第二章多属性决策
- 格式:ppt
- 大小:1.48 MB
- 文档页数:92
决策理论与方法之多属性决策多属性决策是决策理论与方法中的一种重要决策方法,主要用于解决具有多个评价指标的决策问题。
在实际生活和工作中,我们常常需要面对的是多因素影响下的决策问题。
多属性决策方法的应用可以帮助我们全面、客观、科学地对待问题,提高决策的准确性和决策结果的有效性。
多属性决策方法的核心思想是将决策问题中的多个属性进行定量化,并将各个属性的权重进行合理分配,最终得出综合评价结果,从而选择最优的决策方案。
在多属性决策中,常用的方法包括层次分析法、利用等价关系建立模型、TOPSIS方法等。
层次分析法是一种常用的多属性决策方法,其主要思想是将决策问题拆分成若干个子问题,并构建层次结构,通过比较不同层次的准则,得出最终的决策结果。
该方法的优点是能够考虑多个属性的重要性,并将其量化成权重,从而进行综合评估。
但是,层次分析法需要进行一系列的判断和计算,比较繁琐,容易受到主管者主观判断的影响。
利用等价关系建立模型是另一种常用的多属性决策方法,其主要思想是通过对各个属性之间的关系进行建模,从而得出最终的决策结果。
该方法的优点是能够考虑属性之间的相互影响,更加真实地反映决策问题的本质。
但是,建立等价关系模型需要对问题有一定的了解和分析能力,并且需要进行一定的计算,对于一些复杂问题来说,可能会存在一定的困难。
TOPSIS方法(Technique for Order Preference by Similarity to an Ideal Solution)是一种较为常用的多属性决策方法,其主要思想是将各个决策方案与最佳解和最差解进行比较,通过计算得出每个方案与最佳解和最差解的接近程度,并根据接近程度确定优劣排序。
TOPSIS方法具有计算简单、易于理解和应用的优点,但是在实际应用中,需要对决策问题进行一定的约束条件和假设。
综上所述,多属性决策方法是一种重要的决策理论和方法,可以帮助我们解决多因素影响下的决策问题。
决策理论与方法多属性决策多目标及序贯决策多属性决策是指在决策过程中考虑多个属性或指标,通过对这些属性进行量化和比较,找出最优选择的决策方法。
在实际决策中,我们常常需要考虑多个属性因素,而这些因素往往是相互矛盾甚至相互制约的。
多属性决策的关键是建立合理的评价指标体系,将不同属性进行量化,再通过合适的决策模型或方法进行计算和比较。
常用的多属性决策模型包括加权法、层次分析法和灰色关联法等。
多目标决策是指在决策过程中存在多个决策目标,且这些目标往往是相互冲突或无法同时达到的。
多目标决策的目标是找到一个最佳的折衷方案,使得各个决策目标能够得到尽可能满足。
多目标决策的关键是建立合理的决策模型,将各个决策目标进行量化和比较,再通过适当的优化方法或规划方法寻找最优解。
常用的多目标决策方法包括线性规划、整数规划、动态规划和遗传算法等。
序贯决策是指在决策过程中需要根据不完全的信息和不确定的环境进行连续的决策,即通过一系列的决策步骤逐渐完善和调整决策方案。
序贯决策的关键是建立适当的决策模型,将决策过程分解为多个连续的阶段,每个阶段根据已有的信息和条件做出决策,并根据反馈信息不断调整和优化决策方案。
常用的序贯决策方法包括马尔可夫决策过程、博弈论和贝叶斯决策等。
在实际应用中,多属性决策、多目标决策和序贯决策往往会相互结合使用。
例如,在制定企业的发展战略时,需要考虑多个因素,如市场需求、竞争环境和资源能力等,这涉及到多属性决策的内容。
同时,为了实现企业的长远目标,需要考虑多个决策目标,如利润最大化、成本最小化和风险最小化等,这也涉及到多目标决策的内容。
而在制定战略的实施方案时,可能需要根据不断变化的市场和竞争环境进行序贯的决策,这涉及到序贯决策的内容。
综上所述,多属性决策、多目标决策和序贯决策是决策理论与方法中常用的三个重要方法。
它们分别从不同的角度和需求出发,帮助人们在复杂和不确定的决策环境中做出最佳决策。
这些方法在实际应用中相互结合,能够提供更全面和准确的决策支持。
多属性决策基本理论与方法多属性决策(Multiple Attribute Decision Making, MADM)是一种基于多个属性或准则来做出决策的方法。
在实际生活和工作中,我们经常需要面对多种选择,并需要在多个属性或准则下进行权衡和评估,才能做出最终的决策。
多属性决策的基本理论和方法主要包括层次分析法(Analytic Hierarchy Process, AHP)、熵权法(Entropy Method)、TOPSIS法(Technique for Order Preference by Similarity to Ideal Solution)、灰色关联法等。
层次分析法(AHP)是一种用于处理具有复杂结构的决策问题的方法。
