2020年河北省唐山市古冶区中考数学一模试卷
- 格式:doc
- 大小:509.34 KB
- 文档页数:18
中考数学一模试卷题号一二三四总分得分一、选择题(本大题共16小题,共42.0分) 1.下列实数为无理数的是()A.-5B.C.0D.π2.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104B.7.6×103C.7.6×104D.76×1023.剪纸是潍坊特有的民间艺术,在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是()A. B. C. D.4.如图,直线l∥l,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2的度数为()A.92°B.98°C.102°D.108°5.已知x=7是方程2x-7=ax的解,则a=()A.1B.2C.3D.76. 7. 8.下列说法正确的是()A.为了解全省中学生的心理健康状况,宜采用普查方式B.掷两枚质地均匀的硬币,两枚硬币都是正面朝上这一事件发生的概率为C.掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件D.甲乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S2=0.4,S2=0.6,则甲的射击成绩较稳定乙内角和为540°的多边形是()A. B. C. D.如图,△在ABC中,AB=AC,AD、CE分别△是ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°甲12D.70°9.在下列等式中,不满足a≠0这个条件的是()A.a0=1B.C.D.10. 已知关于x的方程x2+mx+1=0根的判别式的值为5,则m=()A.±3B.3C.1D.±111. 由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则()A. B. C. D.三个视图的面积一样大主视图的面积最小左视图的面积最小俯视图的面积最小12. 如图,正比例函数y=kx与反比例函数y=的图象不可能是()A. B.C. D.13. 用直尺和圆规作△R t ABC斜边AB上的高线CD,甲、乙两人的作法如图:根据两人的作法可判断()A. C.甲正确,乙错误甲、乙均正确B.D.乙正确,甲错误甲、乙均错误14. 顺次连接平面上A、B、C、D四点得到一个四边形,从①AB∥CD,②BC=AD,③∠A=∠C,④∠B=∠D四个条件中任取其中两个,不能得出“四边形ABCD是平行四边形”这一结论的是()A.①②B.①③C.①④D.③④15. 如图,已△知ABC,任取一点O,连AO,BO,CO,并取它们的中点D,E,F,△得DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形;△②ABC△与DEF是相似图形;③△ABC与△DEF的周长比为1:2;△④ABC△与DEF的面积比为4:1.A.1B.2C.3D.416. 如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(-,m)(m>0),则有()A. B. C. D.a=b+2k a=b-2k k <b<0a <k<0二、填空题(本大题共2小题,共6.0分)17.-3-(-2)=______.18.若m、n互为倒数,则mn2-(n-1)的值为______.三、计算题(本大题共2小题,共16.0分)19. 在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数8,请帮他计算出最后结果:[(8+1)2-(8-1)2]×25÷8(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等”小明同学想验证这个结论,于是,设心里想的数是a (a≠0),请你帮小明完成这个验证过程.20. 先化简:然后解答下列问题:(1)当x=2时,求代数式的值(2)原代数式的值能等于0吗?为什么?四、解答题(本大题共6小题,共56.0分)21. 如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的⊙P周长为1,点M从A开始沿⊙P按逆时针方向转动,射线AM交x轴于点N (n,0),设点M转过的路程为m(0<m<1)(1)当m=时,n=______;(2)随着点M的转动,当m从变化到时,点N相应移动的路径长为______.22. 某部门为了解工人的生产能力情况,进行了抽样调查.该部门随机抽取了20名工人某天每人加工零件的个数,数据如下:整理上面数据,得到条形统计图;样本数据的平均数、众数、中位数如表所示:统计量数值平均数19.2众数m中位数n根据以上信息,解答下列问题:(1)上表中m、n的值分别为______,______;(2)为调动积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让60%左右的工人能获奖,应根据______来确定奖励标准比较合适(填“平均数”、“众数”或“中位数”);(3)该部门规定:每天加工零件的个数达到或超过21个的工人为生产能手若该部门有300名工人,试估计该部门生产能手的人数;(4)现决定从小王、小张、小李、小刘中选两人参加业务能手比赛,直接写出恰好选中小张、小李两人的概率.23. 如图,在平面直角坐标系 xOy 中,过点 A (-6,0)的直线 l 与直线 l :y =2x 相交于点 B (m ,6) (1)求直线 l 的表达式(2)直线 l 与 y 轴交于点 M , △求BOM 的面积; (3)过动点 P (m ,0)且垂于 x 轴的直线与 l ,l 的交点分别为 C ,D ,当点 C 位于点 D 下方时,写 出 n 的取值范围.24. 如图,AB 为⊙O 的直径,且 AO =4,点 C 在半圆上,OC ⊥AB ,垂足为点 O , P为半圆上任意一点过 P 点作 PE ⊥OC 于点 E , △设OPE 的内心为 M ,连接 OM (1)求∠OMP 的度数;(2)随着点 P 在半圆上位置的改变,∠CMO 的大小是否改变,说明理由; (3)当点 P 在半圆上从点 B 运动到点 A 时,直接写出内心 M 所经过的路径长.25. 如图 1,在矩形 ABCD 中,AB =2,AD =,E 是 CD 边上的中点,P 是 BC 边上的一点,且 BP =2CP .(1)求证:∠AED =∠BEC ;(2)判断 EB 是否平分∠AEC ,并说明理由;(3)如图 2,连接 EP 并延长交 AB 的延长线于点 F ,连接 AP ,不添加辅助线 △,PFB1 2 1 1 1 2可以由都经过P点的两次变换△与PAE组成一个等腰三角形,直接写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离).26. 为如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点G,以O为原点建立如图所示的平面直角坐标系.(1)若排球运行的最大高度为2.8米,求排球飞行的高度p(单位:米)与水平距离x(单位:米)之间的函数关系式(不要求写自变量x的取值范围);(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由;(3)若李明同学发球要想过网,又使排球不会出界(排球压线属于没出界),求二次函数中二次项系数的最大值.答案和解析1.【答案】D【解析】解:A 、不是无理数,故本选项错误; B 、不是无理数,故本选项错误; C 、不是无理数,故本选项错误; D 、是无理数,故本选项正确; 故选:D .根据无理数的定义(无理数是指无限不循环小数)判断即可.本题考查了对无理数定义的应用,能理解无理数的定义是解此题的关键. 2.【答案】B【解析】解:7600=7.6×103, 故选:B .科学记数法的表示形式为 a ×10 n 的形式,其中 1≤|a |<10,n 为整数.确定 n 的值时,要 看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原 数绝对值>10 时,n 是正数;当原数的绝对值<1 时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为 a ×10n 的形式,其中 1≤|a | <10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.3.【答案】C【解析】解:A 、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形, 不是中心对称图形,故此选项错误;B 、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,不是中心对称图 形,故此选项错误.C 、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转 180°能与原 图形重合,是中心对称图形,故此选项正确;D 、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称 图形,故此选项错误.故选:C .根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图 形,以及中心对称图形的定义分别判断即可得出答案.此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关 键.4.【答案】B【解析】解:如图,∵l ∥l , ∴∠1=∠3=52°,又∵∠4=30°, ∴∠2=180°-∠3-∠4=180°-52°-30°=98°,故选:B .依据 l ∥l ,即可得到∠1=∠3=52°,再根据∠4=30°,即可得出从∠2=180°-∠3-∠4=98°. 此题主要考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是利用平行 线的性质.5.【答案】A1 21 2【解析】【分析】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的方程是解此题的关键.把x=7代入方程,得出一个关于a的方程,求出方程的解即可.【解答】解:∵x=7是方程2x-7=ax的解,∴代入得:14-7=7a,解得:a=1,故选:A.6.【答案】D【解析】解:A、为了解全省中学生的心理健康状况,宜采用抽查方式,故错误;B、掷两枚质地均匀的硬币,两枚硬币都是正面朝上这一事件发生的概率为;故错误;C、掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是随机事件;故错误;D、甲乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S2=0.4,甲=0.6,则甲的射击成绩较稳定,故正确;S2乙故选:D.根据调查与抽样调查、方差的性质以及随机事件与必然事件的定义即可得到结论.本题考查了求概率的方法、全面调查与抽样调查、方差的性质以及随机事件与必然事件;熟记方法和性质是解决问题的关键.7.【答案】C【解析】解:设多边形的边数是n,则(n-2)•180°=540°,解得n=5.故选:C.根据多边形的内角和公式(n-2)•180°列式进行计算即可求解.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.8.【答案】B【解析】解:∵AB=AC,AD是△ABC的中线,∴∠BAD=∠CAD=20°,∠ABC=∠ACB,∴∠ACB==70°,∵CE△是ABC的角平分线,∴∠ACE=∠ACB=35°,故选:B.根据等腰三角形的性质得到∠BAD=∠CAD=20°,∠ABC=∠ACB,根据三角形内角和定理求出∠ACB,根据角平分线的定义计算即可.本题考查的是等腰三角形的性质,三角形的中线和角平分线以及三角形内角和定理,掌握等腰三角形的三线合一是解题的关键.9.【答案】D【解析】解:a0=1,(a≠0),A选项错误;a-1=,(a≠0),B选项错误;,(a≠0),C选项错误;()=a,(a≥0),D选项正确;故选:D.根据负整数指数幂、零指数幂、二次根式有意义的条件判断即可.本题考查的是负整数指数幂、零指数幂的运算,掌握它们的运算法则、有意义的条件是解题的关键.10.【答案】A【解析】解:∵关于x的方程x2+mx+1=0根的判别式的值为5,∴m2-4×1×1=5,解得:m=±3,故选:A.根据根的判别式得出方程m2-4×1×1=5,求出方程的解即可.本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键.11.【答案】C【解析】解:主视图有5个小正方形,左视图有3个小正方形,俯视图有4个小正方形,因此左视图的面积最小.故选:C.首先根据立体图形可得俯视图、主视图、左视图所看到的小正方形的个数,再根据所看到的小正方形的个数可得答案.此题主要考查了组合体的三视图,关键是注意所有的看到的棱都应表现在三视图中.12.【答案】D【解析】解:若k>0时,此时k-1>-1,正比例函数图象必定过一、三象限,当-1<k-1<0时,∴反比例函数y=当k-1>0时,∴反比例函数y=必定经过二、四象限,故C的图象有可能,必定经过一、三象限,故B的图象有可能,若k<0时,此时k-1<-1,正比例函数图象必定过二、四象限,∴反比例函数y=必定经过二、四象限,故A的图象有可能,故选:D.根据反比例函数的性质即可求出答案.本题考查反比例函数的图象的性质,解题的关键是熟练运用反比例函数的性质,本题属于基础题型.13.【答案】C【解析】解:观察可得甲、乙两人的作法均正确,故选:C.甲的做法是根据直径所对的圆周角为直角得出;乙的做法根据线段的垂直平分线性质得出.此题考查了作图-基本作图,熟练掌握基本作图的方法是解本题的关键.14.【答案】A【解析】解;当①AB∥CD,③∠A=∠C时,四边形ABCD为平行四边形;当①AB∥CD,④∠B=∠D时,四边形ABCD为平行四边形;当③∠A=∠C,④∠B=∠D时,四边形ABCD为平行四边形;故选:A.根据平行四边形的判定定理可得出答案.此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.15.【答案】C【解析】解:根据位似性质得出△①ABC△与DEF是位似图形,△②ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的,∴△ABC△与DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选:C.根据位似图形的性质,得出△①ABC△与DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC△与DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.此题主要考查了位似图形的性质,正确的记忆位似图形性质是解决问题的关键.16.【答案】D【解析】解:∵y=ax2+bx图象的顶点(-,m),∴- =-,即b=a,∴m==-,∴顶点(-,-),把x=-,y=-代入反比例解析式得:k=,由图象知:抛物线的开口向下,∴a<0,∴a<k<0,故选:D.把(-,m)代入y=ax2+bx图象的顶点坐标公式得到顶点(-,-),再把(-,-)代入得到k=,由图象的特征即可得到结论.本题考查了二次函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数图象上点的坐标特征是解题的关键.17.【答案】-1【解析】解:-3-(-2)=-1,故答案为:-1.根据有理数加减解答即可.此题考查有理数的减法,关键是根据有理数减法法则解答.18.【答案】1【解析】解:因为m,n互为倒数可得mn=1,所以mn2-(n-1)=n-(n-1)=1.由m,n互为倒数可知mn=1,代入代数式即可.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;19.