地铁车站结构设计
- 格式:doc
- 大小:1.23 MB
- 文档页数:45
、结构拟定尺寸及基本参数
该项目结构覆土层为3m,结构形式为两层三跨闭合框架,框架柱距为8m,站台层建筑
净高4.5m,站厅层建筑净高4.8m。
结构构件截面尺寸及主要材料强度如表1所示。
车站典
型横断面如下图所示(图1):
图1车站典型横断面
、简化解析计算方法
取轴线方向1m长度闭合框架作为计算简图,柱作为只承受压力的二力杆,不考虑支护
结构影响,竖向地基反力按照竖向静力平衡条件计算确定,不考虑周围土层介质的抗力,按荷载一结构法进行计算;柱截面设计时按照柱距设计和计算轴力综合确定。
工程地质
岩土分层及特性
ur111
-- r
J
mu
ii
nim
111
|.h» L* \ [L 严Y| 1a
-
»
it
W 4 -- ■4■L 午■ !—
…丨LI
图2主体结构计算图式
表
岩土层分类及深度
土层物理、力学参数表
表3各岩土层力学、物理参数
表4荷载计算表
荷载及荷载效应组合
表5荷载组合参数表
荷戦种类纽合永久荷找可变荷St水土圧力人肪荷攪地匿荷iX
1 {基本)1135VL^0.7* 1.413500
\_2(甚本)_n12皆1.400
3 <标准) 1.0 1.0 1.000
4〔准永久) 1.0屮qX 1 -0 1.0Q0
5 <人防) 1.20 1.2 1.00
6 {地怎}L20.5x12「12013
注*甲q为准永久值系数匚YL为町变荷裁君虑投计便用年限的调整家敬。
地铁车站结构设计车站是旅客上、下车的集散地, 也是列车始发和折返的场所, 是地下铁道路网中的重要建筑。
在使用方面, 车站供旅客乘降, 是旅客集中处所, 故应保证使用方便、安全、迅速进出车站。
为此, 要求车站有良好的通风、照明、卫生设备, 以提供旅客正常的清洁卫生环境。
地下铁道车站又是一种宏伟的建筑物, 它是城市建筑艺术整体的一个有机部分, 一条线路中各站在结构或建筑艺术上都应有独特的特点。
车站设计时, 首先要确定车站在现有城市路网中的确切位置, 这涉及到城市规范和现有地面建筑状况, 地下铁道车站不比地面建筑, 一但修建要改移位置则比较困难, 因此确定车站的位置时, 必须详细调查研究, 作经济技术比较。
车站位置确定后, 进行选型, 然后根据客流及其特点确定车站规模, 平面位置,断面结构形式等。
然后进行车站构造设计, 内力计算, 配筋计算等等。
一、工程概况:长沙市五一广场站设计为两层三跨岛式车站,车站全长,宽度为,上层为站厅层,下层为站台层。
车站底板埋深16m采用明挖法施工,用地下连续墙围护。
二、设计依据:地铁设计规范( GB50157-2003);地铁施工技术规范。
三、地铁车站结构设计设计选用矩形框架结构。
设计为岛式车站,采用两层三跨结构。
地铁车站采用明挖法。
车站其矩形框架由底板、侧墙、顶板和楼板、梁、柱组合而成。
顶板和楼板采用单向板,底板按受力和功能要求,采用以纵梁和侧墙为支承的梁式板结构。
采用地下连续墙和钻孔桩护壁,采用钢管和钢板桩作基坑的临时支护。
临时立柱采用钢管混凝土,柱下基础采用桩基,桩基采用灌注桩。
车站开挖围护结构r=L3.2k N/MC二0耳宁:7戸厂■鬥z3z4z5 £------r=27,0kN.mc=0u地铁车站围护结构采用0.8m厚、30m深地下连续墙,入土深度比为二,其中基坑开挖深度H为16m,入土深度D为14m。
