高中数学必修二 (教案)简单几何体的表面积与体积
- 格式:docx
- 大小:270.30 KB
- 文档页数:13
8.3 简单几何体的表面积与体积-人教A版高中数学必修第二册(2019版)教案一、知识目标1.理解简单几何体的概念;2.掌握计算简单几何体的表面积和体积的方法;3.能够灵活运用所学知识解决实际问题。
二、教学重点1.理解简单几何体的概念;2.研究简单几何体的表面积和体积;3.掌握计算简单几何体的表面积和体积的方法。
三、教学难点1.能够在实际生活中将所学知识应用于实际问题;2.能够定义简单几何体的三个基本要素,并灵活地应用于计算表面积和体积的方法中。
四、教学方法采用讲授-演示-练习相结合的教学方法。
五、教学步骤1.引入:导入本节课内容,简单讲解几何体的概念,引出计算表面积和体积的问题;2.练习:带领学生练习计算简单几何体表面积和体积的方法;3.讲解:基本要素的定义、表面积和体积的计算公式;4.解题:结合实际问题,引导学生理解定义、公式;5.拓展:引出其他简单几何体,探究计算方法异同;6.总结:总结本节课重点、难点内容。
六、教学重点解析1.简单几何体的概念:几何体是由平面或曲面围成的立体图形,所谓“简单几何体”,是指没有镂空、异形等特征,如正方体、长方体、正三角形棱锥、正三角形棱柱等。
2.基本要素的定义:简单几何体的表面积和体积计算涉及三个基本要素,即底面积、高、侧面积(如果简单几何体存在,则也包含上下底面积)。
底面积是指几何体的底面所包含的面积;高是指几何体相对基面所垂直的线段长度;侧面积是指几何体除去底面和顶面外,所有侧面相加所得面积,有时也称为表面积。
3.计算方法:不同简单几何体的表面积和体积计算都有相应的公式,需要掌握对应的公式,一定程度上也需要记忆。
掌握了基本要素的概念及这些几何形体的公式,就能计算表面积与体积。
七、教学工具1.PPT;2.物理实物。
八、教学时间1.讲解时间:45分钟;2.课后练习时间:1小时。
九、教学评价1.学生应能准确理解简单几何体概念,并掌握计算其表面积和体积的方法;2.学生应能在实际生活中将所学知识应用于实际问题;3.学生应能定义简单几何体的三个基本要素,并灵活地应用于计算表面积和体积的方法中。
空间几何体的表面积与体积(通用)-人教A版必修二教案一、教材内容概述在人教A版必修二数学教材中,第五章“空间几何体的计算”部分的第一节内容是空间几何体的表面积与体积的计算。
该部分介绍了如何计算立方体、长方体、正方体、棱台、圆柱、圆锥、球体等常见几何体的表面积与体积,并提供了相应的计算公式和实例练习。
二、教学目标本节课教学目标如下:1.了解常见空间几何体的表面积与体积的计算公式;2.能够熟练应用这些公式计算特定几何体的表面积与体积;3.发现常见空间几何体的几何特征与其表面积、体积的关系。
三、教学重点和难点1.熟练掌握各类几何体的表面积与体积的计算公式;2.能够正确应用公式进行计算;3.发现不同几何体的表面积、体积的计算方法与其几何特征的内在联系。
四、教学内容及安排本节课教学内容如下:1. 立方体、长方体、正方体的表面积与体积1.立方体的表面积和体积计算公式;2.长方体的表面积和体积计算公式;3.正方体的表面积和体积计算公式;4.练习题。
2. 棱台的表面积与体积1.棱台的表面积和体积计算公式;2.完全三视图,练习题。
3. 圆柱的表面积与体积1.圆柱的表面积和体积计算公式;2.练习题。
4. 圆锥的表面积与体积1.圆锥的表面积和体积计算公式;2.练习题。
5. 球体的表面积与体积1.球体的表面积和体积计算公式;2.练习题。
五、实施方法和步骤1.导入,介绍本节课的学习内容和目标;2.按照教学内容的安排,展开具体的讲解;3.针对不同类型几何体,进行基本概念的讲解,并介绍其表面积和体积的计算方法;4.使用白板、PPT等多种教学手段举例,提供思维拓展;5.针对性的设计练习和小组活动,检验学生的掌握程度;6.总结本节课的要点,强化学生对重点概念、公式和方法的掌握。
六、教学评价本节课的教学评价将包括以下方面:1.口头提问,检验学生对于概念、公式和计算方法的掌握情况;2.课后作业,提供一定数量和难度的习题,检验学生对教学内容的掌握程度;3.小组活动,培养学生的团队协作意识、沟通能力和创新思维。
8.3 简单几何体的表面积与体积-人教A版高中数学必修第二册(2019版)教案教学目标•理解简单几何体的概念,能够分析它们的特征;•掌握计算简单几何体表面积和体积的方法;•能够解决实际问题,应用所学知识。
教学重点•理解简单几何体的概念,能够分析它们的特征;•掌握计算简单几何体表面积和体积的方法。
教学难点•能够解决实际问题,应用所学知识。
教学步骤第一步:引入本节课将介绍简单几何体的表面积与体积计算方法,这是几何学中一个非常重要的概念,希望同学们认真听讲,掌握相关知识,为今后的学习打下基础。
第二步:讲解简单几何体的概念简单几何体是指由简单的几何图形组合而成的几何体,比如三棱柱、四棱锥、圆柱、圆锥等。
这些几何体具有明显的特征,可以通过计算它们的表面积和体积来刻画它们的形态和大小。