【答案】解:(1)原式=(81-49)×25÷8=800÷8=100;(2)根据题意得:[(a+1)2-(a-1)2]×25÷a=4a×25÷a=100.【解析】(1)原式先计算括号中的乘方运算,再计算减法运算,最后算乘除运算即可求出值;(2)列出代数式,计算即可得到结果.此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.20.【答案】解:=[ =(=])•(x+1)=,(1)当x=2时,原式==3;(2)原代数式的值不等等于0,理由:令=0,得x=-1,当x=-1时,原分式无意义,故原代数式的值不等等于0.【解析】(1)将x=2代入化简后的式子即可解答本题;(2)先判断,然后令化简的结果等于0,求出x的值,再将所得的x的值代入化简后的式子,看是否使得原分式有意义即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.【答案】(1)-1;(2).【解析】解:(1)当m=时,连接PM,如图1,则有∠APM=×360°=90°.∵PA=PM,∴∠PAM=∠PMA=45°.∴NO=AO=1,∴n=-1.故答案为:-1;(2)①当m=时,连接PM,如图2,∠APM=×360°=120°.∵PA=PM,∴∠PAM=∠PMA=30°.在△R t AON中,NO=AO•tan∠OAN=1×= ;②当m=时,连接PM,如图3,∠APM=360°-×360°=120°,同理可得:NO=.综合①、②可得:点N相应移动的路径长为+=.故答案为:.【分析】(1)当m=时,连接PM,如图1,点M从点A绕着点P逆时针旋转了一周的,从而可得到旋转角∠APM为90°,根据PA=PM可得∠PAM=∠PMA=45°,则有NO=AO=1,即可得到n=-1;(2)当m从变化到时,点N相应移动的路经是一条线段,只需考虑始点和终点位置即可解决问题.当m=时,连接PM,如图2,点M从点A绕着点P逆时针旋转了一周的,从而可得到旋转角为120°,则∠APM=120°,根据PA=PM可得∠PAM=30°,在△R t AON中运用三角函数可求出ON的长;当m=时,连接PM,如图3,点M从点A绕着点P逆时针旋转了一周的,从而可得到旋转角为240°,则∠APM=120°,同理可求出ON的长,问题得以解决本题主要考查了圆的综合题,需要掌握旋转角、等腰三角形的性质、三角函数等知识,若动点的运动路径是一条线段,常常可通过考虑临界位置(动点的始点和终点)来解决.22.【答案】(1)18,19;(2)中位数;=90(人);(3)若该部门有300名工人,估计该部门生产能手的人数为300×(4)将小王、小张、小李、小刘分别记为甲、乙、丙、丁,画树状图如下:∵共有12种等可能性的结果,恰好选中乙、丙两位同学的有2种,∴恰好选中小张、小李两人的概率为=.【解析】解:(1)由条形图知,数据18出现的次数最多,所以众数m=18;中位数是第10、11个数据的平均数,而第10、11个数据都是19,所以中位数n==19,故答案为:18,19;(2)由题意可得,如果想让60%左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)见答案;(4)见答案.【分析】(1)根据条形统计图中的数据,结合众数和中位数的概念可以得到 m 、n 的值; (2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.(4)根据题意先画出树状图,得出所有等可能性的结果,再根据概率公式即可得出答 案. 此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的 结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注 意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之 比.23. 【答案】解:(1)将点 B (m ,6)代入 y =2x ,∴m =3,∴B (3,6);设直线 l 的表达式为 y =kx +b , 将点 A 与 B 代入,得,∴,∴y = x +4;(2)M (0,4),∴S = ×4×3=6;(3)当点 C 位于点 D 下方时,即 y <y , ∴m >3;第 14 页,共 18 页1△BOM12【解析】(1)先求出B点,再将将点A与B代入y=kx+b即可求解;(2)求出M点坐标,S=×4×3;△BOM(3)当点C位于点D下方时,即y<y,12本题考查一次函数的图象和性质;熟练掌握待定系数法求解析式,数形结合求不等式是解题的关键.24.【答案】解:(1)∵OC⊥AB,∴∠OEP=90°,∴∠EOP+∠EPO=90°,∵M△为OPE的内心,∴∠MOP=∠MOC=EOP,∠MPO=∠MPE=∠EPO,∴∠MOP+∠MPO=(∠EOP+∠EPO)=45°,∴∠OMP=180°-(∠MOP+∠MPO)=135°;(2)∠CMO的大小不改变,理由如下:如图2,连接CM,△在COM和△POM中,,∴△COM≌△POM(SAS),∴∠CMO=∠OMP=135°,∴∠CMO的大小不改变,为135°;(3)如图3,连接AC,BC,∵AB为直径,CO⊥AB,∴AC=BC,∴△ACB为等腰直角三角形,∴△ACO△与BCO为等腰直角三角形,∴AC=AO=4,∴CQ=AC=2,分别取AC,BC的中点Q,N,连接OQ,ON,则∠CQO=90°,∠CNO=90°,当点P在半径OC的左侧和右侧的半圆上时,点M的轨迹分别在以AC,BC为直径的圆弧上,所对圆心角为90°,∴2×=,∴内心M所经过的路径长为.【解析】(1)由内心的定义可知∠MOP=∠MOC=EOP,∠MPO=∠MPE=∠EPO,求出∠MOP与∠MPO的和为45°,利用三角形的内角和定理即可求出∠OMP的度数;(2)连接CM,△证COM≌△POM,即得出∠CMO=∠OMP=135°,可知∠CMO的大小不改变,为135°;(3)连接AC,BC,证△明ACB△,ACO△与BCO为分别为等腰直角三角形,求出CQ=2,∠CQO=90°,∠CNO=90°,由题意分析得出当点P在半径OC的左侧和右侧的半圆上时,点M的轨迹分别在以AC,BC为直径的圆弧上,根据弧长公式即可求出M所经过的路径长.本题考查了三角形内心的定义,全等三角形的判定,弧长公式等,解题关键是能够根据题意判断出当点P在半径OC的左侧和右侧的半圆上时,点M的轨迹分别在以AC,BC为直径的圆弧上.25.【答案】(1)证明:∵四边形ABCD是矩形,∴AD=BC=,CD=AB=2,∠D=∠C=90°,∵E是CD边上的中点,∴DE=CE=CD=1,△在ADE△和BCE中,,∴△ADE≌△BCE(SAS),∴∠AED=∠BEC;(2)解:EB平分∠AEC,理由如下:在△R t ADE中,AD=,DE=1,∴tan∠AED==,∴∠AED=60°,∴∠BEC=∠AED=60°,∴∠AEB=180°-∠AED-∠BEC=60°=∠BEC,∴EB平分∠AEC;(3)解:∵BP=2CP,BC=,∴CP=,BP=,在△R t CEP中,tan∠CEP==,∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在△R t ABP中,tan∠BAP== ,∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∠FBP=90°=∠AEP,△在AEP和△FBP中,,∴△AEP≌△FBP(AAS),∴△PFB能由都经过P点的两次变换△与PAE组成一个等腰三角形,变换的方法为:①△将BPF绕点P顺时针旋转120°△和EPA重合,再沿PE折叠;②△将BPF以过点P垂直于BC的直线折叠,再绕点P逆时针旋转60°.【解析】(1)由矩形的性质得出AD=BC=,CD=AB=2,∠D=∠C=90°,由中点的定义得出DE=CE=CD=1,再由SAS证△明ADE≌△BCE,即可得出结论;(2)用锐角三角函数求出∠AED=60°,得出∠BEC=∠AED=60°,即可得出结论;(3)先判断△出AEP≌△FBP,即可得出结论.此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,锐角三角函数,图形的变换,判断△出AEP≌△△FBP是解本题的关键.26.【答案】解:(1)由排球运行的最大高度为2.8米,则顶点的坐标为G(6,2.8),则设抛物线的解析式为p=a(x-6)2+2.8.∵点C的坐标为(0,2),点C在抛物线上,∴2=a(0-6)2+2.8解得a=,∴p=(x-6)2+2.8,即排球飞行的高度p(单位:米)与水平距离x(单位:米)之间的函数关系式为p=(x-6)2+2.8.(2)当x=9时,p=×(9-6)2+2.8=2.6>2.24;当x=18时,p=×(18-6)2+2.8=-0.4<0,故这次发球可以过网且不出边界.(3)设抛物线的解析式为p=a(x-6)2+h,将点C代入得36a+h=2,即h=2-36a,∴抛物线的解析式为p=a(x-6)2+2-36a.根据题意,要使球不出边界时有:a(18-6)2+2-36a≤0,解得;要使球过网时有:a(9-6)2+2-36a>2.24,解得,故李明同学发球要想过网,又使排球不会出界(排球压线属于没出界),则二次函数中二次项系数的最大值为.【解析】(1)利用抛物线的顶点坐标为(6,2.8),设出抛物线的顶点式,将点(0,2)代入解析式求出即可;(2)利用当x=9,x=18时,分别求出p的值即可判断;(3)设抛物线的解析式为p=a(x-6)2+h,将点C代入,可知此时抛物线的解析式为p=a(x-6)2+2-36a,再根据当x=9时,p>2.24;当x=18时,p≤0,即可得a的取值范围,从而取得最大值.本题考查了二次函数的性质在实际生活中的应用.可根据二次函数的解析式的最值作为临界值来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.。
中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=42,则△CEF的面积是()A.22B2C.32D.2解析:A【解析】【详解】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=2,22,AB BG∴AE=2AG=4;∴S△ABE=12AE•BG=1442822⨯⨯=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=14S△ABE=22.故选A.【点睛】本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.2.若一次函数y=(2m﹣3)x﹣1+m的图象不经过第三象限,则m的取值范图是()A.1<m<32B.1≤m<32C.1<m≤32D.1≤m≤32解析:B【解析】【分析】根据一次函数的性质,根据不等式组即可解决问题;【详解】∵一次函数y=(2m-3)x-1+m的图象不经过第三象限,∴230 10 mm<-⎧⎨-+≥⎩,解得1≤m<32.故选:B.【点睛】本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.3.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( ) A . B . C . D .解析:C【解析】【分析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2b a>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .故选C .4.一个几何体的三视图如图所示,该几何体是( )A .直三棱柱B .长方体C .圆锥D .立方体解析:A【解析】【分析】 根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A .本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.5.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是()A.27分钟B.20分钟C.13分钟D.7分钟解析:C【解析】【分析】先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【详解】解:设反比例函数关系式为:kyx=,将(7,100)代入,得k=700,∴700yx =,将y=35代入700yx =,解得20x=;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C.【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键.6.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.3 B.﹣1 C.﹣3 D.﹣2解析:C【解析】试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.【考点】根与系数的关系;一元二次方程的解.7.如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是()A .aB .bC .1aD .1b解析:D【解析】【详解】 ∵负数小于正数,在(0,1)上的实数的倒数比实数本身大.∴1a <a <b <1b ,故选D .8.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 解析:A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x-b>0恰有两个负整数解,可得x 的负整数解为-1和-2 0x b ->Qx b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.9.如图,平行于BC 的直线DE 把△ABC 分成面积相等的两部分,则BDAD 的值为()A .1B .22 C 2-1 D 2+1解析:C【解析】。
