赫斯特指数
- 格式:ppt
- 大小:349.51 KB
- 文档页数:32
hurst 指数python摘要:1.Hurst 指数简介2.Python 在Hurst 指数计算中的应用3.Hurst 指数的计算方法4.Python 代码示例5.总结正文:1.Hurst 指数简介Hurst 指数(Hurst Exponent)是一种用来描述时间序列数据长期记忆特性的指标,它是由英国统计学家Hurst 在1951 年提出的。
Hurst 指数可以衡量时间序列数据的长期依赖性,即数据在长时间内的平均变化情况,对于分析和预测时间序列数据具有重要意义。
2.Python 在Hurst 指数计算中的应用Python 作为一种广泛应用于数据分析和科学计算的语言,提供了丰富的库和工具来处理时间序列数据。
在计算Hurst 指数时,常用的库有NumPy、Pandas 和Statsmodels 等。
通过这些库,我们可以轻松地实现Hurst 指数的计算。
3.Hurst 指数的计算方法Hurst 指数的计算方法主要有两种:一种是基于自相关函数的方法,另一种是基于频率分析的方法。
其中,基于自相关函数的方法是最常用的。
该方法通过计算时间序列数据的自相关函数,然后对自相关函数进行积分,得到Hurst 指数。
4.Python 代码示例下面是一个使用Python 计算Hurst 指数的示例代码:```pythonimport numpy as npimport pandas as pdfrom statsmodels.tsa.stattools import acf, pacf# 生成模拟时间序列数据p.random.seed(0)= 1000t = np.arange(n)s = np.sin(0.1 * t) + np.cos(0.2 * t)data = pd.Series(s)# 计算自相关函数acf = acf(data)pacf = pacf(data)# 计算Hurst 指数hurst = np.log(np.sum(acf)) / np.log(n)print("Hurst Index:", hurst)```5.总结本文介绍了Hurst 指数的计算方法和Python 在Hurst 指数计算中的应用。
叶建萍:资本市场的Hurst 指数估计计,并得出这两种方法偏差. 我们可以通过数值模拟得出多尺度的估计方法得到的H 值更准确偏差更小,在实证部分中我们更倾向用多尺度的方法去估计广义的赫斯特指数. 本文实证部分以及数据处理主要使用R 2.5.0 和Excell 完成.本文可能的新颖之处有以下几点:1. 模拟分数布朗运动的程序.2. 数据选取不同. 从数据的类型来看,以往研究股市长记忆性时,大多以股票综合指数作为研究对象,本文研究的对象是股票市场上的金融板块,另外外汇的交换率的中间值是人民币.3. 方法的改进,本文利用多尺度方法改进了经典的R/S 分析方法,减少了偏差,估计Hurst 指数更加准确.本文一共分五章:第一章是引言部分;第二章模拟分数布朗运动和Hurst 指数的定义以及分数布朗运动与Hurst 指数之间的关系;第三章介绍了经典的R/S 估计和多尺度的广义赫斯特指数估计方法;第四章是本文的重点实证分析,分析了我国股票市场的金融板块和人民币对其他国家的外汇交换率;第五章是结论和展望.2 C H (t, s ) = E [B H (t ), B H (s )] = [|t|2H + |s|2H − |t − s|2H ]广西师范大学硕士学位论文第二章模拟分数布朗运动和 Hurst 指数的定义§2.1 模拟分数布朗运动1. 我们首先给出分数布朗运动的定义. Kolmogorov and Rozanov(1991, [1]) 给出如下概念定义 2.1. 称随机过程 B H (t ) 是分数布朗运动,若其连续且满足 P (B H (0) = 0) = 1,B H (t ) − B H (s )N (0, |t − s|2H ),其中 t,s 为两个不同时间点,H 为 Hurst 指数,且H ∈(0,1).B H (t ) 的分布可以表示为P (B H (t ) ≤ x ) = √1 2πt 2Hx −u 2 e 2t 2H du, 当 H=0.5 即为普通的布朗运动, 分数布朗运动以长期相关和统计自相似为特点,具 有循环和趋势双重特征.布朗运动与分数布朗运动之间的区别为布朗运动的增量是独立的而分数布朗 运动中的增量是不独立的,考虑零时刻过去增量 {B H (0) − B H (−t )} 和未来增量 {B H (t ) − B H (0)} 的相关系数 C(t). 有:C (t ) ==E{[B H (0) − B H (−t )][B H (t ) − B H (0)]}E [B H (t ) − B H (0)]2−E [B H (−t )B H (t )]E [B H (t )]2== − −1 E{[B H (−t )]2 + [B H (t )]2 − [B H (−t ) − B H (t )]2} 2 E [B H (t )]2 1 (−t )2H + t 2H − (−2t )2H 2 t 2H =2H −1 − 1分数布朗运动具有自相似性和长期相依性,应该更能切合实际地反映金融市场的变 化特性. 并且实证研究发现,许多金融市场的 Hurst 参数 H=1/2; H 的不同取值范围对 应相关系数 C(t) 的不同取值,同时也给出了序列的 3 种运动形式:当 H=0.5 时,相 关系数为 0,序列独立;当 0<H <0.5 时,相关系数为负相关;当 0.5<H <1 时,相关 系数为正,序列为正相关. 