第三步:讲解表面积计算方法以正方体为例,它的表面积等于6个正方形的面积之和,即S=6a²。
在实际问题中,当我们需要计算某个简单几何体表面积时,可以将它分解成有限个简单的几何图形,然后计算每个几何图形的面积,最后加起来即可。
第四步:讲解体积计算方法以圆柱为例,它的体积等于底面积S乘以高h,即V=Sh。
同样地,在实际问题中,我们也可以将一个简单几何体分解成有限个简单的几何图形,然后计算每个几何图形的体积,最后加起来即可。
第五步:练习针对所学知识,进行大量实战演示和练习,并在过程中解决同学们遇到的实际问题,面向考试应试等多种诉求进行综合训练。
第六步:总结本节课学习了简单几何体的表面积与体积计算方法,希望同学们通过本课程的学习,从中获得更深层次的收获,为今后的学习打下基础。
教学反思通过本节课的学习,我们得出结论:计算简单几何体表面积和体积的关键是理解这些几何体的概念和特征,将其分解成有限个简单的几何图形,然后计算每个图形的面积或体积,最后加起来即可。
在讲解的过程中,我们需要注重理论和实践的结合,通过实际演示和练习,让同学们更好地理解和掌握所学知识,并能够灵活运用于实际问题中。
必修8.3.2(2)球的表面积和体积一、四基要求:1.掌握球体的表面积和体积公式;2.掌握简单组合体的表面积和体积的计算方法;3.通过球体体积公式的推导,使学生了解极限的思想方法二、学习过程:(一)课前小测(检测上节课所学的内容)1. 用一个边长分别为4,6矩形围成一个圆柱面,则这个圆柱的体积是2.用一个半径为6,圆心角为120°的扇形围成一个圆锥,则圆锥的体积为3.圆台上底半径r1=1,下底半径r=3,高h=3,求母线长l侧面积s,全面积s24. 棱台的两个底面面积分别是245c㎡和80c㎡,截得这个棱台的棱锥的高为35cm,求这个棱台的体积。
5.圆台的上、下底面半径分别为2,4,母线长为13,则这个圆台的体积V=。
二、进行新课(一)情景设置,引入新课前面学习了圆柱、圆锥、圆台的表面积和体积的求法。
除了上述三个旋转体之外还有一个什么旋转体?那么它的表面积和体积又是怎样计算?今天我们就研究这两个内容(二)数学本质,深入理解问题1:阅读教材117页,回答:球的半径为R,则球的表面积为?跟踪训练:(教材118页例3)如图8.3-4,某种浮标由两个半球和一个圆柱黏合而成,半球的直径是0.3m,圆柱高0.6m.如果在浮标表面涂一层防水漆,每平方米需要0.5kg涂料,那么给1000个这样的浮标涂防水漆需要多少涂料?(x取3.14)问题2:(1)在小学,我们学习了圆的面积公式,你还记得是如何求得的吗?类比这种方法,你能由球的表面积公式推导出球的体积公式吗?(2)阅读教材118页。
类比利用圆周长求圆面积的方法,我们可以利用球的表面积求球的体积,如图8.3-5,把球O的表面分成n个小网格,连接球心O和每个小网格的顶点,整个球体就被分割成n个“小锥体”.图8.3-5当n 越大,每个小网格越小时,每个“小锥体”的底面就越平,“小锥体”就越近似于棱锥,其高越近似于球半径R.设O-ABCD 是其中一个“小锥体”,它的体积是V O-ABC D ≈31S ABCD R. 由于球的体积就是这n 个“小锥体”的体积之和,而这n 个“小锥体”的底面积之和就是球的表面积.因此,球的体积V 球=R S 球31=3234431R R R ππ=⋅⨯. 由此,我们得到球的体积公式(三)应用公式,深化理解例1 教材119页例4 如图8.3-6,圆柱的底面直径和高都等于球的直径,求球与圆柱的体积之比。
高中数学教学备课教案立体几何中的体积和表面积计算高中数学教学备课教案立体几何中的体积和表面积计算一、引言立体几何是数学中的重要分支,它研究的是物体的形状、大小以及相互之间的关系。
体积和表面积是立体几何中的两个基本概念,对于理解和计算立体体积和表面积具有重要意义。
本教案将介绍高中数学教学备课中如何教授立体几何中的体积和表面积计算。
二、学习目标1. 理解立体几何中体积和表面积的概念和计算公式;2. 学会根据不同几何形状计算体积和表面积;3. 能够运用体积和表面积计算解决实际问题。
三、教学内容1. 体积计算体积是一个物体所占据的三维空间的大小。
根据不同几何形状,我们可以使用不同的公式来计算体积。
1.1 直方体的体积计算直方体是最常见的几何形状之一,它具有六个面,其中两组相对的面是相等的。
直方体的体积计算公式为 V = lwh,其中 l、w、h 分别是直方体的长、宽和高。
1.2 圆柱体的体积计算圆柱体也是常见的几何形状之一,它由一个圆和上下两个平行圆面所组成。
圆柱体的体积计算公式为V = πr^2h,其中r 是底面圆的半径,h 是圆柱体的高度。
1.3 锥体的体积计算锥体是一个底面为圆形,上面收束成一个点的几何形状。
计算锥体的体积需要使用公式V = (1/3)πr^2h,其中 r 是底面圆的半径,h 是锥体的高度。
2. 表面积计算表面积是一个物体外部覆盖的总面积。
同样地,不同几何形状的表面积计算也有不同的公式。
