3实对称矩阵的特征值和特征向量
- 格式:ppt
- 大小:757.50 KB
- 文档页数:16
求实对称三对角矩阵的特征值和特征向量要求求解一个实对称三对角矩阵的特征值和特征向量。
在介绍如何求解之前,首先我们来了解一下实对称三对角矩阵的定义。
实对称三对角矩阵是指矩阵的非零元素主对角线上的元素为a,副对角线上的元素为b,而其他元素均为0。
可以表示为如下形式:[a1b100...0][b1a2b20...0][0b2a3b3...0][00b3a4...0][..................][ 0 0 0 ... bn-1 an ]下面我们将介绍如何求解实对称三对角矩阵的特征值和特征向量。
求解实对称三对角矩阵的特征值和特征向量有多种方法,其中一种常用的方法是通过迭代法,特别是Householder迭代法。
下面我们将介绍这种方法的主要步骤。
1. 首先,将实对称三对角矩阵转化为对称上Hessenberg矩阵。
对称上Hessenberg矩阵是一个具有类似三对角矩阵结构的对称矩阵。
2. 在转化得到的对称上Hessenberg矩阵上应用QR迭代,不断迭代直到矩阵的对角线元素基本上收敛于特征值。
3. 在每次QR迭代中,我们通过施密特正交化方法(Gram-Schmidt orthogonalization)来构建Q矩阵,然后计算出新的矩阵R,并将其与Q相乘,得到下一次迭代的矩阵。
4.在QR迭代的最后一步,我们得到了一个上三角矩阵,其对角线上的元素即为所求的特征值。
5. 然后,我们可以通过反复应用幂迭代法(power iteration method)来求解对应于这些特征值的特征向量。
幂迭代法是一种求解线性代数特征向量的数值方法。
通过上述方法,我们可以求解实对称三对角矩阵的特征值和特征向量。
这种方法具有较高的数值稳定性和计算效率,因此在实际求解中被广泛采用。
需要注意的是,在特征值和特征向量的计算过程中,可能会出现一些特殊情况。
比如矩阵中的主对角线元素不是严格递增或递减的时候,对于这种情况,我们需要进行一些额外的处理。
求实对称三对角矩阵的特征值和特征向量(一)摘要在特征值计算问题上,QR方法具有里程碑意义。
QR 方法是一种变换方法,是计算一般矩阵(中小型矩阵)全部特征值问题的最有效方法之一。
QR方法具有收敛快,算法稳定等特点.由于特征值和特征向量能从本质上揭露矩阵的某些重要性质,因而得到它们的精确解十分重要,但其计算一直是很繁琐的数学问题。
特别是当矩阵的阶数较高时,计算量非常大,且不易求其精确解。
关键词:特征值;特征向量;QR分解Solve Real Symmetry Three Diagonal Matrix Eigenvalue AndEigenvectorABSTRACTValues in the feature, the QR method has milepost sense. QR method is a transformation method, is the calculation of the general matrix ( small and medium-sized matrix ) one of the most effective methods of eigenvalue problems. The QR method has fast convergence, algorithm stability. Because the eigenvalues and eigenvectors can reveal some important properties of matrix from the nature, and thus obtain their exact solutions is very important, but the calculation is very complicated mathematical problems. Especially when the high rank of matrix, the calculation is very large, and is not easy to find the exact solution.Key words:eigenvalue; eigenvector; QR decomposition目录1 绪论 (1)1.1 问题重述 (1)1.2研究方法 (1)2 QR方法 (3)2.1 QR分解的概念 (3)2.2 Givens方法 (3)2.3豪斯霍尔德方法(镜像变换) (5)2.2.1 Householder 矩阵和Householder变换 (5)2.2.2QR算法 (6)3 QR算法C实现过程 (8)3.1主要参数 (8)3.2组成模块 (8)3.3程序改错 (8)4 测试运行 (11)参考文献……………………………………………………………………………….…….. 附录…………………………………………………………………………….……………..1 绪论1.1 问题重述(1)用你所熟悉的计算机语言编制利用QR 方法求实对称三对角矩阵全部特征值和特征向量的通用子程序。
