串口通信基础知识
- 格式:pptx
- 大小:5.66 MB
- 文档页数:65
串行通信基础知识本节简要概括了串行通信中的相关概念,为学习PC 机与MCU 的串行通信做准备。
1. 基本概念我们知道,“位”(bit )是二进制数字的简称,是可以拥有两种状态的最小二进制值,分别用“0”和“1”表示。
在计算机中,通常一个信息单位用8位二进制表示,称为一个“字节”(byte )。
串行通信的特点是:数据以字节为单位,按位的顺序从一条传输线上发送出去。
这里至少涉及到以下几个问题:第一,每个字节之间是如何区分的?第二,发送一位的持续时间是多少?第三,怎样知道传输是正确的?第四,可以传输多远?等等。
这些问题属于串行通信的基本概念。
串行通信分为异步通信与同步通信两种方式,本节主要给出异步串行通信的一些常用概念。
正确理解这些概念,对串行通信编程是有益的。
① 异步串行通信的格式在MCU 的英文芯片手册上,通常说SCI 采用的是NRZ 数据格式,英文全称是:“standard non-return-zero mark/space data format ”,可以译为:“标准不归零传号/空号数据格式”。
这是一个通信术语,“不归零”的最初含义是:用负电平表示一种二进制值,正电平表示另一种二进制值,不使用零电平。
“mark/space ”即“传号/空号”分别是表示两种状态的物理名称,逻辑名称记为“1/0”。
对学习嵌入式应用的读者而言,只要理解这种格式只有“1”、“0”两种逻辑值就可以了。
图3.3.1给出了8位数据、无校验情况的传送格式。
这种格式的空闲状态为“1”,发送器通过发送一个“0”表示一个字节传输的开始,随后是数据位(在MCU 中一般是8位或9位,可以包含校验位)。
最后,发送器发送1到2位的停止位,表示一个字节传送结束。
若继续发送下一字节,则重新发送开始位,开始一个新的字节传送。
若不发送新的字节,则维持“1”的状态,使发送数据线处于空闲。
从开始位到停止位结束的时间间隔称为一帧(frame )。
所以,也称这种格式为帧格式。
串口自定义通信协议程序【原创实用版】目录一、串口通信协议的基础知识二、自定义串口通信协议的实现方法三、温度采集器与上位机串口通信协议的设计实例四、自定义串口通信协议的应用优势与局限性正文一、串口通信协议的基础知识串口通信协议是一种基于串行通信的数据传输方式。
与并行通信相比,串口通信协议具有线路简单、成本低的优点。
在电子设备之间进行数据传输时,常常使用串口通信协议。
在串口通信中,数据是逐个比特按顺序进行传输的。
发送方将数据字符从并行转换为串行,按位发送给接收方。
接收方收到串行数据后,再将其转换为并行数据。
这种通信方式在仅使用一根信号线的情况下完成数据传输,具有线路简单、成本低的优点。
但是,由于串口通信是按位进行的,因此传输速度较慢,且容易受到噪声干扰。
二、自定义串口通信协议的实现方法自定义串口通信协议的实现方法主要包括以下几个步骤:1.选择合适的硬件层通信协议。
常见的硬件层通信协议有 RS-232、RS-485 等。
选择合适的通信协议需要考虑通信距离、通信速率、抗干扰能力等因素。
2.设计数据帧格式。
数据帧格式包括起始符、地址符、数据长度、数据内容、校验和、结束符等。
起始符用于指示数据帧的开始,地址符用于指示数据帧的地址,数据长度用于指示数据帧的数据内容长度,数据内容用于存储实际的数据信息,校验和用于检验数据传输的正确性,结束符用于指示数据帧的结束。
3.编写下位机程序。
下位机程序主要负责发送和接收数据,实现硬件层通信协议。
在编写下位机程序时,需要考虑数据帧的组装、发送、接收、解析等方面。
4.编写上位机程序。
上位机程序主要负责与下位机进行通信,实现数据采集、控制等功能。
在编写上位机程序时,需要考虑数据帧的解析、数据处理、控制指令的发送等方面。
三、温度采集器与上位机串口通信协议的设计实例假设我们需要设计一个温度采集器与上位机之间的串口通信协议,用于实现温度采集数据上传和上位机控制每路温度测量通道的开启功能。
串口读写程序一、概述串口是一种广泛应用于嵌入式系统中的通信方式,其具有简单、可靠、稳定等特点。
串口读写程序是指通过编程实现对串口进行数据的读写操作,从而实现与外部设备的通信。