2.1 直方体的表面积计算直方体的表面积计算公式为 A = 2lw + 2lh + 2wh,其中 l、w、h 分别是直方体的长、宽和高。
该公式基于直方体的六个面。
2.2 圆柱体的表面积计算圆柱体的表面积计算公式为A = 2πr^2 + 2πrh,其中 r 是底面圆的半径,h 是圆柱体的高度。
该公式基于圆柱体的三个部分:两个底面圆和侧面。
2.3 锥体的表面积计算锥体的表面积计算公式为A = πr^2 + πrl,其中 r 是底面圆的半径,l 是锥体的斜高。
8.3.1 棱柱、棱锥、棱台的表面积和体积本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第八章《立体几何初步》,本节课主要学习棱柱、棱锥、棱台的表面积和体积的表面积、体积公式及其求法,还有简单组合体的体积的求解。
教材从分析简单几何体的侧面展开图得到了它们的表面积公式,体现了立体问题平面化的解决策略,这是本节课的灵魂,也是立体几何的灵魂,在立体几何中,要注意将立体问题转化为平面几何问题,在教学中应加以重视。
课程目标学科素养A..通过对棱柱、棱锥、棱台的研究,掌握棱柱、棱锥、棱台的表面积与体积的求法.B.会求棱柱、棱锥、棱台有关的组合体的表面积与体积.1.数学抽象:棱柱、棱锥、棱台的表面积与体积的公式;2.逻辑推理:推导棱柱、棱锥、棱台的表面积与体积的公式;3.数学运算:求棱柱、棱锥、棱台及有关组合体的表面积与体积;4.直观想象:棱柱、棱锥、棱台体积之间的关系。
1.教学重点:棱柱、棱锥、棱台的表面积与体积;2.教学难点:求棱柱、棱锥、棱台有关的组合体的表面积与体积.多媒体教学过程教学设计意图核心素养目标一、复习回顾,温故知新1.北京奥运会场馆图2. 北京奥运会结束后,国家对体育场馆都进行了改造,从专业比赛场馆逐步成为公众观光、健身的综合性体育场馆,国家游泳中心也完成了上述变身,新增了内部开放面积,并建成了大型的水上乐园.经营方出于多种考虑,近几年内“水立方”外墙暂不承接商业化广告,但出于长远考虑,决定为水立方外墙订制特殊显示屏,届时“水立方”将重新焕发活力,大放异彩.能否计算出“水立方”外墙所用显示屏的面积?3.学生回答下列公式矩形面积、三角形面积、梯形面积、长方体体积、正方体体积4.在初中已经学过了正方体和长方体的表面积,你知道正方体和长方体的展开图与其表面积的关系吗?二、探索新知探究:棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的展开图是什么?如何计算它们的表面积?思考1:棱柱的侧面展开图是什么?如何计算它的表面积?侧面展开图是几个矩形,表面积是上下底面面积与侧面展开图的面积通过观看图片及复习初中所学知识,引入本节新课。
⾼中数学必修2《空间⼏何体的表⾯积与体积》教案 ⾼中数学必修2《空间⼏何体的表⾯积与体积》教案 1教学⺫标 1.知道柱体、锥体、台体侧⾯展开图,弄懂柱体、锥体、台体的表⾯积的求法. 2.能运⽤公式求解柱体、锥体和台体的表⾯积,并知道柱体、锥体和台体表⾯积之间的关系. 2学情分析 通过学习空间⼏何体的结构特征,空间⼏何体的三视图和直观图,了解了空间⼏何体和平⾯图形之间的关系,从中反映出⼀个思想⽅法,即平⾯图形和空间⼏何体的互化,尤其是空间⼏何问题向平⾯问题的转化。
该部分内容中有些是学⽣已经熟悉的,在解决这些问题的过程中,⾸先要对学⽣已有的知识进⾏再认识,提炼出解决问题的⼀般思想——化归的思想,总结出⼀般的求解⽅法,在此基础上通过类⽐获得解决新问题的思路,通过化归解决问题,深化对化归、类⽐等思想⽅法的应⽤。
3重点难点 重点:知道柱体、锥体、台体侧⾯展开图,弄懂柱体、锥体、台体的表⾯积公式。
难点:会求柱体、锥体和台体的表⾯积,并知道柱体、锥体和台体表⾯积之间的关系. 4教学过程 4.1 第⼀学时教学活动活动1【导⼊】第1课时 柱体、锥体、台体的表⾯积 (⼀)、基础⾃测: 1.棱⻓为a的正⽅体表⾯积为__________. 2.⻓、宽、⾼分别为a、b、c的⻓⽅体,其表⾯积为___________________. 3.⻓⽅体、正⽅体的侧⾯展开图为__________. 4.圆柱的侧⾯展开图为__________. 5.圆锥的侧⾯展开图为__________. (⼆).尝试学习 1.柱体的表⾯积 (1)侧⾯展开图:棱柱的侧⾯展开图是____________,⼀边是棱柱的侧棱,另⼀边等于棱柱的__________,如图①所⽰;圆柱的侧⾯展开图是_______,其中⼀边是圆柱的⺟线,另⼀边等于圆柱的底⾯周⻓,如图②所⽰. (2)⾯积:柱体的表⾯积S表=S侧+2S底.特别地,圆柱的底⾯半径为r,⺟线⻓为l,则圆柱的侧⾯积S侧=__________,表⾯积S表=__________. 2.锥体的表⾯积 (1)侧⾯展开图:棱锥的侧⾯展开图是由若干个__________拼成的,则侧⾯积为各个三⾓形⾯积的_____,如图①所⽰;圆锥的侧⾯展开图是_______,扇形的半径是圆锥的______,扇形的弧⻓等于圆锥的__________,如图②所⽰. (2)⾯积:锥体的表⾯积S表=S侧+S底.