工程测试技术
- 格式:doc
- 大小:30.00 KB
- 文档页数:4
机械工程测试技术什么是机械工程测试技术机械工程测试技术是指应用各种测试方法和设备对机械工程中的零部件、装配件和整机进行性能测试和可靠性评估的一种技术。
通过测试和评估,可以验证设计和制造的准确性,发现潜在的问题,并提供数据支持,以改进产品的质量和可靠性。
机械工程测试技术的重要性机械工程测试技术在产品研发和制造过程中起着重要作用。
它可以帮助工程师和设计师更好地了解产品的性能和可靠性,为产品的改进和优化提供有力的依据。
以下是机械工程测试技术的几个重要方面:性能测试性能测试是机械工程测试技术最基本的部分之一。
通过对机械零部件、装配件和整机性能的测试,可以评估产品在各种工作条件下的表现。
性能测试包括力学性能测试、疲劳寿命测试、耐久性测试等。
可靠性评估机械工程测试技术也包括对机械产品可靠性的评估。
通过对产品进行可靠性测试和评估,可以确定其在设计寿命内的可靠性水平,并验证是否满足使用要求。
可靠性评估通常包括可靠性试验、加速寿命试验等。
故障分析当机械产品发生故障时,机械工程测试技术可以帮助确定故障原因。
通过对故障产品的测试和分析,可以找到故障的根本原因,进而进行改进和修复,提高产品的可靠性和性能。
质量控制机械工程测试技术在产品的制造过程中也起到重要的作用。
通过对原材料、加工工艺和成品的测试,可以保证产品的质量符合设计要求。
质量控制包括原材料的测试、加工工艺的控制和成品的检验等。
机械工程测试技术的应用领域机械工程测试技术在各个领域都有广泛的应用。
以下是几个常见的应用领域:汽车工程机械工程测试技术在汽车工程领域有着广泛的应用。
通过对汽车零部件和整车性能的测试,可以评估汽车的安全性、操控性和舒适性,并提供数据支持,以改进汽车的设计和制造质量。
航空航天工程在航空航天工程中,机械工程测试技术用于对航空器和航天器的性能进行测试和评估。
通过对各种航空航天器的测试,可以确保其在各种极端条件下的可靠性和安全性。
动力机械机械工程测试技术也广泛应用于动力机械领域,如发动机、液压系统和传动系统等。
工程测试技术基础摘要:1.工程测试技术概述2.工程测试技术的基本原理3.工程测试技术的分类与应用4.工程测试技术的发展趋势正文:一、工程测试技术概述工程测试技术,顾名思义,是指在工程领域中对产品、设备、系统进行检测与测试的一门技术。
其目的是为了确保这些产品、设备、系统在实际应用中能够达到预期的性能、安全和可靠性要求。
工程测试技术在我国各个领域的工程项目中扮演着举足轻重的角色,如航空航天、电子信息、机械制造、能源化工等。
二、工程测试技术的基本原理工程测试技术的基本原理主要包括以下几个方面:1.测试信号与被测对象的相互作用原理:通过测试信号与被测对象之间的相互作用,获取被测对象的响应信息,从而分析和评估被测对象的性能和状态。
2.测试数据的采集与处理原理:测试数据的采集是指通过传感器、仪器等工具将被测对象的响应信息转换为可处理的电信号或其他形式的信息。
测试数据的处理是指对采集到的数据进行分析、处理和解释,以便得到有关被测对象的性能和状态的有用信息。
3.测试结果的评价与分析原理:通过对测试数据的分析和评价,判断被测对象是否满足预期的性能、安全和可靠性要求。
如果被测对象存在问题,还需要分析问题原因,并提出改进措施。
三、工程测试技术的分类与应用根据被测对象和测试目的的不同,工程测试技术可分为以下几类:1.性能测试:主要用于检测产品、设备、系统的性能指标,如速度、精度、稳定性等。
例如,电子产品的性能测试、汽车发动机的性能测试等。
2.安全测试:主要用于评估产品、设备、系统的安全性能,如防爆、防火、防辐射等。
