立体几何初步讲义
- 格式:doc
- 大小:1021.50 KB
- 文档页数:19
立体几何专题讲义一、考点分析1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱★ 底面为矩形底面为正方形 侧棱与底面边长相等 2. 棱锥棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。
3.球球的性质:①球心与截面圆心的连线垂直于截面;★②r =d 、球的半径为R 、截面的半径为r )★球与多面体的组合体:球与正四面体,球与长 方体,球与正方体等的内接与外切.注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2344,3S R V R ππ==球球(其中R 为球的半径)1.求异面直线所成的角(]0,90θ∈︒︒:解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移 另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。
常用中位线平移法 二证:证明所找(作)的角就是异面直线所成的角(或其补角)。
常需要证明线线平行; 三计算:通过解三角形,求出异面直线所成的角;2求直线与平面所成的角[]0,90θ∈︒︒:关键找“两足”:垂足与斜足解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角(注意三垂线定理的应用); 二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角三角形,求出线面角。
3求二面角的平面角[]0,θπ∈解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角; 二证: 证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法); 三计算:通过解三角形,求出二面角的平面角。
俯视图二、典型例题1._________________.第1题2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________.第2题 第3题3.一个几何体的三视图如图3所示,则这个几何体的体积为 .4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 .第4题 第5题5.如图5是一个几何体的三视图,若它的体积是 a侧(左)视图 正(主)视图 3 俯视图6.已知某个几何体的三视图如图6,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 .第6题 第7题7.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm 8.设某几何体的三视图如图8(尺寸的长度单位为m ),则该几何体的体积为_________m 3。
高中数学专题讲义:立体几何初步第1讲空间几何体的结构、三视图和直观图最新考纲 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图;3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.知识梳理1.简单多面体的结构特征(1)棱柱的侧棱都平行且相等,上、下底面是全等且平行的多边形;(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形;(3)棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形.2.旋转体的形成3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②在画三视图时,重叠的线只画一条,挡住的线要画成虚线.4.直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z 轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z 轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A =90°,则在直观图中,∠A=45°.()(4)正方体、球、圆锥各自的三视图中,三视图均相同.()解析(1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱.(2)反例:如图所示不是棱锥.(3)用斜二测画法画水平放置的∠A时,把x,y轴画成相交成45°或135°,平行于x轴的线还平行于x轴,平行于y轴的线还平行于y轴,所以∠A也可能为135°.(4)正方体和球的三视图均相同,而圆锥的正视图和侧视图相同,且为等腰三角形, 其俯视图为圆心和圆.答案(1)×(2)×(3)×(4)×2.某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱解析由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.答案A3.如图,长方体ABCD-A′B′C′D′中被截去一部分,其中EH∥A′D′.剩下的几何体是()A.棱台B.四棱柱C.五棱柱D.六棱柱解析由几何体的结构特征,剩下的几何体为五棱柱.答案C4.(2016·天津卷)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为( )解析 先根据正视图和俯视图还原出几何体,再作其侧视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧视图为图②.答案 B5.正△AOB 的边长为a ,建立如图所示的直角坐标系xOy ,则它的直观图的面积是________.解析 画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图).D ′为O ′A ′的中点.易知D ′B ′=12DB (D 为OA 的中点),∴S △O ′A ′B ′=12×22S △OAB =24×34a 2=616a 2. 答案 616a 2考点一 空间几何体的结构特征【例1】(1)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0B.1C.2D.3(2)以下命题:①以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;②圆柱、圆锥、圆台的底面都是圆面;③一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为()A.0B.1C.2D.3解析(1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.(2)由圆台的定义可知①错误,②正确.对于命题③,只有平行于圆锥底面的平面截圆锥,才能得到一个圆锥和一个圆台,③不正确.答案(1)A(2)B规律方法(1)关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例即可.(2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.(3)既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.【训练1】下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上任意一点的连线都是母线解析如图1知,A不正确.如图2,两个平行平面与底面不平行时,截得的几何体不是旋转体,则B不正确.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长,C错误.由母线的概念知,选项D正确.答案D考点二空间几何体的三视图(多维探究)命题角度一由空间几何体的直观图判断三视图【例2-1】一几何体的直观图如图,下列给出的四个俯视图中正确的是()解析该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选项B适合.答案B命题角度二由三视图判定几何体【例2-2】(1)(2014·全国Ⅰ卷)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱(2)(2015·北京卷)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1B. 2C. 3D.2解析(1)由题知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱,故选B.(2)由题中三视图知,此四棱锥的直观图如图所示,其中PC⊥平面ABCD,PC=1,底面四边形ABCD为正方形且边长为1,最长棱长P A=12+12+12= 3.答案(1)B(2)C规律方法(1)由实物图画三视图或判断选择三视图,按照“正侧一样高,正俯一样长,俯侧一样宽”的特点确认.(2)根据三视图还原几何体.①对柱、锥、台、球的三视图要熟悉.②明确三视图的形成原理,并能结合空间想象将三视图还原为直观图.③根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.