四、侧压力计算:土分层及土的钻孔柱状图如图:图土分层及土的钻孔柱状图(单位,m )362其中 a ......................................................................................................... 主动土压力a .................................................................................. 主动土压力系数.......................................... 沙土的容重Z ....................................... 土层的深度c ........................................ 土的黏聚力各层土压力系数:计算主动土压力:2ctg 2 45 25 0.41 a tg 2 45 30 0.33 tg 2 45 32 0.31 a tg 2 45 34 2 0.26a tg 2 45 0.2236 20.26 xx2C a1= xx = kpa=kpax = kpaxx + x + x 9 + x = kpa各层土压力:kpakpaxx + x 9)= kpa0.26 x x + x 9) kpa23.42 xx + x + x + x + 27 x = kpa由于黏聚力C = 0 ,所以临界深度为0其主动土压力(水土和算)分布图如图所示:图土压力分布图(单位,m简化计算:沙土层 c 的平均直如下:= ______ ih L 13.2 6.5 19.8 2.0 26.7 9 26.5 1.2 27 11.330154.7kpckpa2p tg 45 刁 °31tg 2 45 3.25 a 1.80 也 13・2 25 19・8 30 26・7 32 26・5 34 27 36 32° h i 30五、车站结构分析计算: 车站框架设计车站站台建筑设计长度为134600mm ,车站宽度21800 mm 站台层净高4200 mm 站厅层净高5600 mm ,站台至轨道净高2000 mm 顶板厚800 mm 中板厚400 mm 车站基础厚1000 mm,车站总高 12000 mm车站框架设计图如图所示:0.55X 20 = KN/ m 2X 25 = 20 KN/ m受力分析:① 顶板荷载计算线荷载:20mm 厚水泥沙浆面层: 800mmi 钢筋混凝土板:图车站框架设计图(单位:mm20 mm 厚沙浆抹灰: X 17 = KN/ m2上部填土荷载(从地下4m开始开挖): 4 X = KN/ m2总荷载:KN/ m 线恒荷载设计值(取1m宽度): g = 1 XX :地面活荷载:q = 20 KN/ m 地面活荷载设计值(取1m宽度):q二20 X =28 m总的线荷载:g + q = + 28 = m②中板荷载计算恒载:20mm 厚水泥沙浆面层:X 20 = KN/ m400mm 钢筋混凝土板:X 25 = 10 KN/ m20 mm 厚沙浆抹灰:X17 = KN/ m总荷载:KN/ m线恒荷载设计值(取1m宽度):g = XX 1 = m楼面荷载:KN/ m2线活荷载设计值(取1m宽度):1XX 10 = 14 KN/ m 线活荷载总设计值:g + q = 27 m车站横向荷载为土压力,取1m宽度进行计算,受力分析如图所示:图车站框架受力简图(单位:m等效简化荷载:q 3s 46 221.7 33.85 m)图车站框架等效简化后受力图(单位: m六、横向框架内力计算:计算简图如图所示:q 443 69.1 2 69.1 m)等效简化荷载受力分析如图说示:ql = 110kN/n图竖向均布荷载作用下的横向框架计算简图①第一层杆件计算由于对称性,可取半结构进行计算,计算图如图所示:1 .2 241.5 / mCB _q 1l6 4AB AD 0.5 BA BE9 BC0.2BA图站厅层半结构受力简图—q1l2丄 110.248 7.262483.0KN/m12 12注:铰支座传递系数为;固定端传递系数为,滑动支座传递系数为,假定材料均匀,线刚度与杆件成反比, u为分配系数-61U55B 由力矩分配法计算结果如图:135,BS_ 合图站厅层半结构计算结果② 第二层杆件计算543,4 —4227 271-68 -1E0.7182,&同①取半结构进行分析计算如图:A BEDEHHE1 | 2'3q 211273 3.632 118.60?m/ m*12 659.30?m/mEBEDEG 4 13eh=1 13DA DF1.