河北省唐山市2020版数学中考模拟试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2020·杭州模拟) ﹣9的绝对值是()A . ﹣9B . 9C .D .2. (2分)(2019·零陵模拟) 下列运算正确的是()A .B .C .D .3. (2分)某种计算机完成一次基本运算所用的时间约为0.0000000015s,把0.0000000015用科学记数法可表示为()A . 0.15×10﹣8B . 0.15×10﹣9C . 1.5×10﹣8D . 1.5×10﹣94. (2分)(2019·甘肃) 甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是()参加人数平均数中位数方差甲459493 5.3乙459495 4.8A . 甲、乙两班的平均水平相同B . 甲、乙两班竞赛成绩的众数相同C . 甲班的成绩比乙班的成绩稳定D . 甲班成绩优异的人数比乙班多5. (2分) (2016八下·万州期末) 已知函数y= ,自变量x的取值范围是()A . x≠3且x≠0C . x<3D . x≠36. (2分)如图,直线a∥b,直线l分别与a、b相交于A、B两点,AC⊥a于点A,交直线b于点C.已知∠1=42°,则∠2的度数是()A . 38°B . 42°C . 48°D . 58°7. (2分) (2018八下·东台期中) 下列图形中,是中心对称图形,但不是轴对称图形的是()A . 正方形B . 矩形C . 菱形D . 平行四边形8. (2分)(2020·乐东模拟) 不等式组的解集在数轴上表示正确的是()A .B .C .D .9. (2分) (2016九下·津南期中) 等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A . 27B . 36C . 27或3610. (2分) (2019八上·禅城期末) 直线不经过的象限是A . 第一象限B . 第二象限C . 第三象限D . 第四象限11. (2分)如图,Rt△ABC中,∠BAC=90°,AD⊥BC于D,设∠ABC=α,则下列结论错误的是()A . BC=B . CD=AD•tanαC . BD=ABcosαD . AC=ADcosα12. (2分)(2017·宜城模拟) 在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为()A .B .C .D .二、填空题 (共5题;共5分)13. (1分) (2018九上·大冶期末) 如图,转盘中6个扇形的面积都相等,任意转动转盘一次,当转盘停止转动时,指针指向奇数的概率是________.14. (1分)点M与点N(-2,-3)关于y轴对称,则点 M 的坐标为________.15. (1分) (2016七上·黄冈期末) 如果x=1是关于x方程x+2m﹣5=0的解,则m的值是________.16. (1分) (2019八下·赛罕期末) 如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M ,则点M表示的数为________.17. (1分)圆锥底面圆的半径为3m,其侧面展开图是半圆,则圆锥母线长为________ m.三、解答题 (共8题;共70分)18. (5分) (2019八上·新兴期中) 如图,圆柱形容器高为16cm,底面周长为24cm,在杯内壁离杯底的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯子的上沿蜂蜜相对的点A处,则蚂蚁A处到达B处的最短距离为多少?19. (5分)(2017·江西模拟) 计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+ .20. (5分)先化简,再求值:,其中x=.21. (5分)(2017·高淳模拟) 图①为平地上一幢建筑物与铁塔图,图②为其示意图.建筑物AB与铁塔CD 都垂直于地面,BD=20m,在A点测得D点的俯角为45°,测得C点的仰角为58°.求铁塔CD的高度.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)22. (10分) (2018九上·泰州月考) 商场销售服装,平均每天可售出件,每件盈利元,为扩大销售量,减少库存,该商场决定采取适当的降价措施,经调查发现,一件衣服降价元,每天可多售出件.(1)设每件降价元,每天盈利元,请写出与之间的函数关系式;(2)若商场每天要盈利元,同时尽量减少库存,每件应降价多少元?(3)每件降价多少元时,商场每天盈利达到最大?最大盈利是多少元?23. (15分)已知:如图,CD=BE,CD∥BE,∠D=∠E.求证:点C是线段AB的中点.24. (10分)(2020·仙居模拟) 如图1,Rt△ABC中,∠BCA=90°,BC=3,AC=4,直线AM⊥CA,点D是AC 上的动点,过A、D、B三点的圆交纸线AM于点E,连DE。
河北省唐山市2020年(春秋版)中考数学一模考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单项选择题 (共10题;共28分)1. (3分) |1﹣ |=()A . 1﹣B . ﹣1C . 1+D . ﹣1﹣2. (3分) 2010年江西省发生了特大洪灾,洪灾无情人有情,在此期间,社会各界高度关注灾情,纷纷慷慨相助,奉献爱心.从6月18日至6月29日16时,江西省民政厅救灾捐赠接收办公室共接收捐款3002.317万元,其中3002.317万这个数字(保留四个有效数字)用科学记数法表示为()A . 3.002×103B . 30.02×103C . 3.00231×103D . 3.002×1073. (3分)已知a,b,m均为整数,且(x+a)(x+b)=x2+mx+36,则m可以取的值共有()个?A . 0B . 5C . 10D . 154. (3分) (2019八上·南山期末) 如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量的描述错误的是()A . 众数为30B . 中位数为25C . 平均数为24D . 方差为835. (2分)不等式组的解集在数轴上表示正确的是()A .B .C .D .6. (3分)(2020·郑州模拟) 如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于 BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A . ∠CAD=40°B . ∠ACD=70°C . 点D为△ABC的外心D . ∠ACB=90°7. (3分)下图是由10把相同的折扇组成的“蝶恋花”(图l)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为()A . 36ºB . 42ºC . 45ºD . 48º8. (2分) (2020八下·临汾月考) 如图所示的是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是()A . 50B . 16C . 25D . 419. (3分)如图,已知点A是函数y=x与y=的图象在第一象限内的交点,点B在x轴负半轴上,且OA=OB,则△AOB的面积为()A . 2B .C . 2D . 410. (3分)在雨地里放置一个无盖的容器,如果雨水均匀地落入容器,容器水面高度h与时间t的函数图象如图所示,那么这个容器的形状可能是()A .B .C .D .二、填空题 (共6题;共18分)11. (3分) (2017七上·桂林期中) 已知多项式4y2﹣2y+7的值为 7,则多项式2y2﹣y+1的值等于________.12. (3分)如图,已知Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,现将△ABC进行折叠,使顶点A、B重合,则折痕DE=________ cm.13. (3分) (2018九上·扬州期末) 一元二次方程x2-2x+m=0总有实数根,则m应满足的条件是________14. (3分)如图,在菱形ABCD中,对角线AC=6,BD=8,则这个菱形的边长为________15. (3分)四边形ABCD的对角线AC、BD相交于点O,AD∥BC,AC=BD.试添加一个条件________ ,使四边形ABCD为矩形.16. (3分) (2017七上·厦门期中) 观察下面点阵图和相应的等式,探究其中的规律:按此规律1+3+5+7+…+(2n﹣1)=________.三、解答题 (共8题;共72分)17. (8分)(1)﹣÷|﹣2×sin45°|+(﹣)﹣1÷(﹣14×)(2)先化简(+)×,然后选择一个你喜欢的数代入求值.18. (9分) (2019八下·淮安月考) 某校对八年级学生上学的4种方式:骑车、步行、乘车、接送,进行抽样调查,结果如图(1)、图(2).(1)该抽样调查中样本容量是________,其中,步行人数占样本容量的________%,骑车人数占样本容量的________%,乘车人数占样本容量的________%.(2)请把条形统计图补充完整;(3)根据调查结果,你估计该校八年级500名学生中,大约有多少名学生是由家长接送上学的?19. (7.0分)(2017·宿州模拟) 图为放置在水平桌面上的台灯的平面示意图,可伸缩式灯臂AO长为40cm,与水平面所形成的夹角∠OAM恒为75°(不受灯臂伸缩的影响),由光源O射出的光线沿灯罩形成光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,(1)求该台灯照亮桌面的宽度BC(不考虑其他因素,结果精确到1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,≈1.73)(2)若灯臂最长可伸长至60cm,不调整灯罩的角度,能否让台灯照亮桌面85cm的宽度?20. (8分) (2019八下·北京期中) 已知:如图,一次函数的图象与反比例函数的图象交于M,N两点,过点M作MC⊥y轴于点C,且CM=1,过点N作ND⊥x轴于点D,且DN=1,已知点P是x轴(除原点O外)上一点.(1)直接写出M、N的坐标及k的值;(2)将线段CP绕点P按逆时针旋转90°得到线段PQ,当点P滑动时,点Q能否在反比例函数的图象上?如果能,求出点Q的坐标;如果不能,请说明理由;(3)当点P滑动时,是否存在反比例函数图象(第一象限的一支)上的点S,使得以P、S、M、N四个点为顶点的四边形是平行四边形?若存在,请直接写出所有正确点S的坐标;若不存在,请说明理由.21. (9.0分) (2019九上·泗阳期末) P是以AB为直径的半圆上一动点(P与A、B不重合),O为圆心,CO⊥AP,OC、BC与AP分别相交于D、E两点,AB=12.(1)若∠ABC=35°,求∠PAB的度数;(2)若AP平分线段BC,求弦AP的长度;(3)是否存在点P,使△PBC的面积为整数,如果存在,这样的P点有几个?(直接写出结果,不需写出解题过程.)22. (8.0分)(2019·福田模拟) 如图1,抛物线与y=﹣与x轴交于A、B两点(点A在点B 的左侧),与y轴交于点C,连接AC、BC,点D是线段AB上一点,且AD=CA,连接CD.(1)如图2,点P是直线BC上方抛物线上的一动点,在线段BC上有一动点Q,连接PC、PD、PQ,当△PCD面积最大时,求PQ+ CQ的最小值;(2)将过点D的直线绕点D旋转,设旋转中的直线l分别与直线AC、直线CO交于点M、N,当△CMN为等腰三角形时,直接写出CM的长.23. (11.0分) (2019九上·武汉月考) 已知,点D是等边△ABC内的任一点,连接OA,OB,OC.(1)如图1,己知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的度数是________②用等式表示线段OA,OB,OC之间的数量关系,并证明;________(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.24. (12分)(2017·襄城模拟) 如图,已知正方形ABCD,将一块等腰直角三角板的锐角顶点与A重合,并将三角板绕A点旋转,如图1,使它的斜边与BD交于点H,一条直角边与CD交于点G.(1)请适当添加辅助线,通过三角形相似,求出的值;(2)连接GH,判断GH与AF的位置关系,并证明;(3)如图2,将三角板旋转至点F恰好在DC的延长线上时,若AD=3 ,AF=5 .求DG的长.参考答案一、单项选择题 (共10题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共18分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共72分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、23-1、23-2、24-1、24-2、24-3、。
河北省唐山市2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )A .B .C .D .2.二次函数2y x =的对称轴是( ) A .直线y 1=B .直线x 1=C .y 轴D .x 轴3.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是( )1 2 3 4 5 成绩(m ) 8.28.08.27.57.8A .8.2,8.2B .8.0,8.2C .8.2,7.8D .8.2,8.04.在同一直角坐标系中,函数y=kx-k 与ky x=(k≠0)的图象大致是 ( ) A . B .C .D .5.下列四个多项式,能因式分解的是( ) A .a -1 B .a 2+1 C .x 2-4yD .x 2-6x +96.如图,在菱形ABCD 中,AB=5,∠BCD=120°,则△ABC 的周长等于( )A .20B .15C .10D .57.下列四个图案中,不是轴对称图案的是( )A.B.C.D.8.已知一个多边形的内角和是外角和的3倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形9.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1.关于这组数据说法错误的是()A.极差是20 B.中位数是91 C.众数是1 D.平均数是9110.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.1211.如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )A.1个B.2个C.3个D.412.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果m,n互为相反数,那么|m+n﹣2016|=___________.14.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.15.用换元法解方程2231512x xx x-+=-,设y=21xx-,那么原方程化为关于y的整式方程是_____.16.在△ABC中,若∠A,∠B满足|cosA-12|+(sinB-22)2=0,则∠C=_________.17.如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为_____.18.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB周长等于_____.(结果保留根号及π).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)a=%,并补全条形图.(2)在本次抽样调查中,众数和中位数分别是多少?(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?20.(6分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的14时,求线段EF的长.21.(6分)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为22,求线段EF的长.22.(8分)如图,Rt△ABC中,∠C=90°,∠A=30°,BC=1.(1)实践操作:尺规作图,不写作法,保留作图痕迹.①作∠ABC的角平分线交AC于点D.②作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.(2)推理计算:四边形BFDE的面积为.23.(8分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA 级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.(1)求每千克A级别茶叶和B级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.24.(10分)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.判断直线CD 和⊙O的位置关系,并说明理由.过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.25.(10分)如图,一次函数y=2x﹣4的图象与反比例函数y=kx的图象交于A、B两点,且点A的横坐标为1.(1)求反比例函数的解析式;(2)点P是x轴上一动点,△ABP的面积为8,求P点坐标.26.(12分)路边路灯的灯柱BC垂直于地面,灯杆BA的长为2米,灯杆与灯柱BC成120 角,锥形灯罩的轴线AD与灯杆AB垂直,且灯罩轴线AD正好通过道路路面的中心线(D在中心线上).已知点C与点D之间的距离为12米,求灯柱BC的高.(结果保留根号)27.