提醒对于简单组合体的三视图,首先要确定正视、侧视、俯视的方向,其次要注意组合体由哪些几何体组成,弄清它们的组成方式,特别应注意它们的交线的位置,区分好实线和虚线的不同.【训练2】(1)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的侧视图为()(2)如图,网格纸的各小格都是正方形,粗实线画出的是一个锥体的侧视图和俯视图,则该锥体的正视图可能是()解析(1)还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线,D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.故选B.(2)由俯视图和侧视图可知原几何体是四棱锥,底面是长方形,内侧的侧面垂直于底面,所以正视图为A.答案(1)B(2)A考点三空间几何体的直观图【例3】已知等腰梯形ABCD,上底CD=1,腰AD=CB=2,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.解析如图所示,作出等腰梯形ABCD的直观图:因为OE=(2)2-1=1,所以O′E′=12,E′F=24,则直观图A′B′C′D′的面积S′=1+3 2×24=22.答案2 2规律方法(1)画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成45°或135°)和“二测”(平行于y轴的线段长度减半,平行于x轴和z轴的线段长度不变)来掌握.对直观图的考查有两个方向,一是已知原图形求直观图的相关量,二是已知直观图求原图形中的相关量.(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S直观图=24S原图形.【训练3】(2017·贵阳联考)有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB=AD=1,DC⊥BC,则这块菜地的面积为________.解析如图1,在直观图中,过点A作AE⊥BC,垂足为E.在Rt△ABE中,AB=1,∠ABE=45°,∴BE=2 2.又四边形AECD为矩形,AD=EC=1.∴BC=BE+EC=22+1.由此还原为原图形如图2所示,是直角梯形A′B′C′D′.在梯形A′B′C′D′中,A′D′=1,B′C′=22+1,A′B′=2.∴这块菜地的面积S=12(A′D′+B′C′)·A′B′=12×⎝⎛⎭⎪⎫1+1+22×2=2+22.答案2+2 2[思想方法]1.画三视图的三个原则:(1)画法规则:“长对正,宽相等,高平齐”.(2)摆放规则:侧视图在正视图的右侧,俯视图在正视图的正下方.(3)实虚线的画法规则:可见轮廓线和棱用实线画出,不可见线和棱用虚线画出.2.棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想. [易错防范]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视实虚线的画法.基础巩固题组(建议用时:30分钟)一、选择题1.关于空间几何体的结构特征,下列说法不正确的是()A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等解析根据棱锥的结构特征知,棱锥的侧棱长不一定都相等.答案B2.如图所示的几何体是棱柱的有()A.②③⑤B.③④⑤C.③⑤D.①③解析由棱柱的定义知③⑤两个几何体是棱柱.答案C3.(2017·衡水中学月考)将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为()解析易知侧视图的投影面为矩形,又AF的投影线为虚线,即为左下角到右上角的对角线,∴该几何体的侧视图为选项D.答案D4.如图是一几何体的直观图、正视图和俯视图,该几何体的侧视图为()解析由直观图和正视图、俯视图可知,该几何体的侧视图应为面P AD,且EC投影在面P AD上且为实线,点E的投影点为P A的中点,故B正确.答案B5.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( ) A.6 2B.42C.6D.4解析 如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A -BCD ,最长的棱为AD =(42)2+22=6. 答案 C6.某几何体的正视图和侧视图均为如图所示的图形,则在下图的四个图中可以作为该几何体的俯视图的是( )A.①③B.①④C.②④D.①②③④解析 由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确. 答案 A7.(2015·全国Ⅱ卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A.18 B.17 C.16D.15解析 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16.剩余部分的体积V 2=13-16=56.因此,V 1V 2=15.答案 D8.(2017·石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为()解析由题图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD.所以该三棱锥的侧视图可能为选项D.答案D二、填空题9.(2017·福建龙岩联考)一水平放置的平面四边形OABC,用斜二测画法画出它的直观图O′A′B′C′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC面积为________.解析因为直观图的面积是原图形面积的24倍,且直观图的面积为1,所以原图形的面积为2 2.答案2210.(2017·兰州模拟)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于________.解析由题知此正方体的正视图与侧视图是一样的,正视图的面积与侧视图的面积相等为 2.答案211.某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为________.解析由题中三视图可知,三棱锥的直观图如图所示,其中P A⊥平面ABC,M为AC的中点,且BM⊥AC.故该三棱锥的最长棱为PC.在Rt△P AC中,PC=P A2+AC2=22+22=2 2.答案2212.如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正视图与侧视图的面积的比值为________.解析三棱锥P-ABC的正视图与侧视图为底边和高均相等的三角形,故它们的面积相等,面积比值为1.答案1能力提升题组(建议用时:15分钟)13.在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①②③④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②解析 如图,在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④,俯视图为②. 答案 D14.如图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是( )A.4B.5C.32D.33解析 由三视图知几何体的直观图如图所示,计算可知线段AF 最长,且AF =BF 2+AB 2=3 3. 答案 D15.(2017·长郡中学月考)已知△ABC 的平面直观图△A ′B ′C ′是边长为a 的正三角形,那么原△ABC 的面积为________.解析 如图,过C ′作y ′轴的平行线C ′D ′,与x ′轴交于点D ′.则C ′D ′=32a sin 45°=62a .又C ′D ′是原△ABC 的高CD 的直观图, 所以CD =6a .故S △ABC =12AB ·CD =62a 2. 答案 62a 216.(2016·北京卷)某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析由题中三视图可画出长为2、宽为1、高为1的长方体,将该几何体还原到长方体中,如图所示,该几何体为四棱柱ABCD-A′B′C′D′.故该四棱柱的体积V=Sh=12×(1+2)×1×1=32.答案32第2讲空间几何体的表面积与体积最新考纲了解球、棱柱、棱锥、台的表面积和体积的计算公式.知识梳理1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=4πR2V=43πR31.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)锥体的体积等于底面面积与高之积.()(2)球的体积之比等于半径比的平方.()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O的半径为R,其内接正方体的边长为a,则R=32a.()解析(1)锥体的体积等于底面面积与高之积的三分之一,故不正确.(2)球的体积之比等于半径比的立方,故不正确.答案(1)×(2)×(3)√(4)√2.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为()A.1 cmB.2 cmC.3 cmD.32cm解析S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2(cm).