由此可见,分数布朗运动的参数 H 是度量序列相关性的. 分数布朗运动的自相关函数是:122. 模拟分数布朗运动的步骤:(1) 假设 {X t } ∼ B H (t ), 记 Cov (X ) = V , 利用 chol 分解 V ,令 C = chol (V ) (2) 产生 n 个正态随机变量 Z = (Z 1, · · · , Z n ) ∼ N n (0, I ) (3) 令 Y=C*Z ,则 Y 就是分数布朗运动,Y=X.5 −20 −15 −10 −5y100 20 40 60 80 100 120 140y0 −80 −60 −40 −20y20 2 r−3 −2 −10 1 3叶建萍:资本市场的 Hurst 指数估计持久性时间序列,其定义为 0.5<H <1 的,因为它们也可以用分数布朗运动来描 述.Hurst 指数描述了两个相邻事件发生的可能性,如果 H=0.7,那么基本上可以说, 要是上一个移动是正的,下一个移动也是正的概率更高,这不是一种真正的概率: 它仅仅是” 偏倚” 的一个度量. 下面给定 H=0.50,0.72 和 0.90 的模拟序列,随着 H 越 来越接近 1,序列变得噪声越来越小,具有相同符号的观测值越来越多。
基于Hurst指数的量化投资策略研究作者:***来源:《现代信息科技》2023年第22期收稿日期:2023-04-18基金项目:湛江市非资助科技攻关计划项目(2021B01494)DOI:10.19850/ki.2096-4706.2023.22.018摘要:自尤金·法玛1970年提出有效市场假说后,部分学者认为股票市场具有长期记忆性,不符合该假说,用分形理论来刻画股票价格运动更为合理。
首先应用配分函数法(Partition Function, PF),通过沪深300股指数据验证了A股市场的分形特征,然后选取了Hurst指数这一指标来衡量股票价格变动的长期记忆性,构建量化交易策略池,并通过均线策略进行择时,最后通过夏普比率最大化完成投资组合优化,发现该投资策略能获得明显高于被动投资沪深300指数的投资收益,说明基于Hurst指数构建量化交易策略具有一定的实用性。
关键词:Hurst指数;分形市场;均线策略;投资组合优化;量化交易中图分类号:TP39;F832.48 文献标识码:A 文章编号:2096-4706(2023)22-0083-06Research on Quantitative Investment Strategies Based on Hurst IndexLI Minghui(Zhanjiang Preschool Education College, Zhanjiang 524084, China)Abstract: Since Eugene Fama proposed the Efficient Market Hypothesis in 1970, some scholars believe that the stock market has long-term memory and does not conform to this hypothesis. It is more reasonable to use fractal theory to describe stock price movements. Firstly, the Partition Function (PF) method is applied to validate the fractal characteristics of the A-share market through the Shanghai and Shenzhen 300 stock index data. Then, the Hurst index is selected as an indicator to measure the long-term memory of stock price changes, and a quantitative trading strategy pool is constructed. The time is selected through the moving average strategy. Finally, the investment portfolio is optimized by maximizing the Sharpe ratio, it is found that this investment strategy can achieve significantly higher investment returns than passive investment in the Shanghai and Shenzhen 300 Index, indicating the practicality of constructing a quantitative trading strategy based on the Hurst Index.Keywords: Hurst index; fractal market; moving average strategy; portfolio optimization; quantitative trading0 引言金融市场中的股票价格特征研究一直是学术界和业界的重点关注对象。
hurst指数第一篇:Hurst指数简介及应用领域Hurst指数是一种用于衡量时间序列数据的长期记忆性的统计量,其应用广泛于金融分析、水文学、信号处理等领域。
本文将对Hurst指数进行详细介绍,并探讨其应用领域。