特别地,圆锥的底⾯半径为r,⺟线⻓为l,则圆锥的侧⾯积S侧=__________,表⾯积S表=__________. 3.台体的表⾯积 (1)侧⾯展开图:棱台的侧⾯展开图是由若干个__________拼接⽽成的,则侧⾯积为各个梯形⾯积的______,如图①所⽰;圆台的侧⾯展开图是扇环,其侧⾯积可由⼤扇形的⾯积减去⼩扇形的⾯积⽽得到,如图②所⽰. (2)⾯积:台体的表⾯积S表=S侧+S上底+S下底.特别地,圆台的上、下底⾯半径分别为r′,r,⺟线⻓为l,则侧⾯积S侧=____________,表⾯积S表=________________________. (三).互动课堂 例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱⻓为b,则其侧⾯积为( ) A. B.ab C.(+)ab D.ab 例2:(1)若⼀个圆锥的轴截⾯是等边三⾓形,其⾯积为,则这个圆锥的侧⾯积是( )A.2πB.C.6πD.9π (2)已知棱⻓均为5,底⾯为正⽅形的四棱锥S-ABCD,如图,求它的侧⾯积、表⾯积. 例3:⼀个四棱台的上、下底⾯都为正⽅形,且上底⾯的中⼼在下底⾯的投影为下底⾯中⼼(正四棱台)两底⾯边⻓分别为1,2,侧⾯积等于两个底⾯积之和,则这个棱台的⾼为( ) A. B.2 C. D. (四).巩固练习: 1.⼀个棱柱的侧⾯展开图是三个全等的矩形,矩形的⻓和宽分别为6 cm,4 cm,则该棱柱的侧⾯积为________. 2.已知⼀个四棱锥底⾯为正⽅形且顶点在底⾯正⽅形射影为底⾯正⽅形的中⼼(正四棱锥),底⾯正⽅形的边⻓为4 cm,⾼与斜⾼的夹⾓为30°,如图所⽰,求正四棱锥的侧⾯积________和表⾯积________(单位:cm2). 3.如图所⽰,圆台的上、下底半径和⾼的⽐为1:4:4,⺟线⻓为10,则圆台的侧⾯积为( )A.81πB.100πC.14πD.169π (五)、课堂⼩结: 求柱体表⾯积的⽅法 (1)直棱柱的侧⾯积等于它的底⾯周⻓和⾼的乘积;表⾯积等于它的侧⾯积与上、下两个底⾯的⾯积之和. (2)求斜棱柱的侧⾯积⼀般有两种⽅法:⼀是定义法;⼆是公式法.所谓定义法就是利⽤侧⾯积为各侧⾯⾯积之和来求,公式法即直接⽤公式求解. (3)求圆柱的侧⾯积只需利⽤公式即可求解. (4)求棱锥侧⾯积的⼀般⽅法:定义法. (5)求圆锥侧⾯积的⼀般⽅法:公式法:S侧=πrl. (6)求棱台侧⾯积的⼀般⽅法:定义法. (7)求圆台侧⾯积的⼀般⽅法:公式法S侧=2(r+r′)l. 五、当堂检测 1.(2011·北京)某四棱锥的三视图如图所⽰,该四棱锥的表⾯积是( )A.32B.16+16C.48D.16+32 ⺴] 2.(2013·重庆)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A.180B.200C.220D.240 3.(2013⼲东)若⼀个圆台的正视图如图所⽰,则其侧⾯积等于( )A.6B.6πC.3πD.6π 六、作业:(1)课时闯关(今晚交) 七、课后反思:本节课你会哪些?还存在哪些问题? 1.3 空间⼏何体的表⾯积与体积 课时设计课堂实录 1.3 空间⼏何体的表⾯积与体积 1第⼀学时教学活动活动1【导⼊】第1课时 柱体、锥体、台体的表⾯积 (⼀)、基础⾃测: 1.棱⻓为a的正⽅体表⾯积为__________. 2.⻓、宽、⾼分别为a、b、c的⻓⽅体,其表⾯积为___________________. 3.⻓⽅体、正⽅体的侧⾯展开图为__________. 4.圆柱的侧⾯展开图为__________. 5.圆锥的侧⾯展开图为__________. (⼆).尝试学习 1.柱体的表⾯积 (1)侧⾯展开图:棱柱的侧⾯展开图是____________,⼀边是棱柱的侧棱,另⼀边等于棱柱的__________,如图①所⽰;圆柱的侧⾯展开图是_______,其中⼀边是圆柱的⺟线,另⼀边等于圆柱的底⾯周⻓,如图②所⽰. (2)⾯积:柱体的表⾯积S表=S侧+2S底.特别地,圆柱的底⾯半径为r,⺟线⻓为l,则圆柱的侧⾯积S侧=__________,表⾯积S表=__________. 2.锥体的表⾯积 (1)侧⾯展开图:棱锥的侧⾯展开图是由若干个__________拼成的,则侧⾯积为各个三⾓形⾯积的_____,如图①所⽰;圆锥的侧⾯展开图是_______,扇形的半径是圆锥的______,扇形的弧⻓等于圆锥的__________,如图②所⽰. (2)⾯积:锥体的表⾯积S表=S侧+S底.特别地,圆锥的底⾯半径为r,⺟线⻓为l,则圆锥的侧⾯积S侧=__________,表⾯积S表=__________. 3.台体的表⾯积 (1)侧⾯展开图:棱台的侧⾯展开图是由若干个__________拼接⽽成的,则侧⾯积为各个梯形⾯积的______,如图①所⽰;圆台的侧⾯展开图是扇环,其侧⾯积可由⼤扇形的⾯积减去⼩扇形的⾯积⽽得到,如图②所⽰. (2)⾯积:台体的表⾯积S表=S侧+S上底+S下底.