答案B3.(2017·西安一中月考)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4解析由几何体的三视图可知,该几何体为半圆柱,直观图如图所示.表面积为2×2+2×12×π×12+π×1×2=4+3π.答案D4.(2016·全国Ⅱ卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.323π C.8π D.4π解析设正方体的棱长为a,则a3=8,解得a=2.设球的半径为R,则2R=3a,即R = 3.所以球的表面积S=4πR2=12π.答案A5.(2016·天津卷)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为________m3.解析根据三视图可知该四棱锥的底面是底边长为2 m,高为1 m的平行四边形,四棱锥的高为3 m.故该四棱锥的体积V=13×2×1×3=2 (m3).答案2考点一空间几何体的表面积【例1】(1)某几何体的三视图如图所示,则该几何体的表面积等于()A.8+2 2B.11+22C.14+2 2D.15(2)(2016·全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是()A.17πB.18πC.20πD.28π解析(1)由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3.所以该几何体的表面积为8+22+3=11+2 2.(2)由三视图知该几何体为球去掉了18球所剩的几何体(如图).设球的半径为R,则78×43πR3=28π3,R=2.故几何体的表面积S=78×4πR2+34πR2=17 π.答案(1)B(2)A规律方法空间几何体表面积的求法.(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.【训练1】(2016·全国Ⅲ卷)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5B.54+185C.90D.81解析由几何体的三视图可知,该几何体是底面为正方形的斜平行六面体.由题意可知该几何体底面边长为3,高为6,所以侧棱长为32+62=3 5.故该几何体的表面积S =32×2+(3×6)×2+(3×35)×2=54+18 5. 答案 B考点二 空间几何体的体积【例2】 (1)(2016·山东卷)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )A.13+23πB.13+23πC.13+26πD.1+26π(2)(2014·全国Ⅱ卷)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为( ) A.3B.32C.1D.32解析 (1)由三视图知该四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×43π×⎝ ⎛⎭⎪⎫223=13+26π.(2)由题意可知,AD ⊥平面B 1DC 1,即AD 为三棱锥A -B 1DC 1的高, 且AD =32×2=3,易求得S △B 1DC 1=12×2×3=3, 所以VA -B 1DC 1=13×3×3=1. 答案 (1)C (2)C规律方法 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.【训练2】 (1)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.22π3B.42π3C.22πD.42π(2)(2015·浙江卷改编)某几何体的三视图如图所示(单位:cm),则该几何体的体积是________cm 3.解析 (1)绕等腰直角三角形的斜边所在的直线旋转一周形成的曲面围成的几何体为两个底面重合,等体积的圆锥的组合体,如图所示.每一个圆锥的底面半径和高都为2,故所求几何体的体积V =2×13×2π×2=42π3.(2)由三视图可知该几何体是由棱长为2 cm 的正方体与底面边长为2 cm 正方形、高为2 cm 的正四棱锥组成. 又正方体的体积V 1=23=8(cm 3), 正四棱锥的体积V 2=13×22×2=83(cm 3). 所以该几何体的体积V =V 1+V 2=323(cm 3). 答案 (1)B (2)323考点三 多面体与球的切、接问题(典例迁移)【例3】 (经典母题)(2016·全国Ⅲ卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A.4πB.9π2C.6πD.32π3解析 由AB ⊥BC ,AB =6,BC =8,得AC =10.要使球的体积V 最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC 的内切圆的半径为r .则12×6×8=12×(6+8+10)·r ,所以r =2. 2r =4>3,不合题意.球与三棱柱的上、下底面相切时,球的半径R 最大. 由2R =3,即R =32.故球的最大体积V =43πR 3=92π. 答案 B【迁移探究1】 若本例中的条件变为“直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积. 解 将直三棱柱补形为长方体ABEC -A 1B 1E 1C 1, 则球O 是长方体ABEC -A 1B 1E 1C 1的外接球. ∴体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13. 故S 球=4πR 2=169π.【迁移探究2】 若本例中的条件变为“正四棱锥的顶点都在球O 的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积. 解 如图,设球心为O ,半径为r , 则在Rt △AOF 中,(4-r )2+(2)2=r 2,解得r =94,则球O 的体积V 球=43πr 3=43π×⎝ ⎛⎭⎪⎫943=243π16.规律方法 空间几何体与球接、切问题的求解方法.(1)与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.(2)若球面上四点P ,A ,B ,C 中P A ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.[思想方法]1.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.2.求体积的两种方法:(1)割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.(2)等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高.[易错防范]1.求组合体的表面积时:组合体的衔接部分的面积问题易出错.2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.3.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.基础巩固题组(建议用时:40分钟)一、选择题1.(2015·全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛解析设米堆的底面半径为r尺,则π2r=8,所以r=16π.所以米堆的体积为V =14×13π·r 2·5=π12·⎝ ⎛⎭⎪⎫16π2·5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛). 答案 B2.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( ) A.2 B.92 C.32D.3解析 由三视图知,该几何体是四棱锥,底面是直角梯形,且S 底=12(1+2)×2=3.∴V =13x ·3=3,解得x =3. 答案 D3.(2017·合肥模拟)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3B.2+3C.1+2 2D.22解析 四面体的直观图如图所示.侧面SAC ⊥底面ABC ,且△SAC 与△ABC 均为腰长是2的等腰直角三角形,SA =SC =AB =BC =2,AC =2.设AC 的中点为O ,连接SO ,BO ,则SO ⊥AC ,又SO ⊂平面SAC ,平面SAC ∩平面ABC =AC ,∴SO ⊥平面ABC ,又BO ⊂平面ABC ,∴SO ⊥BO . 又OS =OB =1,∴SB =2,故△SAB 与△SBC 均是边长为2的正三角形,故该四面体的表面积为2×12×2×2+2×34×(2)2=2+ 3. 答案 B4.(2015·全国Ⅱ卷)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A.36πB.64πC.144πD.256π解析 因为△AOB 的面积为定值,所以当OC 垂直于平面AOB 时,三棱锥O -ABC 的体积取得最大值.由13×12R 2×R =36,得R =6.从而球O 的表面积S =4πR 2=144π. 答案 C5.(2017·青岛模拟)如图,四棱锥P -ABCD 的底面ABCD 为平行四边形,NB =2PN ,则三棱锥N -P AC 与三棱锥D -P AC 的体积比为( ) A.1∶2 B.1∶8 C.1∶6D.1∶3解析 设点P ,N 在平面ABCD 内的投影分别为点P ′,N ′,则PP ′⊥平面ABCD ,NN ′⊥平面ABCD ,所以PP ′∥NN ′,则在△BPP ′中,由BN =2PN 得NN ′PP ′=23. V 三棱锥N -P AC =V 三棱锥P -ABC -V 三棱锥N -ABC =13S △ABC ·PP ′- 13S △ABC ·NN ′=13S △ABC ·(PP ′-NN ′)=13S △ABC · 13PP ′=19S △ABC ·PP ′,V 三棱锥D -P AC =V 三棱锥P -ACD =13S △ACD ·PP ′,又∵四边形ABCD 是平行四边形,∴S △ABC =S △ACD ,∴V 三棱锥N -P AC V 三棱锥D -P AC =13.故选D.答案 D 二、填空题6.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.。