图站台层半结构受力计算简图—q 2l 2— 27 7.262 118.60 ?m/m12 12A B 计算结果如图所示□.7514.C 5图站台层半结构受力计算结果(单位:kN ?m )由站厅层和站台层受力图画弯矩图,竖向均布荷载作用下的横向3.757.43I-14,8513E ^L757.4360.1-o —d―4A B 框架弯矩图如图所示:图竖向均布荷载作用下的横向框架弯矩图(单位:kN?m )竖向均布荷载(土压力等效简化后)作用下的横向框架计算;同样的取半结构计算,计算简图如图所示:A BCA CEAC —— 1 2q a l1 2 70.5 ?m/m12 121 2 q41 1 69.1 6.842269.4 ?m/m12 121 2 q41538.8 ?m/m3 4AB 0.5BA 0.25 CD CA CE 1 3ECDC0.2DA0.25BD BG 0・5DBDH0.4计算结果如图所示1.1°图竖向荷载和横向荷载作用下的弯矩叠加的弯矩图(单位:kN ?m )S38.§图 横向均布荷载作用下的横向半框架计算结果 (单位:kN ?m ) 将竖向荷载和横向荷载作用下的弯矩叠加,弯矩图如图所示:543.478.8a,870,5-35,5517 Ji^269.iL21.04.6 -4,6158.01L J 6 -gO 3765mm ( 按单1483 ?m ,197.2 ?m ,七、车站配筋计算:站厅层顶板配筋计算f c 14.3 /mm 2 , 取 b=1000mm , h 0 800 35 排布筋考虑 ), 由图知:站厅层顶板的边跨跨中弯矩 中间跨支座弯 2 543.47 ?m , 中间跨跨中弯矩 3 站厅层顶板配筋计算如下表 7-1 示:表 7-1 站厅层顶板配筋计算:0迎200图站厅层顶板配筋图站台层中板配筋计算f c 14.3 /mm 2b=1000mm h 0400 35365mm , 由图知:中板的边跨跨中弯矩1 70.5 ?m,中间跨支座 2 121.0 ?m ,中间跨跨中弯矩 3 64.7 ?m ,站台层中板配筋计算表如表 7-2 所示:表7-2站台层中板配筋计算表截面位置边跨跨中中间跨支座中间跨跨中M1*25^2001厂■Sn2 '^20®2C r>©200025 @200「— i i11■2 1勺2?⑪200^22MC0sMf c bh 21s 21 J 12 sA sM656 1143 602s h 0f y实配钢筋 2 22 @ 200 4 22@200 2 22 @ 200( m m 2 ) 760 1520 760图站台层顶板配筋图^22 @200 ^2 2 ©200$2Eg2O站厅层顶板次、主梁配筋计算(1)站厅层次梁配筋计算:次梁截面尺寸b x h= 600 x 1200mr rnm2l=7260mm①荷载计算恒载由板传来:x = KN/m次梁自重:2x 25xx KN/m次梁抹灰:17xx x2= KN/m总恒荷载:g = m活荷载:q=28 x =70 KN/m 总荷载:g + q = KN/m②内力计算主梁尺寸:bx h=800mmx 1600计算跨度:边跨l01 7106mm 中间跨l02 7260 mm由跨度差7260 7160 1.37 % < 10 %7260故可按等跨连续梁计算。
《城市地铁站施工方案》一、项目背景随着城市的快速发展,人口不断增长,交通压力日益增大。
为了缓解交通拥堵,提高城市居民的出行效率,我市决定建设新的地铁站。
该地铁站位于城市中心区域,周边商业、住宅密集,人流量大。
项目建成后,将极大地改善周边居民的出行条件,促进城市经济的发展。
二、结构设计1. 车站主体结构- 车站主体采用明挖法施工,结构形式为地下两层岛式车站。
- 车站主体结构由底板、侧墙、中板、顶板组成。
底板厚度为 1.0m,侧墙厚度为 0.8m,中板厚度为 0.4m,顶板厚度为0.8m。