特别地,圆台的上、下底⾯半径分别为r′,r,⺟线⻓为l,则侧⾯积S侧=____________,表⾯积S表=________________________. (三).互动课堂 例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱⻓为b,则其侧⾯积为( ) A. B.ab C.(+)ab D.ab 例2:(1)若⼀个圆锥的轴截⾯是等边三⾓形,其⾯积为,则这个圆锥的侧⾯积是( )A.2πB.C.6πD.9π (2)已知棱⻓均为5,底⾯为正⽅形的四棱锥S-ABCD,如图,求它的侧⾯积、表⾯积. 例3:⼀个四棱台的上、下底⾯都为正⽅形,且上底⾯的中⼼在下底⾯的投影为下底⾯中⼼(正四棱台)两底⾯边⻓分别为1,2,侧⾯积等于两个底⾯积之和,则这个棱台的⾼为( ) A. B.2 C. D. (四).巩固练习: 1.⼀个棱柱的侧⾯展开图是三个全等的矩形,矩形的⻓和宽分别为6 cm,4 cm,则该棱柱的侧⾯积为________. 2.已知⼀个四棱锥底⾯为正⽅形且顶点在底⾯正⽅形射影为底⾯正⽅形的中⼼(正四棱锥),底⾯正⽅形的边⻓为4 cm,⾼与斜⾼的夹⾓为30°,如图所⽰,求正四棱锥的侧⾯积________和表⾯积________(单位:cm2). 3.如图所⽰,圆台的上、下底半径和⾼的⽐为1:4:4,⺟线⻓为10,则圆台的侧⾯积为( )A.81πB.100πC.14πD.169π (五)、课堂⼩结: 求柱体表⾯积的⽅法 (1)直棱柱的侧⾯积等于它的底⾯周⻓和⾼的乘积;表⾯积等于它的侧⾯积与上、下两个底⾯的⾯积之和. (2)求斜棱柱的侧⾯积⼀般有两种⽅法:⼀是定义法;⼆是公式法.所谓定义法就是利⽤侧⾯积为各侧⾯⾯积之和来求,公式法即直接⽤公式求解. (3)求圆柱的侧⾯积只需利⽤公式即可求解. (4)求棱锥侧⾯积的⼀般⽅法:定义法. (5)求圆锥侧⾯积的⼀般⽅法:公式法:S侧=πrl. (6)求棱台侧⾯积的⼀般⽅法:定义法. (7)求圆台侧⾯积的⼀般⽅法:公式法S侧=2(r+r′)l. 五、当堂检测 1.(2011·北京)某四棱锥的三视图如图所⽰,该四棱锥的表⾯积是( )A.32B.16+16C.48D.16+32 ⺴] 2.(2013·重庆)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A.180B.200C.220D.240 3.(2013⼲东)若⼀个圆台的正视图如图所⽰,则其侧⾯积等于( )A.6B.6πC.3πD.6π 六、作业:(1)课时闯关(今晚交) 七、课后反思:本节课你会哪些?还存在哪些问题? ⼩编推荐各科教学设计: 、、、、、、、、、、、、 ⼩编推荐各科教学设计: 、、、、、、、、、、、、。
1.空间几何体的表面积与体积(通用)-人教A版必修二教案一、教学目标1.了解空间几何体的定义及分类,并掌握它们的表面积与体积公式。
2.能够运用所学知识计算空间几何体的表面积与体积。
二、教学重点和难点1.教学重点:空间几何体的定义及分类、表面积与体积的公式。
2.教学难点:如何运用所学知识计算空间几何体的表面积与体积。
三、教学过程1. 空间几何体的定义及分类1.引入空间几何体的概念,定义几何体。
2.给出空间几何体的常见分类:点、线、面、体。
3.介绍不同空间几何体的定义和特点。
2. 空间几何体的表面积公式1.引入空间几何体的表面积概念,定义表面积。
2.分别介绍正方体、长方体、正棱柱、正棱锥、球的表面积公式,并进行计算演示。
3. 空间几何体的体积公式1.引入空间几何体的体积概念,定义体积。
2.分别介绍正方体、长方体、正棱柱、正棱锥、球的体积公式,并进行计算演示。
4. 计算练习1.给出一些空间几何体的基本参数,要求学生自行计算其表面积和体积。
2.教师进行现场指导和解答,强调运用公式的方法。
四、教学评估1.给出一些空间几何题目,要求学生自行计算其表面积和体积。
2.对学生的计算结果进行点评和总结,引导同学们继续加强实践和掌握。
五、教学拓展1.引导同学们了解空间几何体中的其他几何体类型,例如多面体、四面体、棱锥等,拓宽知识面。
2.提供更多计算练习,让学生运用公式娴熟地计算各种空间几何体的表面积和体积。
六、教学反思教学中应注意具体问题具体分析,让学生感受到所学知识的实际应用。
此外,在计算时也要避免公式的生搬硬套,而应注重运用创新思维。