高中数学复习讲义 第七章 立体几何初步【方法点拨】立体几何研究的是现实空间,认识空间图形,可以培养学生的空间想象能力、推理论证能力、运用图 形语言进行交流的能力以及几何直观能力。
空间的元素是点、线、面、体,对于线线、线面、面面的位置 关系着重研究它们之间的平行与垂直关系,几何体着重研究棱柱、棱锥和球。
在复习时我们要以下几点:1 .注意提高空间想象能力。
在复习过程中要注意:将文字语言转化为图形,并明确已知元素之间的位置 关系及度量关系;借助图形来反映并思考未知的空间形状与位置关系;能从复杂图形中逻辑的分析出基本 图形和位置关系,并借助直观感觉展开联想与猜想,进行推理与计算。
2 .归纳总结,分门别类。
从知识上可以分为:平面的基本性质、线线、线面、面面的平行与垂直、空间 中角与距离的计算。
3 .抓主线,攻重点。
针对一些重点内容加以训练,平行和垂直是位置关系的核心,而线面垂直又是核心 的核心,角与距离的计算已经降低要求。
4 .复习中要加强数学思想方法的总结与提炼。
立体几何中蕴含着丰富的思想方法,如:将空间问题转化 成平面图形来解决、线线、线面与面面关系的相互转化、空间位置关系的判断及角与距离的求解转化成空 间向量的运算。
【知识图解】 空间几何体 —►构成几何体 的基本元素直观认识线 囿平行与垂—►中心投影与 平行投影*---►柱、锥、台、 球的特征——►表面积与体 积直观图与三 视图的画法*点、线、面 之间的位置 关系第1课空间几何体【考点导读】1 .观察认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2 .能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图;3 .通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式;4 . 了解球、棱柱、棱锥、台的表面积和体积的计算公式。
立体几何总复习一、几何平面的基本性质1α=∅ A α=b A =l αβ= a α=∅(α)或a A α=公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平 推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个 推理模式:A l A ααββ∈⎫⇒=⎬∈⎭且A l ∈且l公理3 推理模式:,, A B C 不共线⇒存在唯一的平面α,使得,,A B C α∈ 推论1 经过一条直线和直线外的一点有且只有一个平面.推理模式:A a ∉⇒存在唯一的平面α,使得A α∈,l α⊂ 推论2 推理模式:P b a = ⇒存在唯一的平面α,使得,a b α⊂推论3 推理模式://a b ⇒存在唯一的平面α,使得,a b α⊂动手练习:1 下面是一些命题的叙述语,其中命题和叙述方法都正确的是( ) A .∵αα∈∈B A ,,∴α∈AB . B .∵βα∈∈a a ,,∴a =βα . C .∵α⊂∈a a A ,,∴A α∈. D .∵α⊂∉a a A ,,∴α∉A . 2.下列推断中,错误的是( )A .ααα⊂⇒∈∈∈∈lB l B A l A ,,,C .βα∈∈C B A C B A ,,,,,,且A,B,C 不共线βα,⇒B .B B A A =⇒∈∈∈∈βαβαβα ,,, D .αα∉⇒∈⊄A l A l ,3.两个平面把空间最多分成___ 部分,三个平面把空间最多分成__部分. 4.判断下列命题的真假,真的打“√”,假的打“×” (1)空间三点可以确定一个平面 ( )(2)两个平面若有不同的三个公共点,则两个平面重合( ) (3)两条直线可以确定一个平面( )(4)若四点不共面,那么每三个点一定不共线( ) (5)两条相交直线可以确定一个平面( ) (6)三条平行直线可以确定三个平面( ) (7)一条直线和一个点可以确定一个平面( ) (8)两两相交的三条直线确定一个平面( ) 5.看图填空(1)AC ∩BD = (4)平面A 1C 1CA ∩平面D 1B 1BD = (2)平面AB 1∩平面A 1C 1= (5)平面A 1C 1∩平面AB 1∩平面B 1C = (3)平面A 1C 1CA ∩平面AC = (6)A 1B 1∩B 1B ∩B 1C 1= 6 6.选择题(1)下列图形中不一定是平面图形的是 ( )A 三角形B 菱形C 梯形D 四边相等的四边形(2)空间四条直线每两条都相交,最多可以确定平面的个数是( )A 1个B 4个C 6个D 8个(3)空间四点中,无三点共线是四点共面的 ( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要1二、立体几何线面关系(一)、判定两线平行的方法1、平行于同一直线的两条直线互相平行2、垂直于同一平面的两条直线互相平行3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行5、在同一平面内的两条直线,可依据平面几何的定理证明(二)、判定线面平行的方法6、据定义:如果一条直线和一个平面没有公共点7、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行8、两面平行,则其中一个平面内的直线必平行于另一个平面9、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面10、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面(三)、判定面面平行的方法1、定义:没有公共点2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行3 垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行(四)、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面(五)、判定线面垂直的方法1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面(六)、判定两线垂直的方法1、 定义:成︒90角2、 直线和平面垂直,则该线与平面内任一直线垂直3、 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直4、 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直5、 一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 (七)、判定面面垂直的方法1、 定义:两面成直二面角,则两面垂直2、 一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 (八)、面面垂直的性质 1、 二面角的平面角为︒902、 在一个平面内垂直于交线的直线必垂直于另一个平面3、 相交平面同垂直于第三个平面,则交线垂直于第三个平面(九)、各种角的范围 1、异面直线所成的角的取值范围是:︒≤<︒900θ (]︒︒90,0 2、直线与平面所成的角的取值范围是:︒≤≤︒900θ []︒︒90,0 3、斜线与平面所成的角的取值范围是:︒≤<︒900θ (]︒︒90,04、二面角的大小用它的平面角来度量;取值范围是:︒≤<︒1800θ (]︒︒180,0动手练习1.判断题(对的打“√”,错的打“×”)(1)垂直于两条异面直线的直线有且只有一条 ( )(2)两线段AB 、CD 不在同一平面内,如果AC =BD ,AD =BC ,则AB ⊥CD ( ) (3)在正方体中,相邻两侧面的一对异面的对角线所成的角为60º ( ) (4)四边形的一边不可能既和它的邻边垂直,又和它的对边垂直 ( ) 2.右图是正方体平面展开图,在这个正方体中①BM 与ED 平行;②CN 与BE 是异面直线; ③CN 与BM 成60º角;④DM 与BN 垂直.以上四个命题中,正确命题的序号是( )(A )①②③ (B )②④ (C )③④ (D 3 ,,,E F G H 分别是空间四边形四条边,,,AB BC CD DA 的中点,EA FB CMN D(1)求证四边形EFGH(2)若AC ⊥BD 时,求证:EFGH 为矩形; (3)若BD =2,AC =6,求22HF EG +;(4)若AC 、BD 成30º角,AC =6,BD =4,求四边形EFGH 的面积;(5)若AB =BC =CD =DA =AC =BD =2,求AC 与BD 间的距离.4 ABCD 中,2AD BC ==,,E F 分别是,AB CD 的中点,EF = 求异面直线,AD BC5. 