二、串口基础知识1. 串口通信原理串口通信是通过将数据转换成电信号在串行线路上传输,接收方再将电信号转换为原始数据进行处理。
在传输过程中,需要设置一些参数来确保数据传输的正确性和稳定性。
2. 串口参数设置常见的串口参数设置包括波特率、数据位、停止位和校验位等。
波特率指每秒钟传输的比特数,数据位指每个字符所占用的比特数,停止位指每个字符结束时发送一个停止位以示结束,校验位则用于检测传输过程中出现的错误。
3. 串口读写操作在进行串口读写操作时,需要先打开对应的串口,并设置好相应的参数。
然后可以通过调用相应的函数实现数据的读取和发送。
三、Windows平台下C++实现串口读写程序1. 准备工作首先需要安装一个支持串口编程的库文件,在Windows平台下常用的库文件有WinAPI和MFC等。
这里以WinAPI为例进行说明。
2. 打开串口在WinAPI中,可以通过CreateFile函数打开串口。
具体实现代码如下:HANDLE hComm;hComm = CreateFile("COM1", GENERIC_READ|GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, NULL);if(hComm == INVALID_HANDLE_VALUE){// 打开串口失败}其中,"COM1"表示要打开的串口号,GENERIC_READ和GENERIC_WRITE分别表示读和写的权限。
3. 配置串口参数在打开串口后,需要设置相应的参数。
可以通过DCB结构体来设置波特率、数据位、停止位和校验位等参数。
具体实现代码如下:DCB dcb;memset(&dcb, 0, sizeof(dcb));dcb.DCBlength = sizeof(dcb);GetCommState(hComm, &dcb);dcb.BaudRate = CBR_9600; // 设置波特率为9600dcb.ByteSize = 8; // 设置数据位为8dcb.StopBits = ONESTOPBIT; // 设置停止位为1个dcb.Parity = NOPARITY; // 不使用校验位SetCommState(hComm, &dcb);4. 读取数据在配置好相应的参数后,就可以开始进行数据的读取了。
串口通信基础实训的主要内容
串口通信基础实训的主要内容通常包括以下几个方面:
1. 串口通信基本概念:了解串口通信的基本原理,包括串行通信和并行通信的区别,串口通信的优点和应用场景等。
2. 串口通信协议:学习各种常见的串口通信协议,如RS-232、RS-485、SPI、I2C等,了解它们的通信规则、数据格式、信号线定义等。
3. 串口通信硬件:了解串口通信所需的硬件设备,如串口线缆、串口转换器、串口服务器等,并掌握如何连接和配置这些硬件设备。
4. 串口通信软件:学习如何使用各种串口通信软件,如串口调试助手、终端仿真器等,以便进行串口通信的测试和调试。
5. 串口通信编程:学习如何在各种编程语言中实现串口通信,如C/C++、Python、Java等,通过编写程序来进行数据的发送和接收。
6. 故障排查与维护:了解如何排查和解决串口通信中可能出现的问题,包括信号干扰、通信不稳定、数据丢失等。
7. 实际应用案例:通过分析和解决实际应用案例,如工业控制、智能家居等领域的串口通信应用,加深对串口通信的理解和应用能力。
通过以上实训内容的学习和实践,可以帮助学生掌握串口通信的基本知识和技能,为后续的专业学习和实际工作打下坚实的基础。
51单片机串口通信(相关例程) 51单片机串口通信(相关例程)一、简介51单片机是一种常用的微控制器,它具有体积小、功耗低、易于编程等特点,被广泛应用于各种电子设备和嵌入式系统中。
串口通信是51单片机的常见应用之一,通过串口通信,可以使单片机与其他外部设备进行数据交互和通信。
本文将介绍51单片机串口通信的相关例程,并提供一些实用的编程代码。
二、串口通信基础知识1. 串口通信原理串口通信是通过串行数据传输的方式,在数据传输过程中,将信息分为一个个字节进行传输。
在51单片机中,常用的串口通信标准包括RS232、RS485等。
其中,RS232是一种常用的串口标准,具有常见的DB-9或DB-25连接器。
