ΛF+Ψ其中,X是一个n×p的数据矩阵,表示n个观测对象对p个观测变量的测量结果。
Λ是一个n×m的因子载荷矩阵,表示每个观测变量与每个因子之间的线性关系。
F是一个m×p的因子矩阵,表示每个观测对象在每个因子上的得分。
Ψ是一个n×p的特殊因子载荷矩阵,表示每个观测变量与测量误差的关系。
在因子分析模型中,通过最小化测量误差来确定因子载荷矩阵Λ和特殊因子载荷矩阵Ψ。
最小化误差的方式通常使用最小二乘法,目标函数可以表达为:min(Ψ, Λ) = ∑[x_i - (λ_i1f_1i + λ_i2f_2i + ... +λ_imf_m_i)]^2其中,x_i是观测对象i的观测数据,λ_ij是观测变量j与因子i 的载荷系数,f_ij是观测对象i在因子j上的得分。
通过最小化目标函数,可以得到最优的因子载荷矩阵Λ和特殊因子载荷矩阵Ψ,从而揭示出观测变量之间的潜在因子结构。
在因子分析模型中,还存在一些特殊的情况,包括主成分分析和确认性因子分析。
主成分分析是因子分析的一种特殊情况,它假设所有的观测变量都与因子完全相关,即Ψ为零矩阵。
主成分分析通过计算特征值和特征向量来确定因子载荷矩阵Λ,并选择前几个最大的特征值对应的特征向量作为因子。
确认性因子分析则是在因子分析的基础上进行参数约束,通过设定因子载荷矩阵和特殊因子载荷矩阵的一些限制来验证和验证潜在因子结构的模型。
因子分析是一种灵活性较高的统计方法,可以应用于很多领域,如心理学、教育学、市场营销和金融等。
通过因子分析,我们可以更好地理解和解释观测数据之间的关系,并提取出具有实际意义的因子。
因子分析数学模型因子分析是一种常用的多元统计方法,用于研究变量之间的关联关系和构建数学模型。
其基本思想是将原始变量通过主成分分析或最大似然估计等方法进行转化,得到一组新的综合变量,即因子。
因子分析数学模型描述了原始变量与因子之间的关系,可以用来提取变量的共同信息、简化数据分析过程、减少变量的维度等。
矩阵模型是因子分析的核心数学模型,其假设对于m个观测值和n个变量,存在一个矩阵F(m×k)表示k个共同因子,以及一个矩阵L(n×k)表示每个变量与因子的负荷载。
k是共同因子的个数。
此外,还有一个k×k的协方差矩阵Ψ描述了共同因子之间的关系,以及一个n×n的协方差矩阵Σ描述了变量之间的关联关系。
这个模型可以用数学公式表示为:X=FL^T+E其中,X是观测值矩阵,F是因子矩阵,L是负荷载矩阵,E是特殊因子矩阵,"+"表示矩阵的加法,T表示矩阵的转置。
观测模型是加强版的矩阵模型,它假设每个变量的观测值是由共同因子、特殊因子和测量误差组成。
观测模型中,负荷载矩阵L和特殊因子矩阵E被看作是模型的参数,测量误差项被看作是随机变量。
因此,观测模型可以用数学公式表示为:X=FL^T+E+ε其中,ε是测量误差项,其服从一个均值为零、协方差矩阵为Ψ的多元正态分布。
为了推断因子分析数学模型,需要使用各种统计方法来估计模型的参数。
最常用的方法是主成分分析和最大似然估计法。
主成分分析是一种无信息损失的线性变量转换方法,它将原始变量通过线性组合转换成一组互不相关的主成分。
主成分分析可以用于确定共同因子的个数和负荷载矩阵的估计值。
最大似然估计法是一种参数估计方法,它基于假设观测值服从多元正态分布,通过最大化似然函数来求解参数的估计值。
最大似然估计法可以用于估计负荷载矩阵和协方差矩阵的估计值。
总之,因子分析数学模型是一种实现多变量数据分析和建模的重要方法。
通过构建数学模型,可以提取共同因子、简化数据分析过程、减少变量的维度等。
因子分析
因子分析就是一种降维、简化数据的技术。
它通过研究众多变量之间的内部依赖关系,探求观测数据中的基本结构,并用少数几个“抽象”的变量来表示其基本的数据结构。
这几个抽象的变量被称作“因子”,能反映原来众多变量的主要信息。
原始的变量是可观测的显在变量,而因子一般是不可观测的潜在变量。
1.因子分析法的应用
①汽车行业业绩评价研究(下载文档), ②上市公司盈利能力及资本结构实证分析, ③生育率影响因素分析。
2.步骤
①对原始数据进行标准化处理 用12,,
,m x x x 表示因子分析指标的m 个变量,评价对象有n 个,ij a 表示第i
个评价对象对应于第j 个指标的取值。
将每个指标值ij a 转化为标准化指标ij a ,即
,(1,2,
,;1,2,
,)ij j
ij j
a a i n j m s μ-=
==
式中:11n j ij i a n μ==∑,21
1()1n
j ij j i s a n μ==--∑ 相应地,标准化指标变量为
,(1,2,