例如,压力容器的安全测试、电梯的安全测试等。
3.可靠性测试:主要用于评估产品、设备、系统的可靠性能,如耐久性、稳定性、抗干扰性等。
例如,电子产品的可靠性测试、飞机发动机的可靠性测试等。
4.环境测试:主要用于检测产品、设备、系统在不同环境条件下的性能和状态。
例如,高温、低温、湿度、盐雾等环境条件下的测试。
四、工程测试技术的发展趋势随着科技的进步和工程领域的不断拓展,工程测试技术呈现出以下发展趋势:1.测试技术与计算机技术的融合:现代测试技术越来越多地依赖于计算机技术,如数据采集、数据处理、结果分析等,计算机技术为工程测试技术提供了更为强大的支持。
一、实验名称工程测试技术实验二、实验目的1. 熟悉工程测试技术的基本原理和方法;2. 掌握常用的测试仪器和设备的使用;3. 提高对工程测试结果的分析和判断能力;4. 培养团队合作和实际操作能力。
三、实验原理工程测试技术是利用各种测试仪器和设备,对工程实体或系统进行检测、测量和分析的技术。
通过实验,我们可以了解工程测试的基本原理和方法,以及如何运用这些技术解决实际问题。
四、实验仪器与设备1. 信号发生器2. 示波器3. 频率计4. 数字多用表5. 电阻箱6. 电容箱7. 电流表8. 电压表9. 万用表10. 实验平台五、实验内容1. 信号发生器与示波器联用实验(1)了解信号发生器和示波器的工作原理;(2)学会使用信号发生器和示波器;(3)观察不同信号波形的变化。
2. 频率计与信号发生器联用实验(1)了解频率计的工作原理;(2)学会使用频率计;(3)测量信号的频率。
3. 数字多用表与电阻箱联用实验(1)了解数字多用表的工作原理;(2)学会使用数字多用表;(3)测量电阻值。
4. 电容箱与示波器联用实验(1)了解电容箱的工作原理;(2)学会使用电容箱;(3)观察电容对信号的影响。
5. 电流表与电压表联用实验(1)了解电流表和电压表的工作原理;(2)学会使用电流表和电压表;(3)测量电路中的电流和电压。
6. 万用表与实验平台联用实验(1)了解万用表的工作原理;(2)学会使用万用表;(3)测量实验平台上的各种参数。
六、实验步骤1. 准备实验仪器和设备,连接电路;2. 根据实验要求,调整仪器和设备;3. 观察实验现象,记录数据;4. 分析实验结果,得出结论。
七、实验结果与分析1. 信号发生器与示波器联用实验:通过实验,观察到不同信号波形的变化,加深了对信号波形的理解;2. 频率计与信号发生器联用实验:成功测量了信号的频率,掌握了频率计的使用方法;3. 数字多用表与电阻箱联用实验:准确测量了电阻值,提高了数字多用表的使用技能;4. 电容箱与示波器联用实验:观察到了电容对信号的影响,加深了对电容的认识;5. 电流表与电压表联用实验:成功测量了电路中的电流和电压,掌握了电流表和电压表的使用方法;6. 万用表与实验平台联用实验:准确测量了实验平台上的各种参数,提高了万用表的使用技能。
通信系统工程测试技术介绍通信系统工程测试技术就像是通信世界的超级侦探。
你想啊,通信系统就像一个超级复杂的迷宫,各种线路、设备、信号在里面乱窜,要是没有测试技术这个厉害的侦探,那可就乱套啦。
这个测试技术就像是拿着放大镜和听诊器的医生,专门给通信系统看病。
它能把那些隐藏在深处的小毛病给揪出来。
比如说信号传输就像跑步比赛,有时候某个选手(信号)突然慢下来或者跑偏了,测试技术就能像敏锐的裁判一样发现问题所在。
而且哦,通信系统工程测试技术还是个魔法棒。
在通信这个大舞台上,各种设备和组件就像演员,测试技术一挥魔法棒,就能知道哪个演员表演得不好,是在装病(假故障)还是真的有问题。