2. 串口通信参数在进行串口通信时,需要设置一些参数,如波特率、数据位、停止位和校验位等。
波特率表示在单位时间内传输的比特数,常见的波特率有9600、115200等。
数据位表示每个数据字节中的位数,一般为8位。
停止位表示停止数据传输的时间,常用的停止位有1位和2位。
校验位用于数据传输的错误检测和纠正。
三、串口通信例程介绍下面是几个常见的51单片机串口通信的例程,提供给读者参考和学习:1. 串口发送数据```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_SendChar(unsigned char dat){SBUF = dat; // 发送数据while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志}void main(){UART_Init(); // 初始化串口while (1){UART_SendChar('A'); // 发送字母A}}```2. 串口接收数据```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_Recv(){unsigned char dat;if (RI) // 检测是否接收到数据{dat = SBUF; // 读取接收到的数据 RI = 0; // 清除接收中断标志// 处理接收到的数据}}void main(){UART_Init(); // 初始化串口EA = 1; // 允许中断ES = 1; // 允许串口中断while (1)// 主循环处理其他任务}}```3. 串口发送字符串```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_SendString(unsigned char *str){while (*str != '\0')SBUF = *str; // 逐个发送字符while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志str++; // 指针指向下一个字符}}void main(){UART_Init(); // 初始化串口while (1){UART_SendString("Hello, World!"); // 发送字符串}}```四、总结本文介绍了51单片机串口通信的基础知识和相关编程例程,包括串口发送数据、串口接收数据和串口发送字符串。
通讯基础知识1串口通讯串口通讯(Serial Communication),是指外设和计算机间,通过数据信号线、地线等,按位进行传输数据的一种通讯方式。
串口是一种接口标准,它规定了接口的电气标准,没有规定接口插件电缆以及使用的协议。
2串口通讯的数据格式一个字符一个字符地传输,每个字符一位一位地传输,并且传输一个字符时,总是以“起始位”开始,以“停止位”结束,字符之间没有固定的时间间隔要求。
为什么是7位?当计算机发送一个信息包,实际的数据不会是8位的,标准的值是5、7和8位。
如何设置取决于你想传送的信息。
比如,标准的ASCII码是0~127(7位)。
扩展的ASCII码是0~255(8位)。
如果数据使用简单的文本(标准ASCII码),那么每个数据包使用7位数据。
每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。
每一个字符的前面都有一位起始位(低电平),字符本身由7位数据位组成,接着字符后面是一位校验位(检验位可以是奇校验、偶校验或无校验位),最后是一位或一位半或二位停止位,停止位后面是不定长的空闲位,停止位和空闲位都规定为高电平。
实际传输时每一位的信号宽度与波特率有关,波特率越高,宽度越小,在进行传输之前,双方一定要使用同一个波特率设置。
3通讯方式单工模式(Simplex Communication)的数据传输是单向的。
通信双方中,一方固定为发送端,一方则固定为接收端。
信息只能沿一个方向传输,使用一根传输线。
半双工模式(Half Duplex)通信使用同一根传输线,既可以发送数据又可以接收数据,但不能同时进行发送和接收。
数据传输允许数据在两个方向上传输,但是,在任何时刻只能由其中的一方发送数据,另一方接收数据。