它通过将决策问题层次化,分解为多个相互关联的准则和子准则,然后通过定量化判断矩阵来评估和比较每个准则的重要性,最终得出最优决策方案。
AHP方法能够将主观判断和定量分析相结合,较好地解决了决策问题中的主观性和复杂性。
熵权法(Entropy Method)是一种基于信息熵理论的权重确定方法。
它通过计算各个准则的信息熵,反映了准则之间的不确定性和随机性程度,从而确定各个准则的权重。
熵权法可以较客观地确定权重,简化了权重确定的过程,适用于信息量多、准则之间相互影响较大的情况。
TOPSIS法是一种常用的多属性决策方法,它通过计算每个备选方案与理想解之间的距离来进行排名。
TOPSIS法假设最佳方案与理想解之间的距离最小,且离其他方案之间的距离最大,从而确定最有优决策方案。
TOPSIS法能够综合考虑多个属性或准则之间的关系,适用于离散型数据和连续型数据。
灰色关联法是一种基于灰色系统理论的多属性决策方法。
它通过将样本之间的关联性转化为相关程度来评估和比较备选方案。
灰色关联法能够处理数据含有不确定性和不完全信息的情况,对于缺乏可靠数据的决策问题较为适用。
总之,多属性决策基本理论与方法提供了一种系统和科学的决策分析框架,能够结合主观判断和定量分析,帮助人们在复杂的决策环境下做出科学、准确的决策。
多属性决策理论基础和分析方法多属性决策理论的基本概念是属性和决策。
属性是用于描述决策对象特征的变量或准则,例如价格、质量、服务等。
决策是选择一个方案或行动来达到一些目标的过程。
多属性决策就是根据各个属性的重要性和得分来进行综合评价和选择。
多属性决策分析方法包括加权求和法、启发式法、模糊数学法和层次分析法等。
其中,加权求和法是最简单和常用的方法,它通过为每个属性分配权重,然后将属性得分与权重相乘再求和,得到决策对象的综合评分。
启发式法是基于经验和直觉的方法,根据决策者的意愿和偏好来进行决策。
模糊数学法是一种处理不确定性和模糊性的方法,它将属性的得分表示为模糊数并进行运算,得到决策对象的模糊评价。
层次分析法是一种层级结构分析的方法,它将决策问题划分为不同层次的准则和子准则,并通过专家判断和比较来确定权重和评价。
多属性决策理论的核心思想是考虑多个属性的影响,避免片面和主观的决策。
它能够全面系统地评估决策对象的特征和优劣,提供更准确和科学的决策依据。
然而,多属性决策也存在一些挑战和局限性,如权重设定和属性评价的主观性、数据不确定性和决策者意愿的影响等。
在实际应用中,多属性决策理论广泛用于工程、经济、环境和管理等领域。
例如,在工程领域,可以利用多属性决策理论来选择最佳供应商或材料,考虑价格、质量、交货期等属性。
在环境领域,可以利用多属性决策理论来评估不同的治理方案,考虑环境效益、经济成本、社会接受度等属性。
综上所述,多属性决策理论是一种处理多个属性的决策方法,通过权重设定和属性评估来进行综合评价和选择。
它能够提供科学和全面的决策支持,但也需要注意主观性、不确定性和意愿性等因素的影响。
在实际应用中,可以根据具体情况选择适合的分析方法,并结合实际经验和专家判断来进行决策。
决策理论与方法之多属性决策多属性决策是决策理论与方法中的一个重要分支,主要用于处理具有多个属性或标准的决策问题。
多属性决策注重综合各个属性或标准的信息,通过量化和加权的方式,对各个选择方案进行评价,从而找到最符合决策者要求的最佳方案。
多属性决策的基本框架包括问题定义、属性权重确定、方案评价和最优方案选择四个主要步骤。
问题定义是多属性决策的起点。
在这一步骤中,决策者需要明确决策的目标和各个属性或标准的要素。
例如,若要选取一家供应商,决策者可以将供应商的价格、品质、交货期等作为属性。
属性权重确定是多属性决策的关键步骤。
由于各个属性可能具有不同的重要性,因此需要对不同属性进行加权处理。
传统的方法包括主观加权法和客观加权法。
主观加权法主要依赖于决策者主观意愿,通过对不同属性进行比较排序来设定权重;客观加权法则基于统计分析或数学建模等方法,通过数据处理来确定各属性权重。
方案评价是对各个选择方案进行量化评价的过程。
在这一步骤中,可以使用评价函数、模型或指标来对各个属性进行量化和评估。
评价函数可以是线性函数、指数函数或对数函数等,可根据具体的决策问题选择适合的函数。
模型方法基于专家判断、经验法则或历史数据等,通过建立模型来对方案进行评价。
指标方法则是利用指标体系来评价方案的好坏。
最优方案选择是多属性决策的最终目标。
在这一步骤中,通常会使用其中一种决策方法或算法来确定最佳方案。
常用的方法包括加权总分法、熵权法、TOPSIS法和灰色关联法等。
加权总分法是最简单直观的方法,将各个属性的分数按权重加总,得到最终的总分,从而选择总分最高的方案。
熵权法则通过考虑属性之间的相关性,将熵指标作为属性权重的度量,从而选择最小熵的方案。
TOPSIS法则将方案与最佳方案和最差方案进行比较,根据各个属性的正负向离差距离,确定每个方案的综合指标,从而选择综合指标最大的方案。