在正方体ABCD -A 1B 1C 1D 1中,求(1)A 1B 与B 1D 1所成角; (2)AC 与BD 1所成角.6.在长方体D C B A ABCD '''-中,已知AB=a ,BC=b ,A A '=c(a >b),求异面直线B D '与AC7.如图,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别是AB 、PC (1)求证://MN 平面PAD ;(2)若4MN BC ==,PA = 求异面直线PA 与MN8.如图,正方形ABCD 与ABEF 不在同一平面内,M 、N 分别在AC 、BF 上,且AM FN =求证://MN 平面CBE三、空间图形一、面积:1、ch s =直棱柱侧 ()为直截面周长斜棱柱侧``c l c s = rh cl s π2==圆柱侧 2、中截面面积:2`0ss s += 3、`21ch s =正棱锥侧 rl cl s π==21圆锥侧 4、()``21h c c s +=正棱台侧()()l r r l c c s ``21+=+=π圆台 5、预备定理ph s π2=锥球内接圆台,圆柱,圆①24r s π=球 ②rh s π2=球带 ③)(222h r rh s +==ππ球冠 6、面积比是相似比的平方,体积比是相似比的立方7、圆锥轴截面的顶角α和侧面展开图的圆心角θ的关系为:2sin 22αππθ⋅=⋅=l r 8、圆台上、下底面半径为r`、r ,母线为l,圆台侧面展开后所得的扇环圆心角为θ,则:lc c l r r l r r `2`360`-=⋅-=︒⋅-=πθ 9、圆锥中,过两母线的截面面积为s当轴截面顶角(]︒︒∈90,0α时,αsin 212l s s ==轴截面截面最大 当轴截面顶角[)︒︒∈180,90α时,轴截面截面最大s l l s ≠=︒=222190sin 21 10、球面距离θ⋅=R l (θ用弧度表示,Rl =θ) 二、体积 1、l s sh V `==棱柱(s`为直截面面积) sh h r V =⋅=2π圆柱2、sh V 31=棱锥sh h r V 31312=⋅=π圆锥3、`)`(31s s s s h V +⋅+=棱台 =++=)``(3122r rr r h V π圆台`)`(31s s s s h +⋅+ 4、334R V π=球5、)3(31)3(61222h R h h r h V -=+=ππ球缺6、)(31体适用于有内切球的多面内切球半径表体r S V ⋅=1 n 面体共有8条棱,5个顶点,求n 2.一个正n 面体共有8个顶点,每个顶点处共有三条棱,求n 3.一个简单多面体的各面都是三角形,证明它的顶点数V 和面数F 有下面的关系:F =2V -4 4.有没有棱数是75.①过球面上任意两点,作球的大圆的个数是 .②球半径为25cm ,球心到截面距离为24cm ,则截面面积为 .③已知球的两个平行截面的面积分别是5π和8π,它们位于球心同一侧,且相距1,则球半径是 .④球O 直径为4,,A B 为球面上的两点且AB =,A B 两点的球面距离为 . ⑤北纬60圈上,M N 两地,它们在纬度圈上的弧长是2Rπ(R 为地球半径),则这两地间的球面距离为 .7.北纬45圈上有,A B 两地,A 在东径120,B 在西径150,设地球半径为R ,,A B 两地球面距离为 ;8.一个球夹在120二面角内,两切点在球面上最短距离为cm π,则球半径为 ;9.设地球的半径为R ,在北纬45°圈上有A 、B 两点,它们的经度相差90°,那么这两点间的纬线的长为_________,两点间的球面距离是_________. 球的大圆面积增大为原来的4倍,则体积增大为原来的 倍;11.三个球的半径之比为1:2:3,那么最大的球的体积是其余两个球的体积和的 倍; 12.若球的大圆面积扩大为原来的4倍,则球的体积比原来增加 倍; 13.把半径分别为3,4,5的三个铁球,熔成一个大球,则大球半径是 ; 14.正方体全面积是24,它的外接球的体积是 ,内切球的体积是 . 球O 1、O 2分别与正方体的各面、各条棱相切,正方体的各顶点都在球O 3的表面上,求三个球的表面积之比.16.表面积为324π的球,其内接正四棱柱的高是1417. 正四面体ABCD 的棱长为a ,球O 是内切球,球O 1是与正四面体的三个面和球O 都相切的一个小球,求球O 1的体积.D'C'B'A'D CBAH OA'D'C'B'DCBA判断下列结论是否正确,为什么?(1)有一个面是多边形,其余各面是三角形的几何体是棱锥; (2)正四面体是四棱锥;(3)侧棱与底面所成的角相等的棱锥是正棱锥;(4)侧棱长相等,各侧面与底面所成的角相等的棱锥是正棱锥.2 ABCD A B C D ''''-中,,3A AB A AD BAD π''∠=∠∠=,,AB AD a AA b '===,求对角面BB D D ''3.已知:正四棱柱ABCD A B C D ''''-的底面边长为2 (1)求二面角B AC B '--的大小;(2)求点B 到平面AB C '4.棱长为a 的正方体OABC O A B C ''''-中,,E F 分别为棱,AB BC 上的动点,且(0)AE BF x x a ==≤≤,(1)求证:A F C E ''⊥;(2)当BEF ∆的面积取得最大值时,求二面角B EF B '--的大小.5. 如图,M 、N 分别是棱长为1的正方体''''D C B A ABCD -的棱'BB 、''C B 的中点.求异面直线MN 与CBOCBA A GEP D CBA'CD 所成的角.6.在三棱锥P ABC -中,ABC ∆为正三角形,90PCA ∠=,D 为PA 中点,二面角P AC B --为120,2,PC AB ==(1)求证:AC BD ⊥;(2)求BD 与底面ABC 所成的角,(3)求三棱锥P ABC -的体积.7. 斜三棱柱的底面的边长是4cm 的正三角形,侧棱长为3cm,侧棱1AA 与底面相邻两边都成060角. (1)求证:侧面11CC B B 是矩形; (2)求这个棱柱的侧面积; (3)求棱柱的体积.。
立体几何初步复习讲义知识结构图立体几何初步空间几何体的结构特征棱柱圆柱定义相关系列性质侧面展开图公式柱定义性质侧面展开图公式棱锥圆锥锥定义性质侧面展开图公式定义性质侧面展开图公式棱台圆台台定义性质公式球定义性质公式定义性质侧面展开图公式空间几何体的三视图与直观图投影三视图直观图空间图形的位置关系空间直线的位置关系直线与平面的位置关系平面与平面的位置关系点直线平面之间的位置关系平面的基本性质平行关系线面平行线面斜交面面平行垂直关系线面垂直面面斜交面面垂直基础知识1.1、多面体——由若干个平面多边形围成的几何体叫作多面体。
围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体叫作旋转体。
其中,这条定直线称为旋转体的轴。
1.2、棱柱的结构特征1、棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
2、相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 ②四棱柱底面为平行四边形平行六面体侧棱垂直于底面直平行六面体底面为矩形长方体底面为正方形正四棱柱侧棱与底面边长相等正方体 3、棱柱的性质:①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;补充知识点 长方体的性质: ①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;如图222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=.4、侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.5、面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)1.2、圆柱的结构特征 1、圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2、圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形.3、侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4、面积、体积公式:S 圆柱侧=2rh π;S 圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高) 1.3、棱锥的结构特征1、棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
立体几何初步讲义单姗
1构成空间几何体的基本元素
长方体的面,棱,顶点
平面定义,表示法,平面画法(一个,两垂直)
点线面的运动轨迹
直线或线段,曲线或一段,平面曲面锥面,几何体。
直线与直线,直线与平面,平面与平面位置关系。
异面直线,点到面的距离,面到面的距离
直线和平面平行,直线和平面垂直,平面和平面平行,平面和平面垂直2棱柱,棱锥,棱台
凸多面体
底面,侧面,侧棱,高
斜高,侧面,顶点,侧棱,高,底面
底面,侧面,侧棱,高,正棱台,斜高
3,圆柱圆锥圆台球
轴,底面,侧面,母线,轴截面
轴,高,底面,侧面,母线,轴截面
轴,高,底面,侧面,母线,轴截面
球半径,球直径,球大圆,球小圆,球面距离
4投影与直观图
中心投影,平行投影(投影线,投影面)
5三视图
俯视图,主视图,左视图
6,棱柱棱锥棱台和球的表面积