(12分)已知:如图,在△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为»BD的中点.求证:∠ACD=∠DEC;(2)延长DE、CB交于点P,若PB=BO,DE=2,求PE的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误.故选A.考点:中心对称图形;轴对称图形.【分析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.【详解】解:二次函数y=x2的对称轴为y轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).3.D【解析】【分析】【详解】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.其中8.1出现1次,出现次数最多,8.2排在第三,∴这组数据的众数与中位数分别是:8.1,8.2.故选D.【点睛】本题考查众数;中位数.4.D【解析】【分析】根据k值的正负性分别判断一次函数y=kx-k与反比例函数kyx=(k≠0)所经过象限,即可得出答案.【详解】解:有两种情况,当k>0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数kyx=(k≠0)的图象经过一、三象限;当k<0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数kyx=(k≠0)的图象经过二、四象限;根据选项可知,D选项满足条件.故选D.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x2-6x+9=(x-3)2.故选D.考点:2.因式分解-运用公式法;2.因式分解-提公因式法.6.B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B7.B【解析】【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.8.D【解析】【分析】根据多边形的外角和是360°,以及多边形的内角和定理即可求解.【详解】设多边形的边数是n,则(n−2)⋅180=3×360,解得:n=8.故选D.【点睛】此题考查多边形内角与外角,解题关键在于掌握其定理. 9.D 【解析】 【分析】 【详解】试题分析:因为极差为:1﹣78=20,所以A 选项正确;从小到大排列为:78,85,91,1,1,中位数为91,所以B 选项正确; 因为1出现了两次,最多,所以众数是1,所以C 选项正确; 因为9178988598905x ++++==,所以D 选项错误.故选D .考点:①众数②中位数③平均数④极差. 10.B 【解析】分析:过点D 作DE ⊥AB 于E ,先求出CD 的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解. 详解:如图,过点D 作DE ⊥AB 于E ,∵AB=8,CD=2,∵AD 是∠BAC 的角平分线,90C ,∠=︒ ∴DE=CD=2, ∴△ABD 的面积11828.22AB DE =⋅=⨯⨯= 故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等. 11.B 【解析】 【分析】由抛物线的开口方向判断a 与1的关系,由抛物线与y 轴的交点判断c 与1的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】①抛物线与y 轴交于负半轴,则c <1,故①正确;②对称轴x 2ba=-=1,则2a+b=1.故②正确; ③由图可知:当x=1时,y=a+b+c <1.故③错误;④由图可知:抛物线与x 轴有两个不同的交点,则b 2﹣4ac >1.故④错误. 综上所述:正确的结论有2个. 故选B . 【点睛】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用. 12.C 【解析】 【分析】分为三种情况:①AP=OP ,②AP=OA ,③OA=OP ,分别画出即可. 【详解】 如图,分OP=AP (1点),OA=AP (1点),OA=OP (2点)三种情况讨论. ∴以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有4个. 故选C. 【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1. 【解析】试题分析:先用相反数的意义确定出m+n=0,从而求出|m+n ﹣1|,∵m ,n 互为相反数,∴m+n=0,∴|m+n ﹣1|=|﹣1|=1;故答案为1.考点:1.绝对值的意义;2.相反数的性质. 14.1. 【解析】试题解析:根据题意,将周长为8的△ABC 沿边BC 向右平移1个单位得到△DEF ,则AD=1,BF=BC+CF=BC+1,DF=AC ,又∵AB+BC+AC=1,∴四边形ABFD 的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.考点:平移的性质.15.6y 2-5y+2=0【解析】【分析】根据y =21x x -,将方程变形即可. 【详解】根据题意得:3y +152y =, 得到6y 2-5y +2=0故答案为6y 2-5y +2=0【点睛】此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键. 16.75°【解析】【分析】根据绝对值及偶次方的非负性,可得出cosA 及sinB 的值,从而得出∠A 及∠B 的度数,利用三角形的内角和定理可得出∠C 的度数.【详解】∵|cosA -12|+(sinB -2)2=0,∴cosA=12,sinB=2, ∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为:75°. 【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA 及sinB 的值,另外要求我们熟练掌握一些特殊角的三角函数值.17.2.4cm【解析】分析:根据图2可判断AC=3,BC=4,则可确定t=5时BP 的值,利用sin ∠B 的值,可求出PD . 详解:由图2可得,AC=3,BC=4,∴AB=22345+=.当t=5时,如图所示:,此时AC+CP=5,故BP=AC+BC-AC-CP=2,∵sin∠B=ACAB=35,∴PD=BP·sin∠B=2×35=65=1.2(cm).故答案是:1.2 cm.点睛:本题考查了动点问题的函数图象,勾股定理,锐角三角函数等知识,解答本题的关键是根据图形得到AC、BC的长度,此题难度一般.1822【解析】根据正方形的性质,得扇形所在的圆心角是90°,扇形的半径是2.解:根据图形中正方形的性质,得∠AOB=90°,2.∴扇形OAB 90222π⨯=.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.【解析】【分析】(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.【详解】解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,该扇形所对圆心角的度数为310°×10%=31°,参加社会实践活动的天数为8天的人数是:2020%×10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1.(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.【解析】【分析】(1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出BD DF=CE ED,从而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面积等于△ABC的面积的14,求出DH的长,从而利用S△DEF的值求出EF即可【详解】解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,证明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴BD DF=CE ED.∵BD=CD,∴CD DF=CE ED,即CD CE=DF ED.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.∵AB=AC,D是BC的中点,∴AD⊥BC,BD=12BC=1.在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,∴AD=2.∴S△ABC=12•BC•AD=12×3×2=42,S△DEF=14S△ABC=14×42=3.又∵12•AD•BD=12•AB•DH,∴AD BD8624 DHAB105⋅⨯===.∵△BDF∽△DEF,∴∠DFB=∠EFD.∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF.又∵DF=DF,∴△DHF≌△DGF(AAS).∴DH=DG=245.∵S△DEF=12·EF·DG=12·EF·245=3,∴EF=4.【点睛】本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.21.(1)证明见解析;(2)①∠OCE=45°;②EF =【解析】【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.(2)①因为AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,∠EOC=∠DAO=105°,在OCE 中,∠E=30°,利用内角和定理,得:∠OCE=45°.②作OG⊥CE于点G,根据垂径定理可得FG=CG,因为OC=OCE=45°.等腰直角三角形的斜倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=则EF=GE-FG=【试题解析】(1)∵直线与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG∵OC=OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=∴EF=GE-FG=【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.22.(1)详见解析;(2)83.【解析】【分析】(1)利用基本作图(作一个角等于已知角和作已知线段的垂直平分线)作出BD和EF;(2)先证明四边形BEDF为菱形,再利用含30度的直角三角形三边的关系求出BF和CD,然后利用菱形的面积公式求解.【详解】(1)如图,DE、DF为所作;(2)∵∠C=90°,∠A=30°,∴∠ABC=10°,AB=2BC=2.∵BD为∠ABC的角平分线,∴∠DBC=∠EBD=30°.∵EF垂直平分BD,∴FB=FD,EB=ED,∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,∴DE∥BF,BE∥DF,∴四边形BEDF为平行四边形,而FB=FD,∴四边形BEDF为菱形.∵∠DFC=∠FBD+∠FDB=30°+30°=10°,∴∠FDC=90°-10°=30°.在Rt△BDC中,∵BC=1,∠DBC=30°,∴DC=23Rt△FCD中,∵∠FDC=30°,∴FC=2,∴FD=2FC=4,∴BF=FD=4,∴四边形BFDE 的面积=4×33故答案为:3【点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).23.(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.【解析】试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.试题解析:解:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元.由题意,解得,答:每千克A级别茶叶和B级别茶叶的销售利润分别为100元和150元.(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200﹣a)kg.销售总利润为w元.由题意w=100a+150(200﹣a)=﹣50a+30000,∵﹣50<0,∴w随x的增大而减小,∴当a取最小值,w有最大值,∵200﹣a≤2a,∴a≥,∴当a=67时,w最小=﹣50×67+30000=26650(元),此时200﹣67=133kg,答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.24.解:(1)直线CD和⊙O的位置关系是相切,理由见解析(2)BE=1.【解析】试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD 可得∠CDA+∠ADO=90°,从而得∠CDO=90°,根据切线的判定即可得出;(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可.试题解析:(1)直线CD和⊙O的位置关系是相切,理由是:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,∴直线CD是⊙O的切线,即直线CD和⊙O的位置关系是相切;(2)∵AC=2,⊙O的半径是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,设DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=1,即BE=1.考点:1、切线的判定与性质;2、切线长定理;3、勾股定理;4、圆周角定理25.(1)y=6x;(2)(4,0)或(0,0)【解析】【分析】(1)把x=1代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用△ABP的面积为8,可求P点坐标.【详解】解:(1)把x=1代入y=2x ﹣4,可得y=2×1﹣4=2,∴A (1,2),把(1,2)代入y=k x,可得k=1×2=6, ∴反比例函数的解析式为y=6x ; (2)根据题意可得:2x ﹣4=,解得x 1=1,x 2=﹣1,把x 2=﹣1,代入y=2x ﹣4,可得y=﹣6,∴点B 的坐标为(﹣1,﹣6).设直线AB 与x 轴交于点C ,y=2x ﹣4中,令y=0,则x=2,即C (2,0),设P 点坐标为(x ,0),则×|x ﹣2|×(2+6)=8,解得x=4或0,∴点P 的坐标为(4,0)或(0,0).【点睛】本题主要考查用待定系数法求一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。
