第5节 线性子空间的基与维数
- 格式:ppt
- 大小:566.00 KB
- 文档页数:19
线性空间的基与维数线性空间是线性代数中的重要概念,它是由一组元素构成的集合,这些元素之间满足线性运算的性质。
在线性空间中,基与维数是两个重要的概念。
一、线性空间的基线性空间的基是指线性空间中的一组线性无关的元素,通过这组元素可以表示整个线性空间中的任意元素。
换言之,线性空间中的每个元素都可以唯一地由基中的元素线性组合而成。
线性空间的基具有以下特性:1. 基中的元素线性无关,即任意一个基中的元素不能被其他基中的元素线性表示。
2. 基中的元素张成整个线性空间,即线性空间中的任意元素都可以由基中的元素线性组合而成。
3. 基中的元素个数是唯一的,即同一个线性空间中的不同基所包含的元素个数是相同的,这个个数称为线性空间的维数。
二、线性空间的维数线性空间的维数是指线性空间中的基所包含的元素的个数,用整数表示。
维数是衡量线性空间大小的一个重要指标。
线性空间的维数具有以下性质:1. 对于一个线性空间,如果存在一个有限的基,则该线性空间的维数是有限的。
2. 对于一个线性空间,如果不存在有限的基,则该线性空间的维数是无限的。
维数是线性空间一个重要的性质,它决定了线性空间的很多性质。
在线性代数中,我们可以通过求解线性方程组的秩来确定线性空间的维数。
三、基与维数的应用基与维数在线性代数的各个分支中有广泛的应用。
以下是一些典型的应用场景:1. 线性变换的表示:线性变换可以由一个矩阵表示,基的选择与线性变换的矩阵表示密切相关。
2. 向量空间的表示:向量空间中的向量可以由线性组合表示,基的选择可以简化向量空间中向量的表示和计算。
3. 子空间的判断:基与维数可以用来判断一个子集是否构成了线性空间的子空间。
4. 线性方程组的解空间:线性方程组的解空间可以由基与维数表示。
总结:线性空间的基与维数是线性代数中的重要概念。
基是线性空间中一组线性无关的元素,可以表示线性空间中的任意元素;维数是基所包含的元素的个数,它决定了线性空间的很多性质。
求子空间的交与维数是线性代数中常见的知识点,本文通过一种简便
的方法使求子空间的交与维数的问题更加容易。
首先,假设有两个子空间S1S2,那么求它们的交可以把它们看成两个
集合,求它们的并集,集合有交集——这就是求子空间交的算法。
只
需要将S1和S2分别用向量来表示,把两个子空间中的向量连接起来,那么就可以这样来求解:从这个集合中把共同维度(即集合体中所有
向量内积为0)的向量去掉,那么剩下的向量构成了这两个子空间的交。
其次,求子空间的维数。
在求交的基础上,便可以求出所求子空间的
维数。
因为交是由向量构成的,也就是说维数即是这个子空间中所含
的向量数量。
显然,通过求解交的方法,可以简便的的求出子空间的
维数。
总的来说,通过一种求子空间的交和维数的简易求法,可以让求解子
空间交维数变得更加简单容易,而不需要耗费大量的精力和时间。
因此,本文提出的这种求法在线性代数教学和科研中都有着重要的作用。
基与维数的几种求法线性空间基和维数的求法方法一根据线性空间基和维数的定义求空间的基和维数,即:在线性空间v中,如果有n个向量α1,,αn满足用户:(1)α1,α2,αn线性无关。
(2)v中任一向量α总可以由α1,α2,,αn线性则表示。
那么称v为n维(有限维)线性空间,n为v的维数,记为dimv=n,并称α1,α2,,αn为线性空间v的一组基为。
如果在v中可以找到任意多个线性无关的向量,那么就成v为无限维的。
基准1设v=xax=0,a为数域p上m⨯n矩阵,x为数域p上n佩向量,谋v的维数和一组基为。
解设矩阵a的秩为r,则齐次线性方程组ax=0的任一基础解系都是v的基,且v的维数为n-r。
基准2数域p上全体形似对矩阵的乘法及数与矩阵的乘法所共同组成⎪的二阶方阵,-ab⎪⎪的线性空间,谋此空间的维数和一组基为。
⎪⎪0a⎪⎪⎪01⎪⎪00⎪为线性空间,v=|a,b∈p⎪⎪的一组线性毫无关系的向⎪⎪⎪⎪-10⎪⎪01⎪⎪⎪-ab⎪⎪⎪0a⎪⎪0a⎪⎪01⎪⎪00⎪量组,且对v中任一元素⎪=a⎪+b⎪⎪有ab1001-ab⎪⎪⎪⎪⎪⎪⎪⎪⎪01⎪⎪00⎪⎪,⎪为v的一组基为,v的维数为2。
⎪10⎪⎪01⎪方法二在已知线性空间的维数为n时,任意n个向量组成的线性无关向量组均作成线性空间的基。
基准3假设r[x]n就是一切次数大于n的实系数多项式迎上零多项式所构成的线性空间,证明:1,(x-1),(x-1),,(x-1)构成r[x]n的基。
证明实地考察k1⋅1+k2(x-1)++kn(x-1)的系数为0得kn=0,并代入上式可得xn-2的系数kn-1=0依此类推便存有kn=kn-1==k1=0,故1,(x-1),,(x-1)又r[x]的维数为n,于是1,(x-1),,(x-1)为r[x]的基。