圆柱侧面积
7柱锥台球体积
9平面的基本性质及推论
10平行直线
11,直线与平面平行
12,平面与平面平行
13,直线与平面垂直
14,平面与平面垂直。
第3讲 空间点、直线、平面之间的位置关系知 识 梳 理1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面,那么这条直线在此平面. (2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. (4)公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面; 推论2:经过两条相交直线有且只有一个平面; 推论3:经过两条平行直线有且只有一个平面. 2.空间中两直线的位置关系 (1)空间两直线的位置关系⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②围:⎝⎛⎦⎥⎤0,π2.(3)平行公理和等角定理①平行公理:平行于同一条直线的两条直线互相平行.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面三种情况. (2)平面与平面的位置关系有平行、相交两种情况.辨 析 感 悟1.对平面基本性质的认识(1)两个不重合的平面只能把空间分成四个部分.(×)(2)两个平面α,β有一个公共点A ,就说α,β相交于A 点,记作α∩β=A .(×) (3)(教材练习改编)两两相交的三条直线最多可以确定三个平面.(√) (4)(教材练习改编)如果两个平面有三个公共点,则这两个平面重合.(×) 2.对空间直线关系的认识(5)已知a ,b 是异面直线、直线c 平行于直线a ,那么c 与b 不可能是平行直线.(√) (6)没有公共点的两条直线是异面直线.(×)[感悟·提升]1.一点提醒做有关平面基本性质的判断题时,要抓住关键词,如“有且只有”、“只能”、“最多”等.如(1)中两个不重合的平面还可把空间分成三部分.2.两个防一是两个不重合的平面只要有一个公共点,那么两个平面一定相交得到的是一条直线,如(2);二是搞清“三个公共点”是共线还是不共线,如(4).3.一个理解异面直线是指不同在任何一个平面,没有公共点.不能错误地理解为不在某一个平面的两条直线就是异面直线,如(6).考点一平面的基本性质及其应用【例1】 (1)以下四个命题中,正确命题的个数是( ).①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.A.0 B.1 C.2 D.3(2)在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么正方体的过P,Q,R的截面图形是( ).A.三角形 B.四边形 C.五边形 D.六边形规律方法 (1)公理1是判断一条直线是否在某个平面的依据;公理2及其推论是判断或证明点、线共面的依据;公理3是证明三线共点或三点共线的依据.要能够熟练用文字语言、符号语言、图形语言来表示公理.(2)画几何体的截面,关键是画截面与几何体各面的交线,此交线只需两个公共点即可确定,作图时充分利用几何体本身提供的面面平行等条件,可以更快地确定交线的位置.【训练1】如图所示是正方体和正四面体,P,Q,R,S分别是所在棱的中点,则四个点共面的图形的序号是________.考点二空间两条直线的位置关系【例2】如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.规律方法空间中两直线位置关系的判定,主要是异面、平行和垂直的判定,对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、平行公理及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直的性质来解决.【训练2】在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).考点三 异面直线所成的角【例3】 在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60°,对角线AC 与BD 交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成角为60°.(1)求四棱锥的体积;(2)若E 是PB 的中点,求异面直线DE 与PA 所成角的余弦值.规律方法 (1)平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成角的取值围是⎝⎛⎦⎥⎤0,π2,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.(2)求异面直线所成的角要特别注意异面直线之间所成角的围.【训练3】 (2014·模拟)在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱A 1B 1,A 1D 1的中点,则A 1B 与EF 所成角的大小为________.1.证明线共点问题,常用的方法是:先证其中两条直线交于一点,再证交点在第三条直线上. 2.证明点或线共面问题,一般有以下两种途径:(1)首先由所给条件中的部分线(或点)确定一个平面,然后再证其余线(或点)均在这个平面; (2)将所有条件分为两部分,然后分别确定平面,再证平面重合. 3.异面直线的判定方法(1)判定定理:平面外一点A 与平面一点B 的连线和平面不经过该点的直线是异面直线; (2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.思想方法7——构造模型判断空间线面的位置关系【典例】 (2012·卷)已知空间三条直线l ,m ,n ,若l 与m 异面,且l 与n 异面,则( ). A .m 与n 异面 B .m 与n 相交 C .m 与n 平行 D .m 与n 异面、相交、平行均有可能 【自主体验】1.(2013·卷)设m ,n 是两条不同的直线,α,β是两个不同的平面( ). A .若m ∥α,n ∥α,则m ∥n B .若m ∥α,m ∥β ,则α∥β C .若m ∥n ,m ⊥α,则n ⊥α D .若m ∥α,α⊥β,则m ⊥β 2.对于不同的直线m ,n 和不同的平面α,β,γ,有如下四个命题:①若m ∥α,m ⊥n ,则n ⊥α;②若m ⊥α,m ⊥n ,则n ∥α;③若α⊥β,γ⊥β,则α∥γ;④若m ⊥α,m ∥n ,n ⊂β,则α⊥β.其中真命题的个数是( ).A .1 B .2 C .3 D .4一、选择题1.(2013·七校联考)已知直线a 和平面α,β,α∩β=l ,a ⊄α,a ⊄β,且a 在α,β的射影分别为直线b 和c ,则直线b 和c 的位置关系是( ).A .相交或平行B .相交或异面C .平行或异面D .相交、平行或异面2.在正方体AC 1中,E ,F 分别是线段BC ,CD 1的中点,则直线A 1B 与直线EF 的位置关系是( ). A .相交 B .异面 C .平行 D .垂直3.设P 表示一个点,a ,b 表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是( ). ①P ∈a ,P ∈α⇒a ⊂α②a ∩b =P ,b ⊂β⇒a ⊂β③a ∥b ,a ⊂α,P ∈b ,P ∈α⇒b ⊂α④α∩β=b ,P ∈α,P ∈β⇒P ∈bA .①②B .②③C .①④D .③④4.如图,在正方体ABCD -A 1B 1C 1D 1中,过顶点A 1与正方体其他顶点的连线与直线BC 1成60°角的条数为( ). A .1 B .2 C .3 D .4 二、填空题5.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对. 6.如图,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论: ①直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与MB 1是异面直线; ④直线AM 与DD 1是异面直线.其中正确的结论为________(注:把你认为正确的结论的序号都填上).7.(2013·卷)如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,则直线EF 与正方体的六个面所在的平面相交的平面个数为________.三、解答题8. 如图,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC =12AD ,BE =12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C ,D ,F ,E 四点是否共面?为什么?9.在正方体ABCD -A 1B 1C 1D 1中,对角线A 1C 与平面BDC 1交于点O ,AC ,BD 交于点M ,求证:点C 1,O ,M 共线.能力提升题组一、选择题1.(2014·一模)一个正方体的展开图如图所示,A 、B 、C 、D 为原正方体的顶点,则在原来的正方体中( ). A .AB ∥CD B .AB 与CD 相交 C .AB ⊥CD D .AB 与CD 所成的角为60°2.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点,则在空间中与三条直线A 1D 1,EF ,CD 都相交的直线( ).A .不存在B .有且只有两条C .有且只有三条D .