- 车站主体结构采用防水混凝土,抗渗等级为 P8。
2. 出入口及通道结构- 出入口及通道采用明挖法施工,结构形式为矩形框架结构。
- 出入口及通道的底板、侧墙、顶板厚度分别为 0.8m、0.6m、0.6m。
- 出入口及通道采用防水卷材和防水涂料进行防水处理。
3. 风亭及风道结构- 风亭及风道采用明挖法施工,结构形式为矩形框架结构。
- 风亭及风道的底板、侧墙、顶板厚度分别为 0.8m、0.6m、0.6m。
- 风亭及风道采用防水卷材和防水涂料进行防水处理。
三、设备选型1. 通风设备- 选用高效节能的轴流风机作为通风设备,满足车站通风换气的要求。
- 通风设备的风量、风压应根据车站的规模、人流量等因素进行计算确定。
2. 给排水设备- 选用耐腐蚀、耐磨损的给排水管道和阀门,确保给排水系统的安全可靠。
- 给排水设备的选型应根据车站的用水量、排水量等因素进行计算确定。
3. 电气设备- 选用节能型变压器、开关柜等电气设备,满足车站的供电需求。
- 电气设备的选型应根据车站的用电负荷、电压等级等因素进行计算确定。
4. 电梯及自动扶梯- 选用安全可靠、运行平稳的电梯及自动扶梯,满足乘客的垂直交通需求。
- 电梯及自动扶梯的选型应根据车站的人流量、提升高度等因素进行计算确定。
四、施工步骤1. 施工准备- 进行现场勘查,了解场地情况和周边环境。
地铁车站主体结构设计地铁是一种地面以下的交通工具,其中车站主体结构是其中一个非常重要的部分。
在地铁车站主体结构设计过程中,需要考虑多个因素,包括地铁路线、车站规模、通行人流量等等因素。
本文将介绍地铁车站主体结构设计的相关内容,包括设计原则、技术要求和注意事项等方面。
设计原则在地铁车站主体结构的设计中,有几个基本的设计原则需要考虑:1.结构安全性:地铁车站主体结构需要考虑地铁运行中的外界风险,如地震、火灾、爆炸等。
因此,在设计中需要考虑结构的安全性和可靠性。
2.效率和通行性:地铁车站主体结构需要考虑通行人流量,应该在设计中充分考虑车站的人流路径和出入口的位置,并确保站台和通道的有效使用。
3.美学和人性化:地铁车站主体结构的设计还需要考虑站点场景,考虑尽可能减轻旅客的不适感,使车站变得美观舒适,并且应该调整结构的高度和透明度等参数来适应不同的环境。
技术要求在地铁车站主体结构设计过程中有一系列的技术要求:1.结构强度:地铁车站主体结构需要经过严格的静力学和动力学计算,以确保结构安全强度。
2.车站通行能力:地铁车站主体结构需要考虑车站工作情况和通行能力,确保车站人流和车流的有效流动。
3.构造材料:地铁车站主体结构需要考虑运行成本,材料需要保证结构强度和经济性,同时考虑材料环境适应性和处理维护成本等。
4.防火和安全设备:地铁车站主体结构需要考虑居住防火和安全设备,包括消防设备和紧急撤离设备等。
注意事项在地铁车站主体结构设计过程中,需要考虑到一些注意事项,比如:1.规划和设计需要考虑具体地铁线路的建设需求,包括车站规模和规格方面的限制。
2.车站通道和管道的设计和布局要考虑到车站的实际使用需求和地形条件。
其中需要考虑汽车通道、车站区域及周边公共设施等。
3.考虑运营维护成本,避免人为因素造成的损坏,尽可能采用耐磨性好且易于维护的材料和设备。
4.考虑紧急情况,要为车站增设紧急出口、逃生通道等应急设施,从而避免因突发事件而使人员伤亡。
地铁车站结构设计与施工要点地铁车站的结构设计与施工是建造一个安全、高效的地下交通枢纽的重要环节。
下面将从设计、施工两个方面探讨地铁车站结构的要点和注意事项。
设计要点:1. 地质勘察:地质勘察是地铁车站设计的首要步骤,需要充分了解地下土层的性质、地下水位、构造裂缝等信息。
通过对地质条件的准确把握,可以选取合适的结构形式和施工方法。
2. 车站布局:地铁车站布局应考虑乘客的便利性和疏散安全性。
设计中要合理划分进出站通道、候车区、站台等功能区域,同时要预留足够的疏散通道和安全出口,确保乘客在紧急情况下的快速撤离。
3. 结构安全:地铁车站结构应具备足够的承载能力和抗震性能。