河北省唐山市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知一元二次方程2x 2+2x ﹣1=0的两个根为x 1,x 2,且x 1<x 2,下列结论正确的是( ) A .x 1+x 2=1B .x 1•x 2=﹣1C .|x 1|<|x 2|D .x 12+x 1=122.下列各点中,在二次函数2y x =-的图象上的是( ) A .()1,1B .()2,2-C .()2,4D .()2,4--3.2018的相反数是( ) A .12018B .2018C .-2018D .12018-4.如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一个条件,不正确的是( )A .∠ABD=∠CB .∠ADB=∠ABC C .AB CBBD CD= D .AD ABAB AC= 5.左下图是一些完全相同的小正方体搭成的几何体的三视图 .这个几何体只能是( )A .B .C .D .6.下列命题是假命题的是( )A .有一个外角是120°的等腰三角形是等边三角形B .等边三角形有3条对称轴C .有两边和一角对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等7.已知平面内不同的两点A (a+2,4)和B (3,2a+2)到x 轴的距离相等,则a 的值为( ) A .﹣3B .﹣5C .1或﹣3D .1或﹣58.如图所示,直线a ∥b ,∠1=35°,∠2=90°,则∠3的度数为( )A.125°B.135°C.145°D.155°9.在刚过去的2017年,我国整体经济实力跃上了一个新台阶,城镇新增就业1351万人,数据“1351万”用科学记数法表示为()A.13.51×106B.1.351×107C.1.351×106D.0.1531×10810.一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正确的结论有:A.4个B.3个C.2个D.1个11.如果k<0,b>0,那么一次函数y=kx+b的图象经过( )A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac <0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有().A.1个B.2个C.3个D.4个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心.大于12MN的长为半径画弧,两弧在第二象限内交于点p(a,b),则a与b的数量关系是________.14.如图,OAB ∆与OCD ∆是以点O 为位似中心的位似图形,相似比为3:4,90OCD =o ∠,60AOB ∠=o ,若点B 的坐标是(6,0),则点C 的坐标是__________.15.一个圆锥的高为33,侧面展开图是半圆,则圆锥的侧面积是_________16.如图,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =42,点D 是AC 边上一动点,连接BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的最小值为___.17.已知正比例函数的图像经过点M( )、、,如果,那么________.(填“>”、“=”、“<”)18.不等式组2672x x -≥⎧⎨+>-⎩的解集是____________;三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)计算﹣14﹣23116()|3|2÷-+-20.(6分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN 的长),直线MN 垂直于地面,垂足为点P .在地面A 处测得点M 的仰角为58°、点N 的仰角为45°,在B 处测得点M 的仰角为31°,AB =5米,且A 、B 、P 三点在一直线上.请根据以上数据求广告牌的宽MN 的长. (参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)21.(6分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成.22.(8分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有名.23.(8分)如图,将连续的奇数1,3,5,7…按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示.(1)计算:若十字框的中间数为17,则a+b+c+d=______.(2)发现:移动十字框,比较a+b+c+d与中间的数.猜想:十字框中a、b、c、d的和是中间的数的______;(3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;(4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.24.(10分)如图,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)求BP的长.25.(10分)计算:(﹣4)×(﹣12)+2﹣1﹣(π﹣1)0+36.26.(12分)学生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B 级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了名学生;将图①补充完整;求出图②中C级所占的圆心角的度数.27.(12分)解不等式313212xx+->-,并把解集在数轴上表示出来.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.【详解】根据题意得x 1+x 2=﹣22=﹣1,x 1x 2=﹣12,故A 、B 选项错误; ∵x 1+x 2<0,x 1x 2<0,∴x 1、x 2异号,且负数的绝对值大,故C 选项错误; ∵x 1为一元二次方程2x 2+2x ﹣1=0的根, ∴2x 12+2x 1﹣1=0, ∴x 12+x 1=12,故D 选项正确, 故选D .【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键. 2.D 【解析】 【分析】将各选项的点逐一代入即可判断. 【详解】解:当x=1时,y=-1,故点()1,1不在二次函数2y x =-的图象; 当x=2时,y=-4,故点()2,2-和点()2,4不在二次函数2y x =-的图象;当x=-2时,y=-4,故点()2,4--在二次函数2y x =-的图象;故答案为:D . 【点睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式. 3.C 【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得. 【详解】2018与-2018只有符号不同,由相反数的定义可得2018的相反数是-2018, 故选C.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键. 4.C 【解析】 【分析】由∠A 是公共角,利用有两角对应相等的三角形相似,即可得A 与B 正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.5.A【解析】试题分析:根据几何体的主视图可判断C不合题意;根据左视图可得B、D不合题意,因此选项A正确,故选A.考点:几何体的三视图6.C【解析】解:A.外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;B.等边三角形有3条对称轴,故B选项正确;C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;D.利用SSS.可以判定三角形全等.故D选项正确;故选C.7.A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.8.A【解析】分析:如图求出∠5即可解决问题. 详解:∵a ∥b , ∴∠1=∠4=35°, ∵∠2=90°, ∴∠4+∠5=90°, ∴∠5=55°,∴∠3=180°-∠5=125°, 故选:A .点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题. 9.B 【解析】 【分析】根据科学记数法进行解答. 【详解】1315万即13510000,用科学记数法表示为1.351×107.故选择B. 【点睛】本题主要考查科学记数法,科学记数法表示数的标准形式是a×10n (1≤│a│<10且n 为整数). 10.B 【解析】试题解析:①∵二次函数的图象的开口向下, ∴a<0,∵二次函数的图象y 轴的交点在y 轴的正半轴上, ∴c>0,∵二次函数图象的对称轴是直线x=1,12ba,∴-= ∴2a+b=0,b>0 ∴abc<0,故正确;②∵抛物线与x 轴有两个交点, 240b ac ∴->, 24b ac ∴>, 故正确;③∵二次函数图象的对称轴是直线x=1, ∴抛物线上x=0时的点与当x=2时的点对称, 即当x=2时,y>0 ∴4a+2b+c>0, 故错误;④∵二次函数图象的对称轴是直线x=1,12ba,∴-=∴2a+b=0, 故正确.综上所述,正确的结论有3个. 故选B. 11.D 【解析】 【分析】根据k 、b 的符号来求确定一次函数y=kx+b 的图象所经过的象限. 【详解】 ∵k <0,∴一次函数y=kx+b 的图象经过第二、四象限. 又∵b >0时,∴一次函数y=kx+b 的图象与y 轴交与正半轴. 综上所述,该一次函数图象经过第一、二、四象限. 故选D . 【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交. 12.C 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2ba=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0. ∴abc <0, ①正确; 2a+b=0,②正确;由图知:抛物线与x 轴有两个不同的交点,则△=b 2-4ac >0,故③错误;由对称性可知,抛物线与x 轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误; 观察图象得当x=-2时,y <0, 即4a-2b+c <0 ∵b=-2a , ∴4a+4a+c <0 即8a+c <0,故⑤正确. 正确的结论有①②⑤, 故选:C 【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.a+b=1. 【解析】试题分析:根据作图可知,OP 为第二象限角平分线,所以P 点的横纵坐标互为相反数,故a+b=1. 考点:1角平分线;2平面直角坐标系.14.(2,) 【解析】分析:首先解直角三角形得出A 点坐标,再利用位似是特殊的相似,若两个图形OAB ∆与OCD ∆是以点O 为位似中心的位似图形,相似比是k ,OAB ∆上一点的坐标是(),x y , 则在OCD ∆中,它的对应点的坐标是(),kx ky 或(),kx ky --,进而求出即可.详解:OAB 与OCD ∆是以点O 为位似中心的位似图形,90OCD ∠=o ,90.OAB ∴∠=︒60AOB ∠=o ,若点B 的坐标是()6,0,1cos606 3.2OA OB =⋅︒=⨯=。
唐山市2020年中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题:本大题共12个小题,每小题3分,满分36分. (共12题;共34分)1. (3分)下列四个实数中,绝对值最小的数是()A . ﹣5B . -C . 1D . π2. (3分)下列计算中,错误的是()A . 3a﹣2a=aB . ﹣2a(3a﹣1)=﹣6a2﹣1C . ﹣8a2÷2a=﹣4aD . (a+3b)2=a2+6ab+9b23. (3分) (2017七上·新会期末) 用两块完全相同的长方体搭成如图所示的几何体,从正面看得到的图形是()A .B .C .D .4. (3分)据昌平交通局网上公布,地铁昌平线(一期)2011年1月4日出现上班运营高峰,各站进出站约47600人次. 将47 600用科学记数法表示为()A .B .C .D .5. (3分) (2019八上·南山期末) 如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量的描述错误的是()A . 众数为30B . 中位数为25C . 平均数为24D . 方差为836. (3分)在一张正方形桌子的桌面上放上一块台布,台布各边垂下的长度均为5cm,台布的面积比桌面面积的2倍少50cm2 ,若设正方形桌面的边长为xcm,则可列方程为()A .B .C .D .7. (2分)(2016·聊城) (2016•聊城)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A . 28°B . 38°C . 48°D . 88°8. (3分)(2018·黔西南模拟) 一个密码锁有五位数字组成,每一位数字都是0,1,2,3,4,5,6,7,8,9之中的一个,小明只记得其中的三个数字,则他一次就能打开锁的概率为()A .B .C .D .9. (3分)如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=20° ,,则∠DAC的度数是()A . 70°B . 45°C . 35°D . 30°10. (2分)如图,E,F分别是矩形ABCD的边AD、AB上的点,若EF=EC,EF⊥EC,DC= ,则BE的长为()A .B .C . 4D . 211. (3分)如图,斜坡AB长130米,坡度i=1:2.4,BC⊥AC,现在计划在斜坡AB的中点D处挖去部分坡体修建一个平行于水平线CA的平台DE和一条新的斜坡BE,若斜坡BE的坡角为30°,则平台DE的长约为()(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)A . 24.8米B . 43.3米C . 33.5米D . 16.8米12. (3分)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=cm,且tan∠EFC=,那么该矩形的周长为()A . 72cmB . 36cmC . 20cmD . 16cm二、填空题:本大题共8个小题,每小题5分,满分40分。