有无数条 二、填空题3.(2013·卷)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S .则下列命题正确的是________(写出所有正确命题的编号). ①当0<CQ <12时,S 为四边形;②当CQ =12时,S 为等腰梯形;③当CQ =34时,S 与C 1D 1的交点R 满足C 1R =13;④当34<CQ <1时,S 为六边形;⑤当CQ =1时,S 的面积为62. 三、解答题4.如图,在正方体ABCD -A 1B 1C 1D 1中, (1)求A 1C 1与B 1C 所成角的大小;(2)若E ,F 分别为AB ,AD 的中点,求A 1C 1与EF 所成角的大小.第4讲直线、平面平行的判定与性质知识梳理1.直线与平面平行的判定与性质判定性质定义定理图形条件a∩α=∅a⊂α,b⊄α,a∥b a∥αa∥α,a⊂β,α∩β=b结论a∥αb∥αa∩α=∅a∥b 2.判定性质定义定理图形条件α∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=bα∥β,a⊂β结论α∥βα∥βa∥b a∥α1.对直线与平面平行的判定与性质的理解(1)若一条直线平行于一个平面的一条直线,则这条直线平行于这个平面.(×)(2)若一条直线平行于一个平面,则这条直线平行于这个平面的任一条直线.(×)(3)若直线a与平面α无数条直线平行,则a∥α.(×)(4)若直线a∥α,P∈α,则过点P且平行于a的直线有无数条.(×)2.对平面与平面平行的判定与性质的理解(5)如果一个平面的两条直线平行于另一个平面,那么这两个平面平行.(×)(6)如果两个平面平行,那么分别在这两个平面的两条直线平行或异面.(√)(7)(教材练习改编)设l为直线,α,β是两个不同的平面,若l∥α,l∥β,则α∥β.(×) [感悟·提升]三个防一是推证线面平行时,一定要说明一条直线在平面外,一条直线在平面,如(1)、(3).二是推证面面平行时,一定要说明一个平面的两条相交直线平行于另一平面,如(5).三是利用线面平行的性质定理把线面平行转化为线线平行时,必须说明经过已知直线的平面与已知平面相交,则该直线与交线平行,如(2)、(4).考点一有关线面、面面平行的命题真假判断【例1】 (1)(2013·卷)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ).A.若α⊥β,m⊂α,n⊂β,则m⊥n B.若α∥β,m⊂α,n⊂β,,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥β D.若m⊥α,m∥n,n∥β,则α⊥β(2)设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是( ).A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β规律方法线面平行、面面平行的命题真假判断多以小题出现,处理方法是数形结合,画图或结合正方体等有关模型来解题.【训练1】 (1)(2014·模拟)若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是( ).A.b⊂α B.b∥αC.b⊂α或b∥α D.b与α相交或b⊂α或b∥α(2)给出下列关于互不相同的直线l,m,n和平面α,β,γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为( ).A.3 B.2 C.1 D.0考点二线面平行的判定与性质【例2】如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=2,AA′=1,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′-MNC的体积.规律方法判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α),其关键是在平面找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).【训练2】如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC的中点,G为DE的中点.证明:直线HG∥平面CEF.考点三面面平行的判定与性质【例3】(2013·卷)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1= 2.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.规律方法 (1)证明两个平面平行的方法有:①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行⇒面面平行”),通过线面平行来完成证明;③根据“垂直于同一条直线的两个平面平行”这一性质进行证明;④借助“传递性”来完成.(2)面面平行问题常转化为线面平行,而线面平行又可转化为线线平行,需要注意转化思想的应用.【训练3】在正方体ABCD-A1B1C1D1中,M,N,P分别是C1C,B1C1,C1D1的中点,求证:平面PMN∥平面A1BD.1.平行关系的转化方向如图所示:2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.答题模板8——如何作答平行关系证明题【典例】 (12分)(2012·卷,文)如图1,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.图1[反思感悟] 立体几何解答题解题过程要表达准确、格式要符合要求,每步推理要有理有据,不可跨度太大,以免漏掉得分点.本题易忽视DM⊄平面EBC,造成步骤不完整而失分.【自主体验】(2013·卷改编)如图,在四棱锥P-ABCD中,AB∥DC,AB=6,DC=3,若M为PA的中点,求证:DM∥平面PBC.基础巩固题组一、选择题1.已知直线a,b,c及平面α,β,下列条件中,能使a∥b成立的是( ).A.a∥α,b⊂α B.a∥α,b∥αC.a∥c,b∥c D.a∥α,α∩β=b2.在梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α的直线的位置关系只能是( ).A.平行 B.平行和异面 C.平行和相交 D.异面和相交3.(2014·五校一模)已知直线a和平面α,那么a∥α的一个充分条件是( ).A.存在一条直线b,a∥b且b⊂αB.存在一条直线b,a⊥b且b⊥αC.存在一个平面β,a⊂β且α∥βD.存在一个平面β,a∥β且α∥β4.(2014·质检)若m,n为两条不重合的直线,α,β为两个不重合的平面,则下列命题中正确的是( ).A.若m,n都平行于平面α,则m,n一定不是相交直线B.若m,n都垂直于平面α,则m,n一定是平行直线C.已知α,β互相平行,m,n互相平行,若m∥α,则n∥βD.若m,n在平面α的射影互相平行,则m,n互相平行5.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则( ).A.BD∥平面EFG,且四边形EFGH是平行四边形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是平行四边形D.EH∥平面ADC,且四边形EFGH是梯形二、填空题6.(2014·一模)下列四个命题:①过平面外一点有且只有一条直线与该平面垂直;②过平面外一点有且只有一条直线与该平面平行;③如果两个平行平面和第三个平面相交,那么所得的两条交线平行;④如果两个平面互相垂直,那么经过第一个平面一点且垂直于第二个平面的直线必在第一个平面.其中所有真命题的序号是________.7.(2014·质检)在正方体AC1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.8.(2014·金丽衢十二校联考)设α,β,γ是三个平面,a,b是两条不同直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(把所有正确的题号填上).三、解答题9.(2014·一模)四棱锥P-ABCD中,底面ABCD为平行四边形,N是PB中点,过A,N,D三点的平面交PC于M.(1)求证:PD∥平面ANC;(2)求证:M是PC中点.10.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F.能力提升题组一、选择题1.(2014·模拟)设m,n是平面α的两条不同直线;l1,l2是平面β的两条相交直线,则α∥β的一个充分而不必要条件是( ).A.m∥β且l1∥α B.m∥l1且n∥l2 C.m∥β且n∥β D.m∥β且n∥l22.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( ).A.①③ B.②③C.①④ D.②④二、填空题3.(2014·师大附中模拟)如图,在长方体ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N 是BC的中点,点M在四边形EFGH及其部运动,则M满足条件________时,有MN∥平面B1BDD1.三、解答题4.(2014·模拟)一个多面体的直观图及三视图如图所示(其中M,N分别是AF,BC的中点).(1)求证:MN∥平面CDEF;(2)求多面体A-CDEF的体积.第5讲 直线、平面垂直的判定与性质知 识 梳 理1.