在设计中,需要考虑地下水位、施工荷载、地震等外部力的作用,合理选择结构形式和采用高强度材料。
此外,还要设置合理的防火、防爆措施,确保车站在突发事故中能够保持结构的稳定。
4. 通风与采光:地铁车站通风与采光是保障车站内空气质量和乘客舒适度的重要因素。
设计中需要合理设置通风系统和天窗,以供给新鲜空气和自然光线。
同时,要考虑排烟和排湿的能力,保证车站内的环境舒适和乘客的安全。
5. 消防设施:地铁车站的消防设施是保障乘客安全的一项重要措施。
设计中需要合理设置消防通道、灭火器、喷淋系统等设施,并进行合理布局,方便人员疏散和火灾扑灭。
施工要点:1. 地下施工:地铁车站通常是在地下进行施工的,需要合理选择施工方法和工艺。
常见的施工方法有明挖法和暗挖法。
在施工过程中,要注意与周围建筑和地下管线的相互影响,采取适当的支护措施和安全防护措施,确保施工的平稳进行。
2. 结构施工:地铁车站的结构施工涉及混凝土浇筑、钢筋绑扎、模板搭设等工序。
在施工中,要按照设计要求进行材料选择和构件制作,保证结构的质量和安全。
3. 设备安装:地铁车站的设备安装包括电梯、扶梯、通风系统、照明系统等。
在施工过程中,要严格按照施工图纸进行设备的安装和调试,确保设备的正常运行和乘客的使用安全。
地铁车站结构设计的基本思路地铁车站是城市快速交通系统的重要组成部分,其结构设计直接关系到乘客的出行舒适度和运行效率。
在地铁车站的结构设计中,需要考虑以下几个基本思路:1.安全性:地铁车站是众多乘客集中的地方,因此其安全性是设计的首要考虑因素之一、在设计中,需要考虑地铁车站的消防疏散通道、紧急出口、安全防护设施等,以保障乘客在突发情况下的安全。
2.人流优化:地铁车站的结构设计需要考虑到高峰期的大量客流情况。
通过合理规划站台、通道和出入口等空间,最大限度地减少人流拥堵,提高乘客的流动性。
同时,可以采用人流分流的手段,如划分不同级别的通道、设置导向标识等,以提高车站的运行效率。
3.空间规划:地铁车站的结构设计需要合理规划不同功能区域的空间布局。
例如,车站大厅、站台、候车区、商业区等需要有明确的界限并合理配备设施。
通过合理规划空间,可以确保乘客的出行秩序、便捷性和舒适度。
4.环境舒适度:地铁车站的结构设计需要注重乘客的出行体验。
在车站的室内设计中,可以采用合适的材料和色彩,以营造舒适和谐的氛围。
同时,可以考虑引入自然光线和绿色植物等元素,提升车站的环境质量。
5.方便无障碍通行:地铁车站的结构设计需要考虑到不同乘客的出行需求,包括老年人、残疾人和婴儿车等特殊群体。
通过设置无障碍设施,如坡道、扶梯、轮椅通道等,可以提高车站的通行便利性和可及性。
6.可持续性考虑:地铁车站是城市交通系统的重要组成部分,其结构设计需要考虑到对环境的影响。
可以采用节能环保的建筑材料和技术,合理利用自然资源,如太阳能供电系统、雨水收集系统等,以降低能源消耗和环境污染。
总之,地铁车站的结构设计需要综合考虑安全性、人流优化、空间规划、环境舒适度、无障碍通行和可持续性等因素。
通过合理规划和设计,可以提高地铁车站的运行效率和服务质量,为乘客提供更好的出行体验。
地铁车站及区间结构设计流程一、车站:1、提资提资包括初步设计资料、建筑施工图、专家评审意见、地质与物探报告等。
提资时应先核对资料的准确性与可用性,发现问题及时与提资单位沟通。
2、任务计划编排熟悉资料后应根据实际情况做好任务计划编排,包括参与人员、各成员任务划分以及完成的时间节点。
2.1 车站图纸主要组成内容2.1.1 围护结构1)围护结构形式的选择地下两层车站主体基坑深度一般在16米以上,一般常用800厚地下连续墙,在地质较好地区也有用钻孔咬合桩(如南京)、钻孔灌注桩(如南京、沈阳)等,桩径可取800、1000。
地下三层车站一般基坑深度在22m以上,采用地下连续墙,墙厚在1000以上。
车站附属结构标准段基坑深度一般在10m左右,围护结构形式可采用钻孔灌注桩或SMW工法桩。