因此半双工模式既可以使用一条数据线,也可以使用两条数据线。
半双工通信中每端需有一个收发切换电子开关,通过切换来决定数据向哪个方向传输。
因为有切换,所以会产生时间延迟,信息传输效率低些。
STM32串口通信学习总结STM32是STMicroelectronics推出的一款32位单片机系列,具有高性能、低功耗、丰富的外设等特点,广泛应用于工业控制、消费电子、汽车电子等领域。
其中,串口通信是单片机中常用的通信方式之一,本文将对STM32串口通信学习进行总结。
1.串口通信原理及基础知识在STM32中,USART(通用同步/异步收发器)是负责串口通信的外设。
USART提供了多种模式的串口通信,包括异步模式(Asynchronous)、同步模式(Synchronous)以及单线模式(Single-wire)等。
2.STM32串口通信配置步骤(1)GPIO配置:首先需要配置串口通信所涉及的GPIO引脚,通常需要配置为复用功能,使其具备USART功能。
(2)USART配置:根据需要选择USART1、USART2、USART3等串口进行配置,设置通信模式、波特率等参数。
在配置时需要注意与外部设备的通信标准和参数保持一致。
(3)中断配置(可选):可以选择中断方式来实现串口数据的收发。
通过配置中断,当接收到数据时会触发中断,从而实现接收数据的功能。
(4)发送数据:通过USART的发送寄存器将数据发送出去,可以通过查询方式或者中断方式进行发送。
(5)接收数据:通过读取USART的接收寄存器,获取接收到的数据。
同样可以通过查询方式或者中断方式进行接收。
3.常见问题及解决方法(1)波特率设置错误:在进行串口通信时,波特率设置错误可能会导致通信失败。
需要根据外设的要求,选择适当的波特率设置,并在STM32中进行配置。
(2)数据丢失:在高速通信或大量数据传输时,由于接收速度跟不上发送速度,可能会导致数据丢失。
可以通过增加接收缓冲区大小、优化接收中断处理等方式来解决该问题。
(3)数据帧错误:在数据传输过程中,可能发生数据位错误、校验错误等问题。
可以通过对USART的配置进行检查,包括校验位、停止位、数据位等的设置是否正确。
串⼝通信基础,接收,发送数据通信接⼝背景知识设备之间通信的⽅式⼀般情况下,设备之间的通信⽅式可以分成并⾏通信和串⾏通信两种。
它们的区别是:串⾏通信的分类1、按照数据传送⽅向,分为:单⼯:数据传输只⽀持数据在⼀个⽅向上传输;半双⼯:允许数据在两个⽅向上传输。
但是,在某⼀时刻,只允许数据在⼀个⽅向上传输,它实际上是⼀种切换⽅向的单⼯通信;它不需要独⽴的接收端和发送端,两者可以合并⼀起使⽤⼀个端⼝。
全双⼯:允许数据同时在两个⽅向上传输。
因此,全双⼯通信是两个单⼯通信⽅式的结合,需要独⽴的接收端和发送端。
2、按照通信⽅式,分为:同步通信:带时钟同步信号传输。
⽐如:SPI,IIC通信接⼝。
异步通信:不带时钟同步信号。
⽐如:UART(通⽤异步收发器),单总线。
在同步通讯中,收发设备上⽅会使⽤⼀根信号线传输信号,在时钟信号的驱动下双⽅进⾏协调,同步数据。
例如,通讯中通常双⽅会统⼀规定在时钟信号的上升沿或者下降沿对数据线进⾏采样。
在异步通讯中不使⽤时钟信号进⾏数据同步,它们直接在数据信号中穿插⼀些⽤于同步的信号位,或者将主题数据进⾏打包,以数据帧的格式传输数据。
通讯中还需要双⽅规约好数据的传输速率(也就是波特率)等,以便更好地同步。
常⽤的波特率有4800bps、9600bps、115200bps等。
在同步通讯中,数据信号所传输的内容绝⼤部分是有效数据,⽽异步通讯中会则会包含数据帧的各种标识符,所以同步通讯效率⾼,但是同步通讯双⽅的时钟允许误差⼩,稍稍时钟出错就可能导致数据错乱,异步通讯双⽅的时钟允许误差较⼤。
常见的串⾏通信接⼝STM32串⼝通信基础STM32的串⼝通信接⼝有两种,分别是:UART(通⽤异步收发器)、USART(通⽤同步异步收发器)。
⽽对于⼤容量STM32F10x系列芯⽚,分别有3个USART和2个UART。
UART引脚连接⽅法RXD:数据输⼊引脚,数据接受;TXD:数据发送引脚,数据发送。
对于两个芯⽚之间的连接,两个芯⽚GND共地,同时TXD和RXD交叉连接。