唐山市2020版中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2020七上·江都期末) 如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y的值为()A . -2B . 6C .D . 22. (2分)如图是由5个大小相同的正方体组合而成的几何体,它的主视图是()A .B .C .D .3. (2分) (2016七下·太原期中) 蚕丝是最细的天然纤维,它的截面直径约为0.000001米,这一数据用科学记数法表示为()A . 1×106米B . 1×10﹣5米C . 1×10﹣6米D . 1×105米4. (2分) (2018九上·金华期中) 任意掷一枚骰子,下列情况出现的可能性比较大的是()A . 面朝上的点数是3B . 面朝上的点数是奇数C . 面朝上的点数小于2D . 面朝上的点数不小于35. (2分)(2017·包头) 已知下列命题:①若>1,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是()A . 1个B . 2个C . 3个D . 4个6. (2分) (2016九上·恩施月考) 如图,直线AB,AD与⊙O相切于点B,D,C为⊙O上一点,且∠BCD=140°,则∠A的度数是()A . 70°B . 105°C . 100°D . 110°二、填空题 (共10题;共13分)7. (1分) (2019八下·乌兰浩特期中) 已知,则 =________8. (1分) (2018九下·盐都模拟) 甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,如果甲比赛成绩的方差为=16.7,乙比赛成绩的方差为=28.3,那么成绩比较稳定的是________(填“甲”或“乙”).9. (1分) (2016九上·仙游期末) 将抛物线先向右平移3个单位长度,再向上平移2个单位长度后得到新的抛物线的顶点坐标为 ________ .10. (1分) (2018九上·十堰期末) 如图,直线AB切⊙O于C点,D是⊙O上一点,∠EDC=30°,弦EF∥AB,连接OC交EF于H点,连接CF,若CF=5,则HE的长为________.11. (3分)抛物线y=﹣x2﹣2x+3用配方法化成y=a(x﹣h)2+k的形式是________,抛物线与x轴的交点坐标是________,抛物线与y轴的交点坐标是________.12. (1分)如图,点A的坐标为(8,0),点B为y轴的负半轴上的一个动点,分别以OB,AB为直角边在第三、第四象限作等腰Rt△OBF、等腰Rt△ABE,连接EF交y轴于P点,当点B在y轴上移动时,PB的长度为________.13. (1分) (2017八下·宜兴期中) 如图,在正方形ABCD中,AB=2cm,对角线AC、BD交于点O,点E以一定的速度从A向B移动,点F以相同的速度从B向C移动,连结OE、OF、EF.则线段EF的最小值是________cm.14. (1分)网购悄然盛行,我国2012年网购交易额为1.26万亿人民币,2014年我国网购交易额达到了2.8万亿人民币.如果设2013年、2014年网购交易额的平均增长率为x,则依题意可得关于x的一元二次方程为________.15. (1分) (2019七上·哈尔滨月考) 平面直角坐标系中,点A的坐标为,平行于x轴的直线AB与一三象限的角平分线相交于B点,则点B的坐标为________.16. (2分)(2019·周至模拟) 如图,过原点的直线l与反比例函数y=﹣的图象交于M,N两点,若MO=5,则ON=________.根据图象猜想,线段MN的长度的最小值________.三、解答题 (共11题;共102分)17. (10分) (2019八下·越城期末) 计算或化简:(1);(2)18. (5分) (2017八上·曲阜期末) 先化简再求值:(﹣)÷ (取一个你认为合适的数)19. (12分) (2020·甘孜) 为了解同学们最喜欢一年四季中的哪个季节,数学社在全校随机抽取部分同学进行问卷调查,根据调查结果,得到如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)此次调查一共随机抽取了________名同学;扇形统计图中,“春季”所对应的扇形的圆心角的度数为________;(2)若该学校有1500名同学,请估计该校最喜欢冬季的同学的人数;(3)现从最喜欢夏季的3名同学A,B,C中,随机选两名同学去参加学校组织的“我爱夏天”演讲比赛,请用列表或画树状图的方法求恰好选到A,B去参加比赛的概率.20. (6分) (2019九上·鱼台期末) 如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为________;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)21. (10分)(2017·抚顺模拟) 如图,⊙O是△ABC的外接圆,AB是直径,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若AE=6,CE=2 .①求⊙O的半径②求线段CE,BE与劣弧所围成的图形的面积(结果保留根号和π)22. (5分)(2017·抚顺模拟) 如图,小明在大楼45米高(即PH=45米)的窗户P处进行观测,测得山坡上A处的俯角为15°,山脚B处得俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:.点P、H、B、C、A 在同一个平面上.点H、B、C在同一条直线上且PH⊥HC,求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732.23. (4分)如图,是反比例函数y= 的图象中的一支,请回答(1)另一支在第________象限.(2) m的取值范围为________.(3)点A(﹣2,y1)和B(﹣1,y2)都在该图象上,则y1________y2(填>或<或=)(4)若直线y=﹣x与图象交于点P,且线段OP=6,则m=________.24. (10分)如图1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上.(1)请直接写出线段BE与线段CD的关系:;(2)如图2,将图1中的△ABC绕点A顺时针旋转角α(0<α<360°),①(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请说明理由;②当AC=时,探究在△ABC旋转的过程中,是否存在这样的角α,使以A、B、C、D四点为顶点的四边形是平行四边形?若存在,请直接写出角α的度数;若不存在,请说明理由25. (15分)某电子厂商设计了一款制造成本为18元新型电子厂品,投放市场进行试销.经过调查,得到每月销售量y(万件)与销售单价x(元)之间的部分数据如下:销售单价x(元/件)…20253035…每月销售量y(万件)…60504030…(1)求出每月销售量y(万件)与销售单价x(元)之间的函数关系式.(2)求出每月的利润z(万元)与销售单x(元)之间的函数关系式.(3)根据相关部门规定,这种电子产品的销售利润率不能高于50%,而且该电子厂制造出这种产品每月的制造成本不能超过900万元.那么并求出当销售单价定为多少元时,厂商每月能获得最大利润?最大利润是多少?(利润=售价﹣制造成本)26. (10分)在等边三角形ABC中,点D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点.(1)求∠F的度数;(2)若CD=4,求DF的长.27. (15分)(2019·容县模拟) 如图,抛物线的图象与轴交于两点(点在点的左边)与轴交于点 ,抛物线的顶点为 .(1)求点的坐标;(2)点为线段上一点(点不与点重合),过点作轴的垂线,与直线交于点,与抛物线交于点,过点作交抛物线于点,过点作轴于点 ,可得矩形 .如图,点在点左边,当矩形的周长最大时,求此时的的面积;(3)在(2)的条件下,当矩形的周长最大时,连接,过抛物线上一点作轴的平行线,与直线交于点 (点在点的上方)若,求点的坐标.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共13分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共102分)17-1、17-2、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、23-1、23-2、23-3、23-4、24-1、24-2、25-1、25-2、25-3、26-1、26-2、27-1、27-2、27-3、。
河北省唐山市2020版数学中考一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共5题;共10分)1. (2分)若将21000000用科学记数法表示为2.1×10n(n是正整数),则n的值为()A . 5B . 6C . 7D . 82. (2分) (2019九下·绍兴期中) 如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A .B .C .D .3. (2分)(2018·广东) 不等式3x﹣1≥x+3的解集是()A . x≤4B . x≥4C . x≤2D . x≥24. (2分)如图,是意大利著名的比萨斜塔,塔身的中心线与垂直中心线的夹角A约为5゜28′,塔身AB的长为54.5m,则塔顶中心偏离垂直中心线的距离BC是()A . 54.5×sin5°28′mB . 54.5×cos5°28′mC . 54.5×tan5°28'mD . m5. (2分)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A . 11B . 16C . 19D . 22二、填空题 (共12题;共12分)6. (1分) (2019七上·黄冈期末) -1的相反数是________.7. (1分)已知以am=2,an=4,ak=32.则a3m+2n﹣k的值为________ .8. (1分)式子有意义的x的取值范围是________ .9. (1分) (2017八下·南江期末) 如图,平行四边形中, ,点为的中点,则________。
10. (1分)(2016·毕节) 分解因式3m4﹣48=________.11. (1分)(2019·梧州模拟) 数据2,4,3,x,7,8,10的众数为3,则中位数是________.12. (1分)(2019·葫芦岛) 若关于x的一元二次方程x2+(2+a)x=0有两个相等的实数根,则a的值是________.13. (1分)(2017·姜堰模拟) 若圆锥的底面圆半径为4cm,高为5cm,则该圆锥的侧面展开图的面积为________cm2 .14. (1分)(2019·遵义) 如图,平行四边形纸片ABCD的边AB,BC的长分别是10cm和7.5cm,将其四个角向内对折后,点B与点C重合于点C',点A与点D重合于点A′.四条折痕围成一个“信封四边形”EHFG,其顶点分别在平行四边形ABCD的四条边上,则EF=________cm.15. (1分)如图,在Rt△AOB中,OA=OB=,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为________ .16. (1分) (2016八上·上城期末) 在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是________.17. (1分) (2018八下·黄浦期中) 直线y=-4x-2在y轴上的截距是________三、解答题 (共11题;共107分)18. (10分)计算(1)﹣()2+(π+ )0﹣ +| ﹣2|(2)(3 ﹣2 + )÷2(3)(2 + )2﹣( + )(﹣)(4) + ÷a.19. (10分)(2020·上城模拟)(1)先化简÷(1+ ),再从0,﹣1,1这三个数中选一个你喜欢的数代入求值.(2)解不等式组20. (5分)(2013·淮安) 如图,在平行四边形ABCD中,过AC中点O作直线,分别交AD、BC于点E、F.求证:△AOE≌△COF.21. (10分)(2018·灌南模拟) 一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,求两次摸出的球恰好颜色不同的概率(要求画树状图或列表).22. (12分)(2017·昆山模拟) 国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:获奖等次频数频率一等奖100.05二等奖200.10三等奖30b优胜奖a0.30鼓励奖800.40请根据所给信息,解答下列问题:(1) a=________,b=________,(2)补全频数分布直方图;(3)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?(4)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.23. (10分) (2020八下·海安月考) 如图,两条公路、交予点,在公路旁有一学校,与点的距离为,点(学校)到公路的距离为 .一大货车从点出发,行驶在公路上,汽车周围范围内有噪音影响.(1)货车开过学校是否受噪音影响?为什么?(2)若汽车速度为,则学校受噪音影响多少秒钟?24. (10分)(2017·南宁模拟) 某校为了创建书香校园,今年又购进一批图书,经了解,科普书的单价比文学书的单价多4元,用1200元购进的科普书与用800元购进的文学书本数相等.(1)今年购进的文学书和科普书的单价各是多少元?(2)该校购买这两种书共180本,总费用不超过2000元,且购买文学书的数量不多于42本,应选择哪种购买方案可使总费用最低?最低费用是多少元?25. (10分) (2017八下·江阴期中) 如图,在四边形ABCD中,∠ABC=90°,,AC=AD,M,N 分别为AC,AD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD ,AC=2,求BN的长.26. (15分) (2016九上·盐城开学考) 直线y=x+b与双曲线y= 交于点A(﹣1,﹣5).并分别与x轴、y轴交于点C、B.(1)直接写出b=________,m=________;(2)根据图象直接写出不等式x+b<的解集为________;(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在,请求出D的坐标;若不存在,请说明理由.27. (10分) (2017九上·台江期中) 二次函数中y=ax2+bx﹣3的x、y满足表:x…﹣10123…y…0﹣3﹣4﹣3m…(1)求该二次函数的解析式;(2)求m的值并直接写出对称轴及顶点坐标.28. (5分)(2017·东丽模拟) 如图,已知一次函数y1= x+b的图象l与二次函数y2=﹣x2+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣,0).(1)求二次函数的最大值;(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程 =0的根,求a的值;(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.参考答案一、单选题 (共5题;共10分)1-1、2-1、3-1、4-1、5-1、二、填空题 (共12题;共12分)6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共11题;共107分)18-1、18-2、18-3、18-4、19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、22-4、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、28-1、28-2、。