部分城市施工图技术要求中提到:一般当基坑深度≥13m时宜采用地下连续墙;当基坑深度<13m时可采取钻孔灌注桩、钻孔咬合桩及SMW工法桩等型式的围护结构)2)围护结构计算根据各单位要求采取相应的计算方法。
采取的软件涉及同济启明星(或理正基坑)、sap2000等,通过计算确定围护结构型式、尺寸、支撑型式、加固方法等等。
计算是指导设计的前提,必须提前准备并适时反馈,及时验算。
3)设计图纸内容一般包含:总平图,基坑平面布置图、纵断面图、横断面图、围护结构配筋图、节点大样图、地基加固图、临时施工措施图及施工监测图等。
对于与内衬墙形成叠合结构的地下连续墙,还应该有预留主体结构钢筋接驳器布置图。
基坑平面图设计时需注意以下几点:应与支撑一并考虑,避免支撑过疏或过密,同时用给临时支撑构件预留位置。
综合考虑交通组织、附属部分及结构构造方面的要求(如诱导缝)。
以地连墙围护为例:首先确定诱导缝位置,诱导缝布置时不仅要考虑间距(24m即3跨左右),同时亦要考虑避开出入口、孔洞以及内部大型电气设施用房(如大型机电、开关柜等高压设备区域等),分幅时注意将分幅线与诱导缝对齐。
地铁车站结构设计车站是旅客上、下车的集散地, 也是列车始发和折返的场所, 是地下铁道路网中的重要建筑。
在使用方面, 车站供旅客乘降, 是旅客集中处所, 故应保证使用方便、安全、迅速进出车站。
为此, 要求车站有良好的通风、照明、卫生设备, 以提供旅客正常的清洁卫生环境。
地下铁道车站又是一种宏伟的建筑物, 它是城市建筑艺术整体的一个有机部分, 一条线路中各站在结构或建筑艺术上都应有独特的特点。
车站设计时, 首先要确定车站在现有城市路网中的确切位置, 这涉及到城市规范和现有地面建筑状况, 地下铁道车站不比地面建筑, 一但修建要改移位置则比较困难, 因此确定车站的位置时,必须详细调查研究, 作经济技术比较。
车站位置确定后, 进行选型, 然后根据客流及其特点确定车站规模, 平面位置,断面结构形式等。
然后进行车站构造设计, 内力计算, 配筋计算等等。
一、工程概况:长沙市五一广场站设计为两层三跨岛式车站,车站全长134.6m,宽度为21.8m,上层为站厅层,下层为站台层。
车站底板埋深16m,采用明挖法施工,用地下连续墙围护。
二、设计依据:地铁设计规范(GB50157-2003);地铁施工技术规范。
三、地铁车站结构设计3.1 设计选用矩形框架结构。
设计为岛式车站,采用两层三跨结构。
地铁车站采用明挖法。
车站其矩形框架由底板、侧墙、顶板和楼板、梁、柱组合而成。
顶板和楼板采用单向板,底板按受力和功能要求,采用以纵梁和侧墙为支承的梁式板结构。
采用地下连续墙和钻孔桩护壁,采用钢管和钢板桩作基坑的临时支护。
临时立柱采用钢管混凝土,柱下基础采用桩基,桩基采用灌注桩。
3.2 车站开挖围护结构地铁车站围护结构采用0.8m厚、30m深地下连续墙,入土深度比为 =0.875,其中基坑开挖深度H 为16m,入土深度D为14m 。
四、侧压力计算:土分层及土的钻孔柱状图如图4.1:图4.1土分层及土的钻孔柱状图(单位,m)计算主动土压力: a a a c K -Z K =P 2γ其中 a P ………………………主动土压力a K ………………………主动土压力系数γ………………………沙土的容重Z ………………………土层的深度c ………………………土的黏聚力各层土压力系数:1Z : 41.0225452=⎪⎭⎫ ⎝⎛-=K tg a 2Z : 33.0230452=⎪⎭⎫ ⎝⎛-=K tg a 3Z :31.0232452=⎪⎭⎫ ⎝⎛-=K tg a 4Z :26.0234452=⎪⎭⎫ ⎝⎛-=K tg a5Z :22.0236452=⎪⎭⎫ ⎝⎛-=K tg a各层土压力:a : 02=K -Z K =P a a a c γb : 1Z K =P γa b 上=0.41×13.2×6.5=35.2 kpa=Z K =P 2γa b 下0.33×13.2×6.5=28.3 kpac : =Z K =P 2γa