简单几何体的表面积与体积【第一课时】【教学目标】1.了解柱体、锥体、台体的侧面展开图,掌握柱体、柱、锥、台的体积2.能利用柱体、锥体、台体的体积公式求体积,理解柱体、锥体、台体的体积之间的关系【教学重难点】1.柱、锥、台的表面积2.锥体、台体的表面积的求法【教学过程】一、问题导入预习教材内容,思考以下问题:1.棱柱、棱锥、棱台的表面积如何计算?2.圆柱、圆锥、圆台的侧面展开图分别是什么?3.圆柱、圆锥、圆台的侧面积公式是什么?4.柱体、锥体、台体的体积公式分别是什么?5.圆柱、圆锥、圆台的侧面积公式、体积公式之间分别有怎样的关系?二、新知探究柱、锥、台的表面积例1:(1)若圆锥的正视图是正三角形,则它的侧面积是底面积的()A.2倍B.3 倍C.2 倍D.5 倍(2)已知正方体的8 个顶点中,有 4 个为侧面是等边三角形的三棱锥的顶点,则这个三棱锥与正方体的表面积之比为()A.1∶ 2B.1∶3C.2∶ 2D.3∶6(3)已知某圆台的一个底面周长是另一个底面周长的 3 倍,母线长为 3 ,圆台的侧面积为84π,则该圆台较小底面的半径为()A.7B.6C.5D.3【解析】(1)设圆锥的底面半径为r,母线长为l,则由题意可知,l=2r,于是S侧=πr·2r=2πr2,S底=πr2,可知选 C.(2)棱锥B′ACD′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的棱长为1,则B′C=2,S△B′AC=3 2.三棱锥的表面积S锥=4×32=23,又正方体的表面积S正=6.因此S锥∶S正=23∶6=1∶ 3.(3)设圆台较小底面的半径为r,则另一底面的半径为3r.由S侧=3π(r+3r)=84π,解得r=7.【答案】(1)C(2)B(3)A[规律方法]空间几何体表面积的求法技巧(1)多面体的表面积是各个面的面积之和.(2)组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展开为平面图形计算,而表面积是侧面积与底面圆的面积之和.柱、锥、台的体积例2:如图所示,正方体ABCDA1B1C1D1的棱长为a,过顶点B,D,A1截下一个三棱锥.(1)求剩余部分的体积;(2)求三棱锥AA1BD的体积及高.【解】(1)V三棱锥A1ABD=13S△ABD·A1A=13×1 2·AB·AD·A1A=16a3.故剩余部分的体积V=V正方体-V三棱锥A1ABD=a3-16a3=56a3.(2)V三棱锥AA1BD=V三棱锥A1ABD=1 6a 3.设三棱锥AA1BD的高为h,则V三棱锥AA1BD=13·S△A1BD·h=13×12×32(2a)2h=36a2h,故36a2h=16a3,解得h=3 3a.[规律方法]求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.[提醒]求几何体的体积时,要注意利用好几何体的轴截面(尤其为圆柱、圆锥时),准确求出几何体的高和底面积.组合体的表面积和体积例3:如图在底面半径为2,母线长为 4 的圆锥中内接一个高为3的圆柱,求圆柱的表面积.【解】设圆锥的底面半径为 R ,圆柱的底面半径为 r ,表面积为 S . 则 R =OC =2,AC =4, AO =42-22=2 3. 如图所示,易知△AEB ∽△AOC ,所以AE AO =EB OC ,即323=r 2,所以 r =1,S 底=2πr 2=2π,S 侧=2πr ·h =23π. 所以 S =S 底+S 侧=2π+23π =(2+23)π.1.[变问法]本例中的条件不变,求圆柱的体积与圆锥的体积之比. 解:由例题解析可知:圆柱的底面半径为 r =1,高 h =3,所以圆柱的体积 V 1=πr 2h =π×12×3=3π.圆锥的体积 V 2=13π×22×23=833π.所以圆柱与圆锥的体积比为 3∶8.2.[变问法]本例中的条件不变,求图中圆台的表面积与体积.解:由例题解析可知:圆台的上底面半径 r =1,下底面半径 R =2,高 h =3,母线 l =2,所以圆台的表面积 S =π(r 2+R 2+r ·l +Rl )=π(12+22+1×2+2×2)=11π.圆台的体积 V =13π(r 2+rR +R 2)h =13π(12+2+22)×3=733π. 3.[变条件、变问法]本例中的“高为3”改为“高为 h ”,试求圆柱侧面积的最大值.解:设圆锥的底面半径为 R ,圆柱的底面半径为 r ,则R=OC=2,AC=4,AO=42-22=2 3.如图所示易知△AEB∽△AOC,所以AEAO =EBOC,即23-h23=r2,所以h=23-3r,S圆柱侧=2πrh=2πr(23-3r)=-23πr2+43πr,所以当r=1,h=3时,圆柱的侧面积最大,其最大值为23π.[规律方法]求组合体的表面积与体积的步骤(1)分析结构特征:弄清组合体的组成形式,找准有关简单几何体的关键量.(2)设计计算方法:根据组成形式,设计计算方法,特别要注意“拼接面”面积的处理,利用“切割”“补形”的方法求体积.(3)计算求值:根据设计的计算方法求值.【课堂总结】1.棱柱、棱锥、棱台的表面积多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和.2.棱柱、棱锥、棱台的体积(1)V棱柱=Sh;(2)V棱锥=13Sh;V棱台=13h(S′+SS′+S),其中S′,S分别是棱台的上、下底面面积,h为棱台的高.3.圆柱、圆锥、圆台的表面积和体积名称图形公式圆柱底面积:S底=πr2侧面积:S侧=2πrl表面积:S=2πrl+2πr2体积:V=πr2l[名师点拨]1.