河北省唐山市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°2.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )A.四条边相等的四边形是菱形B.一组邻边相等的平行四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直平分的四边形是菱形3.如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点.已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是()A.1m B.43m C.3m D.103m4.若分式11x-有意义,则x的取值范围是A.x>1 B.x<1 C.x≠1D.x≠05.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是( )A.2(x-1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x-1)=136.2-的相反数是A.2-B.2 C.12D.12-7.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:选手 1 2 3 4 5 6 7 8 9 10 时间(min) 129 136 140 145 146 148 154 158 165 175由此所得的以下推断不正确...的是()A.这组样本数据的平均数超过130B.这组样本数据的中位数是147C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B (﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.49.关于x的方程3x+2a=x﹣5的解是负数,则a的取值范围是()A.a<52B.a>52C.a<﹣52D.a>﹣5210.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF 的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:111.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是()A .150°B .140°C .130°D .120°12.下列运算中,正确的是 ( ) A .x 2+5x 2=6x 4B .x 326·x x =C .236()x x =D .33()xy xy =二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.已知双曲线k 1y x+=经过点(-1,2),那么k 的值等于_______. 14.在ABCD 中,AB=3,BC=4,当ABCD 的面积最大时,下列结论:①AC=5;②∠A+∠C=180o ;③AC ⊥BD ;④AC=BD .其中正确的有_________.(填序号)15.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为_______.16.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_____________________.17.因式分解a 3-6a 2+9a=_____.18.若点A (3,﹣4)、B (﹣2,m )在同一个反比例函数的图象上,则m 的值为 . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果; (2)求两次摸出的球上的数字和为偶数的概率.20.(6分)某市旅游景区有A ,B ,C ,D ,E 等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:(1)2018年春节期间,该市A,B,C,D,E这五个景点共接待游客万人,扇形统计图中E景点所对应的圆心角的度数是,并补全条形统计图.(2)甲,乙两个旅行团在A,B,D三个景点中随机选择一个,这两个旅行团选中同一景点的概率是.21.(6分)关于x的一元二次方程ax2+bx+1=1.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.22.(8分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.()1小明和小刚都在本周日上午去游玩的概率为________;()2求他们三人在同一个半天去游玩的概率.23.(818(2166÷31324.(10分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.25.(10分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.26.(12分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有万人次;周日学生访问该网站有万人次;周六到周日学生访问该网站的日平均增长率为.27.(12分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.【详解】A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项正确;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项错误;D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项正确;故选C.【点睛】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.2.A【解析】【分析】根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.【详解】∵将△ABC 延底边 BC 翻折得到△DBC ,∴AB=BD , AC=CD ,∵AB=AC ,∴AB=BD=CD=AC ,∴四边形 ABDC 是菱形;故选A.【点睛】本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.3.B【解析】【分析】由∠AGE=∠CHE=90°,∠AEG=∠CEH 可证明△AEG ∽△CEH ,根据相似三角形对应边成比例求出GH 的长即BD 的长即可. 【详解】由题意得:FB=EG=2m ,AG=AB ﹣BG=6﹣1.5=4.5m ,CH=CD ﹣DH=9﹣1.5=7.5m , ∵AG ⊥EH ,CH ⊥EH , ∴∠AGE=∠CHE=90°, ∵∠AEG=∠CEH , ∴△AEG ∽△CEH ,∴ EG AG =EH CH =EG GH CH + ,即 24.5=27.5GH+,解得:GH=43,则BD=GH=43m ,故选:B . 【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形. 4.C 【解析】 【分析】 【详解】分式分母不为0,所以10x -≠,解得1x ≠. 故选:C. 5.A 【解析】 【分析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A 饮料的钱+买B 饮料的钱=总印数1元,明确了等量关系再列方程就不那么难了. 【详解】设B 种饮料单价为x 元/瓶,则A 种饮料单价为(x-1)元/瓶, 根据小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了1元, 可得方程为:2(x-1)+3x=1. 故选A . 【点睛】列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A中饮料的钱+买B中饮料的钱=一共花的钱1元.6.B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键.7.C【解析】分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位.8.B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.9.D先解方程求出x,再根据解是负数得到关于a的不等式,解不等式即可得. 【详解】解方程3x+2a=x﹣5得x=522a --,因为方程的解为负数,所以522a--<0,解得:a>﹣5 2 .【点睛】本题考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式时,要注意的是:若在不等式左右两边同时乘以或除以同一个负数时,不等号方向要改变.10.B【解析】【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.11.A【解析】【分析】直接根据圆周角定理即可得出结论.【详解】∵A、B、C是⊙O上的三点,∠B=75°,∴∠AOC=2∠B=150°.【解析】分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.详解:A. x 2+5x 2=2466x x ≠ ,本项错误;B.3256x x x x ⋅=≠ ,本项错误;C.236()x x = ,正确;D.3333()xy x y xy =≠,本项错误.故选C.点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.-1 【解析】 【详解】分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入k 1y x +=,得:k 121+=-,解得:k =-1. 14.①②④ 【解析】 【分析】由当ABCD 的面积最大时,AB ⊥BC ,可判定ABCD 是矩形,由矩形的性质,可得②④正确,③错误,又由勾股定理求得AC=1. 【详解】∵当ABCD 的面积最大时,AB ⊥BC , ∴ABCD 是矩形,∴∠A=∠C=90°,AC=BD ,故③错误,④正确; ∴∠A+∠C=180°;故②正确; ∴AC==1,故①正确.故答案为:①②④. 【点睛】此题考查了平行四边形的性质、矩形的判定与性质以及勾股定理.注意证得▱ABCD 是矩形是解此题的关键. 15.213。
中考数学一模试卷题号一二三四总分得分一、选择题(本大题共16小题,共42.0分)1.下列实数为无理数的是()A. -5B.C. 0D. π2.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A. 0.76×104B. 7.6×103C. 7.6×104D. 76×1023.剪纸是潍坊特有的民间艺术,在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是()A. B. C. D.4.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2的度数为()A. 92°B. 98°C. 102°D. 108°5.已知x=7是方程2x-7=ax的解,则a=()A. 1B. 2C. 3D. 76.下列说法正确的是()A. 为了解全省中学生的心理健康状况,宜采用普查方式B. 掷两枚质地均匀的硬币,两枚硬币都是正面朝上这一事件发生的概率为C. 掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件D. 甲乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.6,则甲的射击成绩较稳定2=0.4,S乙7.内角和为540°的多边形是()A. B. C. D.8.如图,在△ABC中,AB=AC,AD、CE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是()A. 20°B. 35°C. 40°D. 70°9.在下列等式中,不满足a≠0这个条件的是()A. a0=1B.C.D.10.已知关于x的方程x2+mx+1=0根的判别式的值为5,则m=()A. ±3B. 3C. 1D. ±111.由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则()A. 三个视图的面积一样大B. 主视图的面积最小C. 左视图的面积最小D. 俯视图的面积最小12.如图,正比例函数y=kx与反比例函数y=的图象不可能是()A. B.C. D.13.用直尺和圆规作Rt△ABC斜边AB上的高线CD,甲、乙两人的作法如图:根据两人的作法可判断()A. 甲正确,乙错误B. 乙正确,甲错误C. 甲、乙均正确D. 甲、乙均错误14.顺次连接平面上A、B、C、D四点得到一个四边形,从①AB∥CD,②BC=AD,③∠A=∠C,④∠B=∠D四个条件中任取其中两个,不能得出“四边形ABCD是平行四边形”这一结论的是()A. ①②B. ①③C. ①④D. ③④15.如图,已知△ABC,任取一点O,连AO,BO,CO,并取它们的中点D,E,F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比为1:2;④△ABC与△DEF的面积比为4:1.A. 1B. 2C. 3D. 416.如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(-,m)(m>0),则有()A. a=b+2kB. a=b-2kC. k<b<0D. a<k<0二、填空题(本大题共2小题,共6.0分)17.-3-(-2)=______.18.若m、n互为倒数,则mn2-(n-1)的值为______.三、计算题(本大题共2小题,共16.0分)19.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数8,请帮他计算出最后结果:[(8+1)2-(8-1)2]×25÷8 (2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等”小明同学想验证这个结论,于是,设心里想的数是a (a≠0),请你帮小明完成这个验证过程.20.先化简:然后解答下列问题:(1)当x=2时,求代数式的值(2)原代数式的值能等于0吗?为什么?四、解答题(本大题共6小题,共56.0分)21.如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的⊙P周长为1,点M从A开始沿⊙P按逆时针方向转动,射线AM交x轴于点N(n,0),设点M转过的路程为m(0<m<1)(1)当m=时,n=______;(2)随着点M的转动,当m从变化到时,点N相应移动的路径长为______.22.某部门为了解工人的生产能力情况,进行了抽样调查.该部门随机抽取了20名工人某天每人加工零件的个数,数据如下:整理上面数据,得到条形统计图;样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值19.2m n(1)上表中m、n的值分别为______,______;(2)为调动积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让60%左右的工人能获奖,应根据______来确定奖励标准比较合适(填“平均数”、“众数”或“中位数”);(3)该部门规定:每天加工零件的个数达到或超过21个的工人为生产能手若该部门有300名工人,试估计该部门生产能手的人数;(4)现决定从小王、小张、小李、小刘中选两人参加业务能手比赛,直接写出恰好选中小张、小李两人的概率.23.如图,在平面直角坐标系xOy中,过点A(-6,0)的直线l1与直线l2:y=2x相交于点B(m,6)(1)求直线l1的表达式(2)直线l1与y轴交于点M,求△BOM的面积;(3)过动点P(m,0)且垂于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D下方时,写出n的取值范围.24.如图,AB为⊙O的直径,且AO=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM (1)求∠OMP的度数;(2)随着点P在半圆上位置的改变,∠CMO的大小是否改变,说明理由;(3)当点P在半圆上从点B运动到点A时,直接写出内心M所经过的路径长.25.如图1,在矩形ABCD中,AB=2,AD=,E是CD边上的中点,P是BC边上的一点,且BP=2CP.(1)求证:∠AED=∠BEC;(2)判断EB是否平分∠AEC,并说明理由;(3)如图2,连接EP并延长交AB的延长线于点F,连接AP,不添加辅助线,△PFB可以由都经过P点的两次变换与△PAE组成一个等腰三角形,直接写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离).26.为如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点G,以O为原点建立如图所示的平面直角坐标系.(1)若排球运行的最大高度为2.8米,求排球飞行的高度p(单位:米)与水平距离x(单位:米)之间的函数关系式(不要求写自变量x的取值范围);(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由;(3)若李明同学发球要想过网,又使排球不会出界(排球压线属于没出界),求二次函数中二次项系数的最大值.答案和解析1.【答案】D【解析】解:A、不是无理数,故本选项错误;B、不是无理数,故本选项错误;C、不是无理数,故本选项错误;D、是无理数,故本选项正确;故选:D.根据无理数的定义(无理数是指无限不循环小数)判断即可.本题考查了对无理数定义的应用,能理解无理数的定义是解此题的关键.2.