方法三利用定理:数域p上两个非常有限佩线性空间同构的充份必要条件就是它们存有相同的维数。
例4设a=⎪,证明:由实数域上的矩阵a的全体实系数多项式f(a)共同组成的空间v=⎪f(a)|a=⎪⎪⎪0-1⎪⎪⎪⎪与复数域c作为实数域r上的线性空间10⎪⎪⎪v'={a+bi|a,b∈r}同构,并非谋它们的维数。
线性空间的基与维数线性空间是线性代数中的重要概念,它是指具有加法和数乘运算的集合,并满足线性空间的定义和性质。
在线性空间中,基和维数是两个核心概念,它们对于理解线性空间的结构和性质具有重要意义。
一、线性空间的定义和性质线性空间是指满足以下定义和性质的集合:1. 集合中存在加法运算,即对于任意两个元素x和y,存在相应的元素x+y;2. 集合中存在数乘运算,即对于任意元素x和数k,存在相应的元素kx;3. 加法和数乘运算满足封闭性,即对于任意元素x和y,x+y和kx 仍然属于该集合;4. 加法满足结合律和交换律,即对于任意元素x、y和z,(x+y)+z=x+(y+z)和x+y=y+x;5. 加法满足单位元存在性,即存在一个元素0,对于任意元素x,有x+0=x;6. 加法满足逆元存在性,即对于任意元素x,存在相应的元素-y,使得x+(-y)=0;7. 数乘运算满足结合律和分配律,即对于任意元素x和k、l,有k(lx)=(kl)x和(k+l)x=kx+lx;8. 数乘运算满足单位元存在性,即对于任意元素x,有1x=x。
二、在线性空间中,基是指一个线性无关且能生成整个空间的向量组。
即对于线性空间V,存在向量组{v1, v2, ..., vn},满足以下条件:1. 线性无关性:向量组中的任意有限个向量线性无关,即不存在非零标量c1, c2, ..., cn,使得c1v1 + c2v2 + ... + cnvn = 0;2. 生成性:向量组的线性组合能够生成整个线性空间V,即对于任意向量v∈V,存在标量c1, c2, ..., cn,使得v = c1v1 + c2v2 + ... + cnvn。
线性空间的维数是指基中向量的个数,用n表示。
记作dim(V) = n。
三、线性空间的基与维数的性质线性空间的基与维数具有以下性质:1. 基的个数是唯一的:线性空间V的任意两个基所含向量个数相同;2. 维数的唯一性:线性空间V的维数唯一,与基的选择无关;3. 向量组的性质:线性空间V中的任意向量组若线性无关,则含有的向量个数不超过维数;4. 维数与子空间:线性空间V的任意非零子空间的维数小于等于V的维数;5. 维数与线性变换:线性空间V到线性空间W的线性映射T是满射时,有dim(W) ≤ dim(V);当T是一一映射时,有dim(W) ≥ dim(V)。
浅谈线性空间的维数与基摘要本文通过对有限维线性空间中基和维数的讨论,总结出了有限维线性空间的基和维数的求解方法,并且,用不同的方法对线性空间的基和维数的应用进行了探讨.关键词:线性空间;维数;基;同构;子空间THE DISCUSSING TO THE DIMENSIONS ANDBASES OF LINEAR SPACEABSTRACTIn this paper, by discussing dimensions and bases of finite dimensions linear space, we Summarizes the methods to soluting dimensions and bases of finite dimensional linear space. Moreover, the application of the bases and dimensions are discussed in different ways.Keywords: linear space; dimension; base; isomorphism; subspace .目录摘要 (1)关键词: (1)ABSTRACT (2)一、基本概念 (4)二、线性空间的基和维数求解方法 (5)2.1、定义法 (5)2.2、利用相关定理求维数与基 (8)三、线性空间基和维数的应用 (10)3.1、次子空间的应用 (10)3.2、在同构线性空间中的应用 (12)四、有限维线性空间基的扩充 (13)五、参考文献 (15)致谢 (15)一、基本概念定义1.2、U 中向量集H 如果满足下述两个条件,① 向量集H 是线性相关的;② U 中每一个向量可以由H 中有限个向量线性表出;则H 是U 的一个基,只含0向量的基是空集。
定义1.3、U 称为有限维的,如果U 有一个基包含有限多个向量,否则U 称为无限维的,有限维线性空间的一个基所含向量个数称为U 的维数。