柱体、锥体、台体的体积(1)柱体:柱体的底面面积为S ,高为h ,则V =Sh .(2)锥体:锥体的底面面积为S ,高为h ,则V =13Sh . (3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13()S ′+SS ′+S h .2.圆柱、圆锥、圆台的侧面积公式之间的关系S 圆柱侧=2πrl ――→r ′=r S 圆台侧=π(r ′+r )l ――→r ′=0S 圆锥侧=πrl . 3.柱体、锥体、台体的体积公式之间的关系V 柱体=Sh ――→S ′=S V 台体=13(S ′+S ′S +S )h ――→S ′=0V 锥体=13Sh .【课堂检测】1.已知某长方体同一顶点上的三条棱长分别为1,2,3,则该长方体的表面积为( )A .22B .20C .10D .11解析:选A.所求长方体的表面积S =2×(1×2)+2×(1×3)+2×(2×3)=22.2.正三棱锥的高为3,侧棱长为23,则这个正三棱锥的体积为( )A.274B.94C.2734D.934解析:选D.由题意可得底面正三角形的边长为3,所以V =13×34×32×3=934.故选D.3.已知圆台的上、下底面的面积之比为9∶25,那么它的中截面截得的上、下两台体的侧面积之比是________.解析:圆台的上、下底面半径之比为3∶5,设上、下底面半径为3x ,5x ,则中截面半径为4x ,设上台体的母线长为l ,则下台体的母线长也为l ,上台体侧面积S 1=π(3x +4x )l =7πxl ,下台体侧面积S 2=π(4x +5x )l =9πxl ,所以S 1∶S 2=7∶9.答案:7∶9 4.如图,三棱台ABC A 1B 1C 1中,AB ∶A 1B 1=1∶2,求三棱锥A 1ABC ,三棱锥B A 1B 1C ,三棱锥CA 1B 1C 1的体积之比.解:设棱台的高为h ,S △ABC =S ,则S △A 1B 1C 1=4S .所以VA 1ABC =13S △ABC ·h =13Sh ,VC A 1B 1C 1=13S △A 1B 1C 1·h =43Sh .又V 台=13h (S +4S +2S )=73Sh , 所以VB A 1B 1C =V 台-VA 1ABC -VCA 1B 1C 1=73Sh -Sh 3-4Sh 3=23Sh , 所以体积比为1∶2∶4.【第二课时】 【教学目标】1.记准球的表面积和体积公式,会计算球的表面积和体积 2.能解决与球有关的组合体的计算问题【教学重难点】1.球的表面积与体积 2.与球有关的组合体【教学过程】一、问题导入预习教材内容,思考以下问题:1.球的表面积公式是什么?2.球的体积公式什么?二、新知探究球的表面积与体积例1:(1)已知球的体积是32π3,则此球的表面积是()A.12πB.16πC.16π3 D.64π3(2)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是()A.17π B.18πC.20π D.28π【解析】(1)设球的半径为R,则由已知得V=43πR3=32π3,解得R=2.所以球的表面积S=4πR2=16π.(2)由三视图可得此几何体为一个球切割掉18后剩下的几何体,设球的半径为r,故78×43πr3=283π,所以r=2,表面积S=78×4πr2+34πr2=17π,选A.【答案】(1)B(2)A[归纳反思]球的体积与表面积的求法及注意事项(1)要求球的体积或表面积,必须知道半径R或者通过条件能求出半径R,然后代入体积或表面积公式求解.(2)半径和球心是球的最关键要素,把握住了这两点,计算球的表面积或体积的相关题目也就易如反掌了.球的截面问题例2:如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器厚度,则球的体积为()A.500π3cm3 B.866π3cm3C.1 372π3cm3 D.2 048π3cm3【解析】如图,作出球的一个截面,则MC=8-6=2(cm),BM=12AB=12×8=4(cm).设球的半径为R cm,则R2=OM2+MB2=(R-2)2+42,所以R=5,所以V球=43π×53=5003π (cm3).【答案】A[规律方法]球的截面问题的解题技巧(1)有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的问题.(2)解题时要注意借助球半径R,截面圆半径r,球心到截面的距离d构成的直角三角形,即R2=d2+r2.与球有关的切、接问题角度一球的外切正方体问题例3:将棱长为 2 的正方体木块削成一个体积最大的球,则该球的体积为()A.4π3B.2π3C.3π2D.π6【解析】由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为 2,故半径为 1,其体积是43×π×13=4π3.【答案】A角度二球的内接长方体问题例4:一个长方体的各个顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为 1,2,3,则此球的表面积为________.