灰色关联法则通过计算各个方案与最佳方案之间的关联度,从而选择关联度最高的方案。
多属性决策的理论与方法目录:前言 3常用符号说明 12第1篇预备知识与基础第1章预备知识 21.1基本术语 21.2决策内容 41.2.1决策要素 51.2.2决策过程 71.3决策方法 81.3.1决策方式 81.3.2决策标准 91.3.3决策偏好 101.3.4方法分类 11第2章属性度量 122.1度量基础 122.1.1集合与运算 122.1.2关系及性质 132.1.3序结构性质 152.1.4偏好模型法 182.2效用理论 212.2.1效用的基本原理 212.2.2多属性效用理论 252.2.3效用加性的理论 342.3属性规范 372.3.1数量化 382.3.2标准化 39第3章属性集结 423.1权重设置 423.1.1特征向量法 423.1.2最小加权法 443.1.3信息熵方法 453.2集结算子 483.2.1加权平均算子 48 3.2.2有序加权算子 49 3.2.3组合加权算子 50 第2篇确定多属性决策第4章基本方法 544.1无偏好信息方法 54 4.1.1属性占优法 544.1.2最大最小法 554.1.3最大最大法 584.2有属性信息方法 59 4.2.1多属性效用理论 59 4.2.2级别优先关系法 85 4.3有方案信息方法 105 4.3.1相互偏好方法 105 4.3.2相互比较方法 116 第5章综合方法 1215.1层次分析方法 121 5.1.1方法步骤 1215.1.2原理运用 1335.2MonteCarlo方法 140 5.2.1方法基础 1405.2.2决策运用 1425.3数据包络分析 144 5.3.1模型基础 1445.3.2排序方法 1485.3.3决策问题 1545.4决策敏感分析 1565.4.1权重的敏感性分析 157 5.4.2属性值敏感性分析 158 第3篇随机多属性决策第6章随机决策原理 162 6.1模型特点 1636.2主观概率 1646.2.1基础概念 1646.2.2先验分布 1666.3决策准则 1676.3.1不确定型准则 167 6.3.2风险随机准则 171第7章随机决策方法 177 7.1Bayes决策分析法 177 7.1.1Bayes定理 1777.1.2Bayes规则 1797.1.3Bayes分析 1817.1.4信息与决策 1847.2随机优势决策分析 190 7.2.1随机优势的基础 190 7.2.2第一类随机优势 191 7.2.3第二类随机优势 194 7.2.4第三类随机优势 197 7.2.5随机优势的判断 200 7.2.6随机优势的应用 202 7.3随机层次分析方法 205 7.3.1区间判断矩阵 205 7.3.2排序反转概率 208 7.3.3层次组合排序 213第4篇模糊多属性决策第8章模糊集与决策 2188.1模糊决策原理 2188.1.1模糊决策的基本特征 218 8.1.2模糊决策原理的变化 219 8.1.3模糊多属性决策模型 220 8.2模糊集与运算 2228.2.1模糊集合基础 2228.2.2模糊集合运算 2248.2.3扩展模糊算术 2288.2.4确定隶属函数 2328.3模糊集的排序 2368.3.1偏好关系方法 2378.3.2均值散布方法 2508.3.3模糊评分方法 252第9章模糊决策方法 2599.1模糊属性的转换 2609.2无偏好信息的决策 262 9.2.1模糊乐观型决策方法 262 9.2.2模糊悲观型决策方法 263 9.2.3模糊折中型方法 264 9.3有属性信息的决策 265 9.3.1模糊联合与分离法 266 9.3.2模糊加权平均方法 268 9.3.3模糊决策扩展方法 271 9.4有方案信息的决策 273 9.5模糊决策综合方法 275 9.5.1模糊层次分析方法 275 9.5.2区间层次分析方法 278 第5篇粗糙多属性决策第10章粗糙集理论基础 290 10.1数据表与关系 290 10.2粗糙集与近似 291 10.3依赖性与约简 297 10.3.1知识的依赖性 298 10.3.2差别矩阵函数 301第11章粗糙集决策方法 303 11.1决策基础 30311.1.1决策规则 30311.1.2相互作用 30411.1.3相似关系 30611.1.4不完全信息 30811.2分类排序 30911.2.1多属性分类问题 310 11.2.2多属性有序分类 314 11.2.3不完全信息问题 316 11.3选择评级 31811.3.1成对比较表 31911.3.2多等级占优 32011.3.3无偏好占优 32311.4粗糙集方法的扩展 327 附录A备选属性集结算子 330 附录B特征向量理论概率 339 参考文献 343索引 369。