实对称矩阵的特征值与特征向量主要内容◼矩阵共轭的概念◼实对称矩阵的性质⚫矩阵共轭的概念定义(),ij m n A a ⨯=并称A 是A 的共轭矩阵.就是对它的每个元素取共轭. 记为对复数域上的矩阵(或向量)取共轭(1)kA k A =(2);A B A B +=+(3) ;AB AB =()(4) ;T T A A =(5);A A =()11.A A −−=(6)若A 可逆, 则(k 为复数)共轭矩阵的性质⚫实对称矩阵的特征值与特征向量定理1实对称矩阵的特征值都是实数, 相应的特征向量可取为实向量.证明:设λ是实对称矩阵A 的任意特征值,且x 是属于λ特征向量, xAx λ=上式两边取共轭,x Ax λ=即.x x A λ=由A 是实对称矩阵,,A A =即得故因此有.x x A λ=上式两边同时转置后、再右乘x , 得T T T T x A x x Ax x xλ===即T T x x x xλλ=T T x x x xλλ==右边左边即,λλ=说明λ是实数.这样当实对称矩阵的特征值都是实数时, 齐次方程组(λE −A )x =0是实系数的方程组, 因此必有实的基础解系, 所以对应的特征向量可取为实向量.而()1212T n n x x x x x x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭012≠=∑=n i ix注意若A是一般的实矩阵而非对称的,则它的特征值与特征向量完全可能是复数.定理2证,A αλα=对第一个等式两边转置并右乘β, 设A 是实对称矩阵,特征值的特征向量必正交.则属于A 的不同设λ, μ是A 的两个不同特征值,α, β是分别属于λ,μ的特征向量,则有A βμβ=T T TA αβλαβ=得由于A =A T , A β=μβ,()0T λμαβ−=由于λ≠μ,代入上式左边并移项得,故αT β=0,即α与β正交. 证毕.定理2指出,实对称矩阵的属于不同特征值的特征向量不仅是线性无关的,是相互正交的.这为寻找实对称矩阵的正交特征向量组提供了方法. 而且。
实对称矩阵求特征值的技巧实对称矩阵是指一个矩阵的转置矩阵和它本身相等,即A = A^T。
求解实对称矩阵的特征值和特征向量是线性代数中的重要问题。
下面将介绍一些实对称矩阵求特征值的技巧。
1. 特征值存在定理对于实对称矩阵A,其特征值一定存在且为实数。
这是因为实对称矩阵可以通过正交变换化为对角矩阵,而对角线上的元素就是特征值。
2. 特征向量正交性如果A是一个n*n的实对称矩阵,那么它的n个特征向量一定两两正交。
这意味着任意两个不同的特征向量之间的内积为0。
这个性质也可以通过正交变换来证明。
3. 特征向量单位化在求解实对称矩阵A的特征向量时,我们通常会将其单位化。
即将每个特征向量除以其模长,使得所有特征向量都成为单位向量。
这样做可以方便计算,并且保证每个特征向量都有相同的长度。
4. Rayleigh商Rayleigh商是一种用来估计实对称矩阵特征值的方法。
对于一个实对称矩阵A和一个非零向量x,其Rayleigh商定义为x^T*A*x / x^T*x。
这个值可以用来估计A的特征值,具体方法是将它最小化。
这个方法在迭代求解特征值时非常有用。
5. 幂法幂法是一种迭代求解实对称矩阵最大特征值和特征向量的方法。
它的基本思想是不断将一个向量乘以矩阵A,并将结果单位化,直到收敛为止。
在每次迭代中,向量的模长会越来越接近最大特征值,并且向量会收敛到与最大特征值对应的特征向量上。
6. Jacobi方法Jacobi方法是一种通过旋转实对称矩阵来将其对角化的方法。
它通过不断地选择一个旋转角度和旋转轴来消去矩阵中某个元素,直到所有非对角元素都变成0为止。
这个过程中,矩阵的主对角线上的元素就是特征值,而每列主对角线上元素所在列的其他元素组成的向量就是该列主对角线上元素所对应的特征向量。
7. QR方法QR方法是一种通过正交变换将实对称矩阵对角化的方法。
它通过不断地将矩阵分解为QR的形式,其中Q是正交矩阵,R是上三角矩阵,直到R变成对角矩阵为止。
求实对称矩阵的特征值和特征求实对称矩阵的特征值和特征向量求实对称矩阵的特征值和特征向量是线性代数中一个基本的问题。
特征值和特征向量代表了矩阵在空间中的性质,具有重要的应用价值。
本文将系统地介绍求解实对称矩阵的特征值和特征向量的方法。
一、什么是实对称矩阵实对称矩阵指的是元素都为实数的方阵,其转置矩阵等于自己。
即,对于一个n阶实对称矩阵A,有A = A^T。
实对称矩阵在矩阵理论中非常重要,因为它们具有很多优秀性质,例如对称性和正交性等。
二、求实对称矩阵的特征值和特征向量的步骤特征向量代表的是方阵在某一方向上的拉伸效应,而特征值代表的则是这个拉伸效应的大小。
因此,求解实对称矩阵的特征值和特征向量可以从以下几个步骤入手:1. 求出矩阵的特征多项式设A为一个n阶实对称矩阵,则其特征多项式为:f(λ) = det(λI - A)其中λ为待求的特征值,I为n阶单位矩阵。
求出特征多项式后,我们可以通过对其进行分解,从而求出矩阵的特征值。
2. 求解特征值将特征多项式f(λ)分解为:f(λ) = (λ-λ1)(λ-λ2)…(λ-λn)其中λ1, λ2, …, λn为n个特征值,可以通过求解f(λ)=0的方程组得到。
特别地,由于我们在求解过程中使用的是实对称矩阵,因此得到的所有特征值都是实数。
3. 求解特征向量求解特征向量的方法有很多种。
一种比较简单的方法是,对于矩阵A的每一个特征值λi,解出下面的方程组:(A-λiI)xi = 0其中xi为λi对应的特征向量。
由于A是实对称矩阵,因此这个方程组的解可以通过高斯消元或LU分解等方式求解。
4. 将特征向量规范化在求解出特征向量后,为了便于后续的处理,需要将它们进行规范化。
具体地,我们将特征向量xi除以其模长,使得其模长等于1。
即:||xi|| = 1这样做的好处是,保证了特征向量之间的正交性,也就是说它们构成了一个规范正交基。
三、总结求解实对称矩阵的特征值和特征向量是线性代数中一个重要的问题。