c 上0.33×(13.2×6.5 + 19.8×2.0)=41.4 kpa=Z K =P 3γa c 下0.31×(13.2×6.5 + 19.8×2.0)=38.9 kpad :=Z K =P 3γa d 上0.31×(13.2×6.5 + 19.8×2.0 + 26.7×9)=113.4 kpa 26.04=BZ K =P γa d 下×(13.2×6.5 + 19.8×2.0 + 26.7×9)=95.1 kpae :26.04=Z K =P γ上e ×(13.2×6.5 + 19.8×2.0 + 26.7×9 + 26.5×1.2)=103.5 kpa=Z K =P 5γa e 下0.22×(13.2×6.5 + 19.8×2.0 + 26.7×9 + 26.5×1.2)=87.6 kpaf :=P f 0.22×(13.2×6.5 + 19.8×2.0 + 26.7×9.0 + 26.5×1.2 + 27×11.3)=154.7 kpa由于黏聚力C = 0 ,所以临界深度为0 。
其主动土压力(水土和算)分布图如图4.2所示:图4.2土压力分布图(单位,m )简化计算:沙土层ϕγ⋅⋅c 的平均直如下:γ =42.23303.11272.15.2697.260.28.195.62.13=⨯+⨯+⨯+⨯+⨯=∑∑i i i h h γ kpa C = 0032303627345.26327.26308.19252.13=⨯+⨯+⨯+⨯+⨯==∑∑i i i h h ϕϕ 31.02452=⎪⎪⎭⎫ ⎝⎛-=K ϕtg p 55.0=K p25.32452=⎪⎪⎭⎫ ⎝⎛+=K ϕtg a 80.1=K a五、车站结构分析计算:5.1 车站框架设计车站站台建筑设计长度为134600mm , 车站宽度21800 mm ,站台层净高4200 mm , 站厅层净高5600 mm , 站台至轨道净高2000 mm ,顶板厚800 mm ,中板厚400 mm 车站基础厚1000 mm, 车站总高12000 mm 。
车站框架设计图如图5.1所示:图5.1车站框架设计图(单位:mm )5.2受力分析:①顶板荷载计算线荷载:20mm厚水泥沙浆面层: 0.02×20 = 0.4 KN/㎡800mm钢筋混凝土板: 0.8×25 = 20 KN/㎡20 mm厚沙浆抹灰: 0.02×17 = 0.34 KN/㎡上部填土荷载(从地下4m开始开挖): 4×13.2 = 52.8 KN/㎡总荷载: 73.54 KN/㎡线恒荷载设计值(取1m宽度): g = 1×1.2×73.54 =88.248 KN.m/m地面活荷载: q = 20 KN/㎡地面活荷载设计值(取1m宽度): q = 20×1.4 =28 KN.m/m总的线荷载: g + q = 110.248 + 28 =110.248 KN.m/m②中板荷载计算恒载:20mm厚水泥沙浆面层: 0.02×20 = 0.4 KN/㎡400mm钢筋混凝土板: 0.4×25 = 10 KN/㎡20 mm厚沙浆抹灰: 0.02×17 = 0.34 KN/㎡总荷载: 10.74 KN/㎡线恒荷载设计值(取1m宽度): g = 1.2× 10.74×1 = 13.0 KN.m/m楼面荷载: 10.0 KN/㎡线活荷载设计值(取1m宽度):1×1.4×10 = 14 KN/㎡线活荷载总设计值: g + q = 27 KN.m/m车站横向荷载为土压力 , 取1m 宽度进行计算 ,受力分析如图5.2所示:图5.2 车站框架受力简图(单位:m )等效简化荷载:85.3327.21463+=s q (KN.m/m)1.6921.69434=+=q (KN.m/m) 等效简化荷载受力分析如图5.3说示:图5.3车站框架等效简化后受力图(单位:m )六、横向框架内力计算:计算简图如图6.1所示:图6.1竖向均布荷载作用下的横向框架计算简图①第一层杆件计算由于对称性, 可取半结构进行计算, 计算图如图6.2所示:图6.2 站厅层半结构受力简图m KN l q AB BA /0.48326.7248.110121121221=⨯⨯==M -=M 22163.3248.1103131⨯⨯-=-=M l q BC =-483.0 m /KN m l q CB /5.2416121KN -=-=M 5.0==AD AB μμ 94==BE BA μμ 2.0=BC μ注:铰支座传递系数为1.0;固定端传递系数为0.5,滑动支座传递系数为-1.0,假定材料均匀,线刚度与杆件成反比,u 为分配系数。
