基于模糊积分的数据融合
- 格式:ppt
- 大小:485.00 KB
- 文档页数:28
电气传动2022年第52卷第2期摘要:针对传统基于无线传感器的配电网故障检测模型对大数据环境下的配电网故障数据存在诊断准确率低、故障诊断耗时较长以及经济效益较低的问题,设计基于大数据的配电网故障诊断预测模型,其采用RS-IA 模型对大规模故障信息进行智能搜索,计算出最优约简得到决策规则,实现对配电网故障发生位置的初步定位。
采用基于模糊积分的故障诊断预测模型,根据初步诊断结果确定发生故障的候选元件及模糊测度值,根据拓扑信息以及元件的诊断结果形成不同相关联度的支持度集合,采用模糊积分融合技术确定模糊积分值构成故障可能性指标集合,根据该指标确定配电网故障发生的准确位置。
实验结果说明,所设计模型能提高大规模配电网故障诊断的精度,缩短诊断用时,提高配电网的安全性。
关键词:大数据;配电网;故障诊断;预测模型;模糊积分;预处理中图分类号:TM76文献标识码:ADOI :10.19457/j.1001-2095.dqcd22297Design of Fault Diagnosis and Prediction Model for Distribution Network Based on Large DataCHENG Xiaolei ,WANG Peng ,WANG Yuan ,ZHAO Jiadong(Inner Mongolia Electric Power Economics and Technology Research Institute ,Hohhot 010090,Nei Monggol ,China )Abstract:The fault data of distribution network based on traditional wireless sensor fault detection model is based on large data environment ,which is low in diagnostic accuracy ,time-consuming in fault diagnosis and poor in economy.A distribution network fault diagnosis model based on large data was designed ,which makes use of the intelligent searching ability of RS -IA for large-scale fault information and the optimal reduction of calculation decision rules to realize the initial location of distribution network fault.The fault diagnosis and prediction model based on fuzzy integral determines the candidate component faults and fuzzy measure values according to the preliminary diagnosis results ,forms the related support set of different components according to the topological information and diagnosis results ,determines the fuzzy integral value set of fault probability index by using the fuzzy integral fusion technology ,determines the accurate distribution position of fault in the network according to the index.The experimental results show that the design model can improve the accuracy of the fault diagnosis of the large-scale distribution network ,shorten the diagnosis time and improve the safety of the distribution network.Key words:large data ;distribution network ;fault diagnosis ;prediction model ;fuzzy integral ;preprocessing基于大数据的配电网故障诊断预测模型设计程晓磊,王鹏,王渊,赵嘉冬(内蒙古电力经济技术研究院,内蒙古呼和浩特010090)基金项目:内蒙古电力有限公司科研项目(510141190010)作者简介:程晓磊(1981—),男,硕士,高级工程师,Email :*******************随着社会经济的发展和人民生活水平的不断提高,电力系统能够直接影响人们的日常生活,配电网使用者对电网的安全性和可靠性的要求越来越高。
基于模糊数学理论的数据融合算法研究随着信息技术的发展,人们能够获取、存储和处理大量的数据。
但是,这些数据的质量、可靠性和完整性却往往受到很大的挑战。
为了解决这一问题,数据融合技术应运而生。
该技术可以将多个不同来源的数据进行整合和分析,从而得到更加准确和全面的信息。
在这个领域中,基于模糊数学理论的数据融合算法研究成为了热门话题。
一、概述数据融合是指将多个异构数据源中的信息进行统一表示和处理的过程。
常见的数据源包括传感器、数据库、文本和图像等。
由于这些数据源可能来自不同的领域、不同的媒介和不同的采样周期,它们之间的差异是很大的。
数据融合技术可以通过建立数学模型或算法,将这些异构信息进行整合和分析,以期获得更加精确、准确和全面的信息。
模糊数学理论是一种用于处理不确定性和模糊性的数学工具。
它采用模糊集合、模糊逻辑和模糊推理等概念,可以用来描述模糊的和不确定的现象。
在数据融合领域中,模糊数学理论可以用来处理数据的不确定性和不完整性,提高数据融合的精度和可靠性。
二、模糊集合和模糊逻辑模糊集合是指其元素的归属度是模糊的,即某个元素可能属于该集合也可能不属于该集合。
例如,在制定一个诊断模型时,需要考虑病人的病情、病史和体检结果等多个因素。
每个因素可能对诊断结果产生不同的影响,因此需要考虑每个因素的权重和可能性。
这时,模糊集合可以用来描述这些因素之间的模糊关系和归属度。
模糊逻辑是指在模糊集合的基础上,对逻辑运算进行模糊化处理,从而得到更加灵活和准确的结果。
例如,在进行决策时,需要评估各种方案的优缺点和可能性。
这时,模糊逻辑可以用来描述这些方案之间的关系,并计算它们的优劣程度和风险度。
基于模糊逻辑的算法可以实现对多个因素的加权处理和综合评估,从而得到最优方案或最优结果。
三、基于模糊数学理论的数据融合算法基于模糊数学理论的数据融合算法可以将多个异构数据源的信息进行整合和分析,获得更加准确、可靠和全面的结果。
该算法主要包括以下几个步骤:1. 数据预处理:将不同格式和不同精度的数据进行标准化和统一化处理,例如数据归一化、数据离散化和数据插值等。