Hurst指数最初是由数学家H.E. Hurst于1951年提出的,其用于衡量时间序列数据的波动性和相关性。
时间序列数据是指一组按时间顺序排列的观测值,例如股票价格、气温记录等。
Hurst指数的取值范围在0到1之间,其中0表示完全反序列相关,1表示完全正序列相关,0.5表示完全随机。
Hurst 指数越接近于0.5,说明时间序列数据的波动性越接近于随机,没有长期记忆性;而越接近于0或1,说明时间序列数据存在较强的趋势性,即具有长期记忆性。
Hurst指数的计算需要借助于重叠子序列的均值计算,具体步骤如下:首先,将时间序列数据分解成不同长度的子序列;然后,计算每个子序列的均值;最后,计算不同子序列长度下的均值之比。
根据计算得到的比值,可得到Hurst指数。
在金融分析中,Hurst指数常被用于衡量股票价格的长期记忆性和预测性。
通过计算Hurst指数,可以评估股票价格的波动性,进而辅助投资者进行风险管理和决策制定。
例如,当股票价格的Hurst指数较高时,说明价格具有较强的趋势性,投资者可以选择更长期的持有策略,以获得更大的收益。
此外,Hurst指数在水文学领域也得到了广泛的应用。
水文学研究常关注各种水文变量的波动性,例如降水量、水位等。
通过计算Hurst指数,可以评估水文变量的长期趋势,进而为水资源管理、洪水预测等提供科学依据。
除金融分析和水文学外,Hurst指数在信号处理、网络分析等领域也有着重要的应用价值。
例如,对于信号处理,Hurst指数可以用于评估信号的分形特性和自相似性,从而指导滤波、数据压缩等算法的设计与优化。
综上所述,Hurst指数是一种用于衡量时间序列数据长期记忆性的统计量,在金融分析、水文学、信号处理等领域有广泛的应用。
衡量数据流趋势的重要指数——Hurst指数在科技文献搜索引擎中输入赫斯特指数(Hurst exponent),就会检索到大量的研究文章。
我随便以下列出部分论文的题目,或许你就会对这个指数的应用领域会有一个大概的了解。
(1)Using the Hurst’s exponent as a monitor and predictor of BWR reactor inst 用赫斯特指数来检测和预测BWR反应器的不稳定性),该论文发表于Annals of nuclear energy (2)Time-dependent Hurst exponent in financial time series(金融时间序列中的时特指数),发表于Physica A统计力学及其应用分刊;(3)Can one make any crash prediction in finance using the local Hurst exponen 局部赫斯特指数概念能否预测金融灾难?),该文发表的期刊同上;(4)Determining the Hurst exponent of fractal time series and its application rdiographic analysis(确定分形时间序列的赫斯特指数以及对心电图数据分析的应用);该文发医学的计算杂志;等等可以这么说,只要涉及到数据流(时间序列)的地方,就会出现赫斯特指数。
那么赫斯特指么东西呢?H.E.HURST( 1900—1978)是英国水文学家。
他在研究尼罗河水库水流量和贮存能力的关系偏的随机游走(分形布朗运动)能够更好地描述水库的长期存贮能力,并在此基础上提出了用重标极方法来建立赫斯特指数(H)。
用这个指数可以作为判断时间序列数据是遵从布朗运动还是有偏的布朗洪水过程是时间系列曲线,具有正的长时间相关效应。
即干旱愈久,就可能出现持续的干旱后仍然会有较大洪水。
运用Hurst指数法对上证指数自相关性探讨自2007年7月份以来,我国股票市场波动性强,上证综指呈大起大落之势,这一现现象的背后,是否存在股票市场的自相关性因素。
运用Hurst指数分析法,分析我国2002年7月22日至2008年9月25日上海证券交易所综合指数价格的日收益率变动情况,论证我国股票市场是一个非线性正反馈系统。
所做的实证研究表明,上海的Hurst指数为056741,收益序列之间存在一定的关联性,市场不是随机行走状态,具有长期持续性的特征。
标签:赫斯特指数;股票市场;自相关性0 前言我国证券市场经过近20年的发展,达到了一定规模,成为我国金融体系的重要组成部分,取得了令人瞩目的成绩,但与西方成熟股市相比,在经济基础、市场结构、市场规模及交易机制等方面都存在较大差距。
自2007年7月份至今我国的股票市场出现了较大空间的波动,上证综合指数从6036.28在不到一年间降到1986.64的低点,一时间市场纷纷认为新一轮熊市的到来。
本文从股票市场内有混沌性出发,运用分形理论中重要的分析方法——重标极差分析法,探讨股票市场的自相关性,探讨股票市场自身的因素对股价走向的影响。
目前国内外学者对股市市场的有效性方面的问题有诸多的探讨,其中Eldridge(1991)、Philipatos(1993)、Peters(1996)、叶中行(2001)、张维(2001)、张永安(2003)、孔德龙(2003)学者等对股票、汇率等金融市场时间序列数据进行了实证分析。
表明了资本市场的混沌和分形性。
即金融时间序列数据一般遵循有偏的随机游走过程。
国内学者对股票市场的研究以上海证券指数为对象,计算结果表明H大体在0.7左右,说明上证指数是黑噪声,具有长期记忆。
而对于这现阶段,由于次贷危机的冲击,我国的股票价格变动空间极大,本文用是运用Hurst指数法,重新对上海证券市场综合指数进行审视,以观察在金融市场激烈波动的情况下,股票市场的发展情况。