【答案】B【解析】解:7600=7.6×103,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:A、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误;B、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,不是中心对称图形,故此选项错误.C、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°能与原图形重合,是中心对称图形,故此选项正确;D、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:C.根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键.4.【答案】B【解析】解:如图,∵l1∥l2,∴∠1=∠3=52°,又∵∠4=30°,∴∠2=180°-∠3-∠4=180°-52°-30°=98°,故选:B.依据l1∥l2,即可得到∠1=∠3=52°,再根据∠4=30°,即可得出从∠2=180°-∠3-∠4=98°.此题主要考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是利用平行线的性质.5.【答案】A【解析】【分析】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的方程是解此题的关键.把x=7代入方程,得出一个关于a的方程,求出方程的解即可.【解答】解:∵x=7是方程2x-7=ax的解,∴代入得:14-7=7a,解得:a=1,故选:A.6.【答案】D【解析】解:A、为了解全省中学生的心理健康状况,宜采用抽查方式,故错误;B、掷两枚质地均匀的硬币,两枚硬币都是正面朝上这一事件发生的概率为;故错误;C、掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是随机事件;故错误;D、甲乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,故正确;故选:D.根据调查与抽样调查、方差的性质以及随机事件与必然事件的定义即可得到结论.本题考查了求概率的方法、全面调查与抽样调查、方差的性质以及随机事件与必然事件;熟记方法和性质是解决问题的关键.7.【答案】C【解析】解:设多边形的边数是n,则(n-2)•180°=540°,解得n=5.故选:C.根据多边形的内角和公式(n-2)•180°列式进行计算即可求解.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.8.【答案】B【解析】解:∵AB=AC,AD是△ABC的中线,∴∠BAD=∠CAD=20°,∠ABC=∠ACB,∴∠ACB==70°,∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°,故选:B.根据等腰三角形的性质得到∠BAD=∠CAD=20°,∠ABC=∠ACB,根据三角形内角和定理求出∠ACB,根据角平分线的定义计算即可.本题考查的是等腰三角形的性质,三角形的中线和角平分线以及三角形内角和定理,掌握等腰三角形的三线合一是解题的关键.9.【答案】D【解析】解:a0=1,(a≠0),A选项错误;a-1=,(a≠0),B选项错误;,(a≠0),C选项错误;()=a,(a≥0),D选项正确;故选:D.根据负整数指数幂、零指数幂、二次根式有意义的条件判断即可.本题考查的是负整数指数幂、零指数幂的运算,掌握它们的运算法则、有意义的条件是解题的关键.10.【答案】A【解析】解:∵关于x的方程x2+mx+1=0根的判别式的值为5,∴m2-4×1×1=5,解得:m=±3,故选:A.根据根的判别式得出方程m2-4×1×1=5,求出方程的解即可.本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键.11.【答案】C【解析】解:主视图有5个小正方形,左视图有3个小正方形,俯视图有4个小正方形,因此左视图的面积最小.故选:C.首先根据立体图形可得俯视图、主视图、左视图所看到的小正方形的个数,再根据所看到的小正方形的个数可得答案.此题主要考查了组合体的三视图,关键是注意所有的看到的棱都应表现在三视图中.12.【答案】D【解析】解:若k>0时,此时k-1>-1,正比例函数图象必定过一、三象限,当-1<k-1<0时,∴反比例函数y=必定经过二、四象限,故C的图象有可能,当k-1>0时,∴反比例函数y=必定经过一、三象限,故B的图象有可能,若k<0时,此时k-1<-1,正比例函数图象必定过二、四象限,∴反比例函数y=必定经过二、四象限,故A的图象有可能,故选:D.根据反比例函数的性质即可求出答案.本题考查反比例函数的图象的性质,解题的关键是熟练运用反比例函数的性质,本题属于基础题型.13.【答案】C【解析】解:观察可得甲、乙两人的作法均正确,故选:C.甲的做法是根据直径所对的圆周角为直角得出;乙的做法根据线段的垂直平分线性质得出.此题考查了作图-基本作图,熟练掌握基本作图的方法是解本题的关键.14.【答案】A【解析】解;当①AB∥CD,③∠A=∠C时,四边形ABCD为平行四边形;当①AB∥CD,④∠B=∠D时,四边形ABCD为平行四边形;当③∠A=∠C,④∠B=∠D时,四边形ABCD为平行四边形;故选:A.根据平行四边形的判定定理可得出答案.此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.15.【答案】C【解析】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选:C.根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.此题主要考查了位似图形的性质,正确的记忆位似图形性质是解决问题的关键.16.【答案】D【解析】解:∵y=ax2+bx图象的顶点(-,m),∴-=-,即b=a,∴m==-,∴顶点(-,-),把x=-,y=-代入反比例解析式得:k=,由图象知:抛物线的开口向下,∴a<0,∴a<k<0,故选:D.把(-,m)代入y=ax2+bx图象的顶点坐标公式得到顶点(-,-),再把(-,-)代入得到k=,由图象的特征即可得到结论.本题考查了二次函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数图象上点的坐标特征是解题的关键.17.【答案】-1【解析】解:-3-(-2)=-1,故答案为:-1.根据有理数加减解答即可.此题考查有理数的减法,关键是根据有理数减法法则解答.18.【答案】1【解析】解:因为m,n互为倒数可得mn=1,所以mn2-(n-1)=n-(n-1)=1.由m,n互为倒数可知mn=1,代入代数式即可.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;19.【答案】解:(1)原式=(81-49)×25÷8=800÷8=100;(2)根据题意得:[(a+1)2-(a-1)2]×25÷a=4a×25÷a=100.【解析】(1)原式先计算括号中的乘方运算,再计算减法运算,最后算乘除运算即可求出值;(2)列出代数式,计算即可得到结果.此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.20.【答案】解:=[]=()•(x+1)==,(1)当x=2时,原式==3;(2)原代数式的值不等等于0,理由:令=0,得x=-1,当x=-1时,原分式无意义,故原代数式的值不等等于0.【解析】(1)将x=2代入化简后的式子即可解答本题;(2)先判断,然后令化简的结果等于0,求出x的值,再将所得的x的值代入化简后的式子,看是否使得原分式有意义即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.【答案】(1)-1;(2).【解析】解:(1)当m=时,连接PM,如图1,则有∠APM=×360°=90°.∵PA=PM,∴∠PAM=∠PMA=45°.∴NO=AO=1,∴n=-1.故答案为:-1;(2)①当m=时,连接PM,如图2,∠APM=×360°=120°.∵PA=PM,∴∠PAM=∠PMA=30°.在Rt△AON中,NO=AO•tan∠OAN=1×=;②当m=时,连接PM,如图3,∠APM=360°-×360°=120°,同理可得:NO=.综合①、②可得:点N相应移动的路径长为+=.故答案为:.【分析】(1)当m=时,连接PM,如图1,点M从点A绕着点P逆时针旋转了一周的,从而可得到旋转角∠APM为90°,根据PA=PM可得∠PAM=∠PMA=45°,则有NO=AO=1,即可得到n=-1;(2)当m从变化到时,点N相应移动的路经是一条线段,只需考虑始点和终点位置即可解决问题.当m=时,连接PM,如图2,点M从点A绕着点P逆时针旋转了一周的,从而可得到旋转角为120°,则∠APM=120°,根据PA=PM可得∠PAM=30°,在Rt△AON 中运用三角函数可求出ON的长;当m=时,连接PM,如图3,点M从点A绕着点P 逆时针旋转了一周的,从而可得到旋转角为240°,则∠APM=120°,同理可求出ON的长,问题得以解决本题主要考查了圆的综合题,需要掌握旋转角、等腰三角形的性质、三角函数等知识,若动点的运动路径是一条线段,常常可通过考虑临界位置(动点的始点和终点)来解决.22.【答案】(1)18 ,19 ;(2)中位数;(3)若该部门有300名工人,估计该部门生产能手的人数为300×=90(人);(4)将小王、小张、小李、小刘分别记为甲、乙、丙、丁,画树状图如下:∵共有12种等可能性的结果,恰好选中乙、丙两位同学的有2种,∴恰好选中小张、小李两人的概率为=.【解析】解:(1)由条形图知,数据18出现的次数最多,所以众数m=18;中位数是第10、11个数据的平均数,而第10、11个数据都是19,所以中位数n==19,故答案为:18,19;(2)由题意可得,如果想让60%左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)见答案;(4)见答案.【分析】(1)根据条形统计图中的数据,结合众数和中位数的概念可以得到m、n的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.(4)根据题意先画出树状图,得出所有等可能性的结果,再根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.【答案】解:(1)将点B(m,6)代入y=2x,∴m=3,∴B(3,6);设直线l1的表达式为y=kx+b,将点A与B代入,得,∴,∴y=x+4;(2)M(0,4),∴S△BOM=×4×3=6;(3)当点C位于点D下方时,即y1<y2,∴m>3;【解析】(1)先求出B点,再将将点A与B代入y=kx+b即可求解;(2)求出M点坐标,S△BOM=×4×3;(3)当点C位于点D下方时,即y1<y2,本题考查一次函数的图象和性质;熟练掌握待定系数法求解析式,数形结合求不等式是解题的关键.24.【答案】解:(1)∵OC⊥AB,∴∠OEP=90°,∴∠EOP+∠EPO=90°,∵M为△OPE的内心,∴∠MOP=∠MOC=EOP,∠MPO=∠MPE=∠EPO,∴∠MOP+∠MPO=(∠EOP+∠EPO)=45°,∴∠OMP=180°-(∠MOP+∠MPO)=135°;(2)∠CMO的大小不改变,理由如下:如图2,连接CM,在△COM和△POM中,,∴△COM≌△POM(SAS),∴∠CMO=∠OMP=135°,∴∠CMO的大小不改变,为135°;(3)如图3,连接AC,BC,∵AB为直径,CO⊥AB,∴AC=BC,∴△ACB为等腰直角三角形,∴△ACO与△BCO为等腰直角三角形,∴AC=AO=4,∴CQ=AC=2,分别取AC,BC的中点Q,N,连接OQ,ON,则∠CQO=90°,∠CNO=90°,当点P在半径OC的左侧和右侧的半圆上时,点M的轨迹分别在以AC,BC为直径的圆弧上,所对圆心角为90°,∴2×=,∴内心M所经过的路径长为.【解析】(1)由内心的定义可知∠MOP=∠MOC=EOP,∠MPO=∠MPE=∠EPO,求出∠MOP与∠MPO的和为45°,利用三角形的内角和定理即可求出∠OMP的度数;(2)连接CM,证△COM≌△POM,即得出∠CMO=∠OMP=135°,可知∠CMO的大小不改变,为135°;(3)连接AC,BC,证明△ACB,△ACO与△BCO为分别为等腰直角三角形,求出CQ=2,∠CQO=90°,∠CNO=90°,由题意分析得出当点P在半径OC的左侧和右侧的半圆上时,点M的轨迹分别在以AC,BC为直径的圆弧上,根据弧长公式即可求出M所经过的路径长.本题考查了三角形内心的定义,全等三角形的判定,弧长公式等,解题关键是能够根据题意判断出当点P在半径OC的左侧和右侧的半圆上时,点M的轨迹分别在以AC,BC 为直径的圆弧上.25.【答案】(1)证明:∵四边形ABCD是矩形,∴AD=BC=,CD=AB=2,∠D=∠C=90°,∵E是CD边上的中点,∴DE=CE=CD=1,在△ADE和△BCE中,,∴△ADE≌△BCE(SAS),∴∠AED=∠BEC;(2)解:EB平分∠AEC,理由如下:在Rt△ADE中,AD=,DE=1,∴tan∠AED==,∴∠AED=60°,∴∠BEC=∠AED=60°,∴∠AEB=180°-∠AED-∠BEC=60°=∠BEC,∴EB平分∠AEC;(3)解:∵BP=2CP,BC=,∴CP=,BP=,在Rt△CEP中,tan∠CEP==,∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP==,∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∠FBP=90°=∠AEP,在△AEP和△FBP中,,∴△AEP≌△FBP(AAS),∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:①将△BPF绕点P顺时针旋转120°和△EPA重合,再沿PE折叠;②将△BPF以过点P垂直于BC的直线折叠,再绕点P逆时针旋转60°.【解析】(1)由矩形的性质得出AD=BC=,CD=AB=2,∠D=∠C=90°,由中点的定义得出DE=CE=CD=1,再由SAS证明△ADE≌△BCE,即可得出结论;(2)用锐角三角函数求出∠AED=60°,得出∠BEC=∠AED=60°,即可得出结论;(3)先判断出△AEP≌△FBP,即可得出结论.此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,锐角三角函数,图形的变换,判断出△AEP≌△△FBP是解本题的关键.26.【答案】解:(1)由排球运行的最大高度为2.8米,则顶点的坐标为G(6,2.8),则设抛物线的解析式为p=a(x-6)2+2.8.∵点C的坐标为(0,2),点C在抛物线上,∴2=a(0-6)2+2.8解得a=,∴p=(x-6)2+2.8,即排球飞行的高度p(单位:米)与水平距离x(单位:米)之间的函数关系式为p=(x-6)2+2.8.(2)当x=9时,p=×(9-6)2+2.8=2.6>2.24;当x=18时,p=×(18-6)2+2.8=-0.4<0,故这次发球可以过网且不出边界.(3)设抛物线的解析式为p=a(x-6)2+h,将点C代入得36a+h=2,即h=2-36a,∴抛物线的解析式为p=a(x-6)2+2-36a.根据题意,要使球不出边界时有:a(18-6)2+2-36a≤0,解得;要使球过网时有:a(9-6)2+2-36a>2.24,解得,故李明同学发球要想过网,又使排球不会出界(排球压线属于没出界),则二次函数中二次项系数的最大值为.【解析】(1)利用抛物线的顶点坐标为(6,2.8),设出抛物线的顶点式,将点(0,2)代入解析式求出即可;(2)利用当x=9,x=18时,分别求出p的值即可判断;(3)设抛物线的解析式为p=a(x-6)2+h,将点C代入,可知此时抛物线的解析式为p=a(x-6)2+2-36a,再根据当x=9时,p>2.24;当x=18时,p≤0,即可得a的取值范围,从而取得最大值.本题考查了二次函数的性质在实际生活中的应用.可根据二次函数的解析式的最值作为临界值来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.。