,)j j
j j
x x j m s μ-=
=
②计算相关系数矩阵R
()ij m m R r ⨯=
1
,(,1,2,
,)1
n
ki
kj
k ij a
a r i j m n =⋅=
=-∑
式中:1,ii ij ji r r r ==,ij r 是第i 个指标和第j 指标之间的相关系数。
③计算初等载荷矩阵
解特征方程0=-R I λ,得到特征值(1,2,,)i i m λ=12,0m λλλ≥≥≥≥,再
求出相对应的特征值i λ的特征向量(1,2,,)i u i m =,其中12(,,
,)T j j j mj u u u u =,
得到初等载荷矩阵为
11,
,m m u λ⎤Λ=⎦
④ 确定主因子的个数()k k m ≤ 一般选取使得累计贡献率11
85%k
m
i
i
i i λλ
==≥∑∑的这k 个主因子,对k 个因子载
荷矩阵作旋转,用()
1k Λ表示1Λ的前k 列,T 表示正交矩阵,则得矩阵()21k T Λ=Λ,建立因子模型,即
1111111,
.
k k m
m mk k x F F x F F αααα=++⎧⎪
⎨⎪=++⎩ ⑥计算因子得分,作出综合评价
求出单个因子的得分函数ˆj F ,用ˆij F 表示第i 个样本对第j 个因子的得分估计值,Y 表示原始数据标准化后的矩阵,则总得分为
1ˆˆ()ij n k k
F F YR -⨯==
Λ 例题
我国上市公司赢利能力与资本结构的实证分析已知上市公司的数据见表1
表1 上市公司数据
试用因子分析法对上述企业进行综合评价。
模型的建立
①对原始数据进行标准化处理 用12,,
,m x x x 表示因子分析指标的m 个变量,评价对象有n 个,ij a 表示第i
个评价对象对应于第j 个指标的取值。
将每个指标值ij a 转化为标准化指标ij a ,即
,(1,2,
,;1,2,
,)ij j
ij j
a a i n j m s μ-=
==
式中:11n j ij i a n μ==∑,21
1()1n
j ij j i s a n μ==--∑ 相应地,标准化指标变量为
,(1,2,
,)j j
j j
x x j m s μ-=
=
②计算相关系数矩阵R
()ij m m R r ⨯=
1
,(,1,2,
,)1
n
ki
kj
k ij a
a r i j m n =⋅=
=-∑
式中:1,ii ij ji r r r ==,ij r 是第i 个指标和第j 指标之间的相关系数。
③计算初等载荷矩阵
解特征方程0=-R I λ,得到特征值(1,2,,)i i m λ=12,0m λλλ≥≥≥≥,再
求出相对应的特征值i λ的特征向量(1,2,,)i u i m =,其中12(,,
,)T j j
j mj u u u u =,
得到初等载荷矩阵为
11,
,m m u λ⎤Λ=⎦
④ 确定主因子的个数()k k m ≤ 一般选取使得累计贡献率11
85%k
m
i
i
i i λλ
==≥∑∑的这k 个主因子,对k 个因子载
荷矩阵作旋转,用()1k Λ表示1Λ的前k 列,T 表示正交矩阵,则得矩阵()21k T Λ=Λ,建立因子模型,即
1111111,.
k k m
m mk k x F F x F F αααα=++⎧⎪
⎨⎪=++⎩ 模型的求解:
我们选取两个主因子。
利用MATLAB 程序计算得旋转后的因子贡献及贡献率见表2,因子载荷阵见表3。
表2 贡献率数据
表3 旋转因子分析表
计算因子得分,作出综合评价
我们用回归方法求单个因子得分函数
11
ˆ,1,2,
,j j jm m F b x b x j k =++=
用ˆij
F 表示第i 个样本对第j 个因子的得分估计值,则 11
ˆ,(1,2,
,;1,2,,)ij j i jm im F b x b x i n j k =++==
即
1121
112222112k k m m
km b b b b b x R B b b x -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 用Y 表示原始数据标准化后的矩阵,则总得分为
1ˆˆ()ij n k
F F YR B -⨯== 计算得出各个因子得分函数为
1123421234
0.5310.16150.18310.50150.0450.51510.5810.0199F x x x x F x x x x =+-+=-++-
总得分为
12
44.4941.886.17
F F F +=
计算出16家上市公司赢利能力的综合得分见表4。
表416家上市公司赢利能力的综合得分。