由力矩分配法计算结果如图6.3:图6.3 站厅层半结构计算结果② 第二层杆件计算同①取半结构进行分析计算如图6.4:图6.4站台层半结构受力计算简图m m l q DE ED /60.11826.727121121222∙KN =⨯⨯==M -=M m m l q EH /60.11863.3273131222'∙KM -=⨯⨯-=-=Mm m l q HE/30.596122∙KN -=-=M134===EG ED EB μμμ eh μ=131 31==DF DA μμ计算结果如图6.5所示:kN )图6.5站台层半结构受力计算结果(单位:m由站厅层和站台层受力图画弯矩图,竖向均布荷载作用下的横向框架弯矩图如图6.6所示:kN )图6.6竖向均布荷载作用下的横向框架弯矩图6.6 (单位:m竖向均布荷载(土压力等效简化后)作用下的横向框架计算;同样的取半结构计算, 计算简图如图6.7所示:m m l q AC CA /5.70585.33121121223∙KN -=⨯⨯==M -=M m m l q CE/4.26984.61.69121121224∙KN -=⨯⨯-=⨯-=M m m l q EC/8.5383124∙KN -=-=M5.0==AB AC μμ 25.0=BA μ 31===CE CA CD μμμ 2.0===D A D C D B μμμ 25.0=BD μ 5.0=BG μ 4.0=DH μ计算结果如图6.8所示:图6.8 横向均布荷载作用下的横向半框架计算结果 (单位:m kN ∙)将竖向荷载和横向荷载作用下的弯矩叠加,弯矩图如图 6.9所示:kN )图6.9竖向荷载和横向荷载作用下的弯矩叠加的弯矩图(单位:m七、车站配筋计算: 7.1 站厅层顶板配筋计算2/3.14mm f c N = , 取b=1000mm , mm h 765358000=-=(按单排布筋考虑), 由图6.9 知:站厅层顶板的边跨跨中弯矩m ∙KN =M 4831, 中间跨支座弯m ∙KN =M 47.5432, 中间跨跨中弯矩m ∙KN =M 2.1973, 站厅层顶板配筋计算如下表7-1示:表7-1站厅层顶板配筋计算:图7.1站厅层顶板配筋图7.2站台层中板配筋计算2/3.14mm f c N = b=1000mm mm h 365354000=-= , 由图6.9知:中板的边跨跨中弯矩m ∙KN =M 5.701 , 中间跨支座m ∙KN =M 0.1212, 中间跨跨中弯矩m ∙KN =M 7.643 , 站台层中板配筋计算表如表7-2所示:表7-2站台层中板配筋计算表图7.2站台层顶板配筋图7.3站厅层顶板次、主梁配筋计算(1) 站厅层次梁配筋计算:次梁截面尺寸 b×h= 600×1200mm2m m l=7260mm①荷载计算恒载由板传来: 88.248×2.5 = 220.6 KN/m次梁自重:2×25×0.6×(1.2-0.8)=12 KN/m次梁抹灰: 17×0.02×(1.2-0.8) ×2= 0.027 KN/m 总恒荷载: g = 232.627KN/m活荷载: q=28×2.5=70 KN/m总荷载:g + q =302.7 KN/m②内力计算主梁尺寸:b×h=800mm×1600计算跨度:边跨 mm l 710601= 中间跨 mm l 726002= 由跨度差37.1726071607260=-﹪ < 10﹪故可按等跨连续梁计算。