直线与平面垂直(1)定义:若直线l 与平面α的任意一条直线都垂直,则直线l 与平面α垂直.(2)判定定理:一条直线与一个平面的两条相交直线都垂直,则该直线与此平面垂直(线线垂直⇒线面垂直).即:a ⊂α,b ⊂α,l ⊥a ,l ⊥b ,a ∩b =P ⇒l ⊥α.(3)性质定理:垂直于同一个平面的两条直线平行.即:a ⊥α,b ⊥α⇒a ∥b .2.平面与平面垂直(1)定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.即:a ⊂α,a ⊥β⇒α⊥β.(3)性质定理:两个平面垂直,则一个平面垂直于交线的直线与另一个平面垂直.即:α⊥β,a ⊂α,α∩β=b ,a ⊥b ⇒a ⊥β.3.直线与平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条斜线和这个平面所成的角.(2)线面角θ的围:θ∈⎣⎢⎡⎦⎥⎤0,π2. 4.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:二面角棱上的一点,在两个半平面分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.辨 析 感 悟1.对线面垂直的理解(1)直线a ,b ,c ;若a ⊥b ,b ⊥c ,则a ∥c .(×)(2)直线l 与平面α无数条直线都垂直,则l ⊥α.(×)(3)(教材练习改编)设m ,n 是两条不同的直线,α,β是两个不同的平面,若m ∥n ,m ⊥α,则n ⊥α.(√)(4)(教材习题改编)设l 为直线,α,β是两个不同的平面,若α⊥β,l ∥α,则l ⊥β.(×)2.对面面垂直的理解(5)若两平面垂直,则其中一个平面的任意一条直线垂直于另一个平面.(×)(6)若平面α的一条直线垂直于平面β的无数条直线,则α⊥β.(×)[感悟·提升]三个防 一是注意在空间中垂直于同一直线的两条直线不一定平行,还有可能异面、相交等,如(1);二是注意使用线面垂直的定义和线面垂直的判定定理,不要误解为“如果一条直线垂直于平面的无数条直线,就垂直于这个平面”, 如(2);三是判断线面关系时最容易漏掉线在面的情况,如(6).考点一直线与平面垂直的判定和性质【例1】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.规律方法证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.【训练1】如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题【例3】如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面PAD;(2)求证:平面EFG⊥平面EMN.规律方法线面关系与面面关系的证明离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.考点四线面角、二面角的求法【例4】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)求PB和平面PAD所成的角的大小;(2)证明AE⊥平面PCD;(3)求二面角A-PD-C的正弦值.规律方法 (1)求直线与平面所成的角的一般步骤:①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解.(2)作二面角的平面角可以通过垂线法进行,在一个半平面找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.【训练4】在正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的余弦值为A.23B.33C.23D.631.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破7——求解立体几何中的探索性问题【典例】(2012·卷) 如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[反思感悟] (1)解决探索性问题一般先假设其存在,把这个假设作已知条件,和题目的其他已知条件一起进行推理论证和计算,在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在,如果得到了一个不合理的结论,则说明不存在.(2)在处理空间折叠问题中,要注意平面图形与空间图形在折叠前后的相互位置关系与长度关系等,关键是点、线、面位置关系的转化与平面几何知识的应用,注意平面几何与立体几何中相关知识点的异同,盲目套用容易导致错误.【自主体验】(2014·模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=12AB=2,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2.(1)求证:DA⊥BC;(2)在CD上找一点F,使AD∥平面EFB.基础巩固题组一、选择题1.设平面α与平面β相交于直线m,直线a在平面α,直线b在平面β,且b⊥m,则“α⊥β”是“a⊥b”的( ).A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件2.(2014·调研)设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是A.若α⊥β,α∩β=n,m⊥n,则m⊥αB.若m⊂α,n⊂β,m⊥n,则n⊥αC.若n⊥α,n⊥β,m⊥β,则m⊥αD.若m∥α,n∥β,m⊥n,则α⊥β3.(2013·新课标全国Ⅱ卷)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则 ( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l4.(2014·调研)如图,在四面体D -ABC 中,若AB =CB ,AD =CD ,E 是AC 的中点,则下列正确的是 ( ).A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE5.(2014·模拟)已知平面α,β,γ和直线l ,m ,且l ⊥m ,α⊥γ,α∩γ=m ,β∩γ=l ,给出下列四个结论:①β⊥γ;②l ⊥α;③m ⊥β;④α⊥β.其中正确的是( ).A .①④B .②④C .②③D .③④二、填空题6.如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD(只要填写一个你认为正确的条件即可).7.已知平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α,β所成的角分别为π4和π6,过A ,B 分别作两平面交线的垂线,垂足为A ′,B ′,则AB ∶A ′B ′=________.8.设α,β是空间两个不同的平面,m ,n 是平面α及β外的两条不同直线.从“①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).三、解答题9.如图,在四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面PAD ⊥底面ABCD ,PA ⊥AD .E 和F 分别是CD 和PC 的中点.求证:(1)PA ⊥底面ABCD ;(2)BE ∥平面PAD ;(3)平面BEF ⊥平面PCD .10.(2013·模拟)如图所示,在直四棱柱ABCD -A 1B 1C 1D 1中,DB =BC ,DB ⊥AC ,点M 是棱BB 1上一点.(1)求证:B 1D 1∥平面A 1BD ;(2)求证:MD ⊥AC ;(3)试确定点M 的位置,使得平面DMC 1⊥平面CC 1D 1D .能力提升题组一、选择题1.如图,在斜三棱柱ABC -A 1B 1C 1中,∠BAC =90°,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在A .直线AB 上 B .直线BC 上C .直线AC 上D .△ABC 部2.(2014·东城区期末)如图,在四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD .将四边形ABCD 沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,则下列结论正确的是(A .A ′C ⊥BD B .∠BA ′C =90°C .CA ′与平面A ′BD 所成的角为30°D .四面体A ′-BCD 的体积为13二、填空题3.(2013·师大附中二模)如图,已知六棱锥P -ABCDEF 的底面是正六边形,PA ⊥平面ABC ,PA =2AB ,则下列结论中:①PB ⊥AE ;②平面ABC ⊥平面PBC ;③直线BC ∥平面PAE ;④∠PDA =45°.其中正确的有________(把所有正确的序号都填上).三、解答题4.如图,在四棱锥S -ABCD 中,底面ABCD 为矩形,SA ⊥平面ABCD ,二面角S -CD -A 的平面角为45°,M 为AB 的中点,N 为SC 的中点.(1)证明:MN ∥平面SAD ;(2)证明:平面SMC ⊥平面SCD ;(3)记CD AD=λ,数λ的值,使得直线SM 与平面SCD 所成的角为30°.基础回扣练——空间几何体及点、线、面之间的位置关系一、选择题。