【解析】长方体外接球直径长等于长方体体对角线长,即 2R =12+22+32=14,所以球的表面积 S =4πR 2=14π. 【答案】14π角度三球的内接正四面体问题例5:若棱长为 a 的正四面体的各个顶点都在半径为 R 的球面上,求球的表面积.【解】把正四面体放在正方体中,设正方体棱长为 x ,则 a =2x ,由题意2R =3x =3×2a 2=62a ,所以 S 球=4πR 2=32πa 2.角度四球的内接圆锥问题例6:球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为________.【解析】①当圆锥顶点与底面在球心两侧时,如图所示,设球半径为 r ,则球心到该圆锥底面的距离是r 2,于是圆锥的底面半径为 r 2-⎝ ⎛⎭⎪⎫r 22=3r 2,高为3r 2.该圆锥的体积为 13 ×π×⎝ ⎛⎭⎪⎫3r 22 ×3r 2=38πr 3,球体积为43 πr 3,所以11 / 13该圆锥的体积和此球体积的比值为38πr 343πr 3=932. ②同理,当圆锥顶点与底面在球心同侧时,该圆锥的体积和此球体积的比值为332.【答案】932或332角度五球的内接直棱柱问题例7:设三棱柱的侧棱垂直于底面,所有棱的长都为 a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B.73πa 2C.113πa 2 D .5πa 2【解析】由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为 a .如图,P 为三棱柱上底面的中心,O 为球心,易知 AP=23×32a =33a ,OP =12a ,所以球的半径 R = OA 满足R 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫12a 2=712a 2,故 S 球=4πR 2=73πa 2. 【答案】B[规律方法](1)正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为 r 1=a 2,过在一个平面上的四个切点作截面如图(1). (2)长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为 a ,b ,c ,过球心作长方体的对角线,则球的半径为 r 2=12 a 2+b 2+c 2,如图(2).12 / 13(3)正四面体的外接球正四面体的棱长 a 与外接球半径 R 的关系为:2R =62a .【课堂总结】1.球的表面积设球的半径为R ,则球的表面积S =4πR 2.2.球的体积设球的半径为R ,则球的体积V =43πR 3.[名师点拨]对球的体积和表面积的几点认识(1)从公式看,球的表面积和体积的大小,只与球的半径相关,给定R 都有唯一确定的S 和V 与之对应,故表面积和体积是关于R 的函数.(2)由于球的表面不能展开成平面,所以,球的表面积公式的推导与前面所学的多面体与旋转体的表面积公式的推导方法是不一样的.(3)球的表面积恰好是球的大圆(过球心的平面截球面所得的圆)面积的4倍.【课堂检测】1.直径为 6 的球的表面积和体积分别是( )A .36π,144πB .36π,36πC .144π,36πD .144π,144π解析:选 B .球的半径为 3,表面积 S =4π·32=36π,体积 V =43π·33=36π.2.一个正方体的表面积与一个球的表面积相等,那么它们的体积比是( ) A.6π6 B.π2C.2π2D.3π2π解析:选 A .设正方体棱长为 a ,球半径为 R ,由 6a 2=4πR 2 得a R =2π3,所以V 1V 2=a 343πR 3=34π⎝ ⎛⎭⎪⎫2π33=6π6. 3.若两球的体积之和是 12π,经过两球球心的截面圆周长之和为 6π,则两球的半径之差为( )A .1B .213 / 13C .3D .4解析:选 A .设两球的半径分别为 R ,r (R >r ),则由题意得⎩⎪⎨⎪⎧4π3R 3+4π3r 3=12π,2πR +2πr =6π,解得⎩⎨⎧R =2,r =1.故 R -r =1. 4.已知棱长为 2 的正方体的体积与球 O 的体积相等,则球 O 的半径为________.解析:设球 O 的半径为 r ,则43πr 3=23,解得 r =36π. 答案:36π5.已知过球面上 A ,B ,C 三点的截面和球心的距离为球半径的一半,且 AB =BC =CA =2,求球的表面积.解:设截面圆心为O ′,球心为 O ,连接 O ′A ,OA ,OO ′,设球的半径为 R .因为O ′A =23×32×2=233.在 Rt △O ′OA 中,OA 2=O ′A 2+O ′O 2,所以 R 2=⎝ ⎛⎭⎪⎫2332+14R 2, 所以 R =43,所以 S 球=4πR 2=649π.。