它可以通过各种神奇的测试方法,像念咒语一样,准确判断出设备的性能是否达标。
有时候,通信系统里的信号干扰就像调皮的小恶魔,在那里捣乱。
测试技术呢,就像英勇的骑士,手持宝剑(专业的测试设备),去和这些小恶魔战斗,把干扰源给找出来,然后一举消灭。
再看信号的衰减,这就像水在管道里流动慢慢变少一样。
测试技术却能像神奇的水利专家,精确测量出每一段“水路”(传输路径)的损耗情况,还能想出办法来给信号“补水”(增强信号)。
测试技术对通信系统工程来说,那可是如同指南针对航海者一样重要。
要是没有它,通信工程就像一艘没有方向的船,在茫茫的信息海洋里乱撞。
而且,通信系统工程测试技术还是个超级挑剔的美食家。
它会仔细品尝通信系统这个大餐里的每一道菜(各个部分),从信号的质量到设备的稳定性,任何一点不完美都逃不过它的味蕾(测试工具)。
在这个飞速发展的通信时代,测试技术就像火箭的助推器。
它推动着通信系统不断完善,让我们能畅快地刷视频、打电话、上网冲浪。
如果把通信系统比作一个巨大的交响乐团,那测试技术就是指挥家,确保每个乐手(设备和信号)都能准确演奏(传输)。
它还像一个神秘的宝藏猎人,在通信系统这个大宝藏堆里挖掘出隐藏的问题和优化的潜力。
总之,通信系统工程测试技术是一个充满趣味和神秘色彩,又无比重要的存在。
机械工程测试技术机械工程测试技术是机械工程领域中至关重要的一部分。
它涵盖了一系列测试方法和技术,用于评估机械设备和系统的性能、可靠性以及对各种工况的适应能力。
这些测试技术可以帮助工程师们了解机械设备的运行状态,评估其是否符合设计要求,并为改进设计提供数据支持。
机械工程测试技术是一门复杂而广泛的学科,涵盖了许多不同的测试方法和技术。
其中一种常见的测试技术是静态和动态测试。
静态测试用于评估机械设备在静止状态下的性能指标,比如强度、刚度和耐久性等。
而动态测试则是通过对机械设备进行振动测试,评估其在运动或振动条件下的性能指标。
除了静态和动态测试,机械工程测试技术还包括温度测试、压力测试、流量测试等。
温度测试用于评估机械设备在不同温度条件下的工作性能,以及其是否能够在极端温度环境下正常运行。
压力测试则是用来评估机械设备在不同压力条件下的工作性能和安全性。
流量测试则是用来评估机械设备在不同流量条件下的工作性能和效率。
机械工程测试技术还可以应用于机械设备的寿命测试。
寿命测试是通过对机械设备进行长时间的运行测试,以模拟其在实际使用条件下的寿命。
通过寿命测试,可以评估机械设备的可靠性和耐久性,并为改善设计和延长设备寿命提供参考。
在机械工程测试技术中,数据记录和分析也是非常重要的一环。
通过合适的数据记录和分析方法,可以对测试结果进行定量分析,获取更准确、可靠的数据。
这些数据可以帮助工程师们深入了解机械设备的性能特点,找出潜在的问题,并提出改进方案。
除了上述提到的测试技术,还有一些新兴的测试技术在机械工程领域得到了广泛应用。
例如,红外热像仪技术可以用于检测机械设备的热量分布情况,帮助工程师们了解机械设备的热量传递机制和热量损失情况。
声发射检测技术可以用于监测机械设备中的微小裂纹和缺陷,帮助工程师们及时修复并避免潜在故障。
总的来说,机械工程测试技术对于保障机械设备的性能、可靠性和安全性具有重要意义。
通过合理使用不同的测试方法和技术,可以全面评估机械设备的性能指标,提供数据支持和理论依据,为工程师们改进设计、提高机械设备的生产效率和降低故障风险提供重要参考。
工程测试技术(第二版)孔德仁课后习题答案1、欲使测量结果具有普遍科学意义的条件是什么?答:①用来做比较的标准必须是精确已知的,得到公认的;②进行比较的测量系统必须是工作稳定的,经得起检验的。
2、非电量电测法的基本思想是什么?答:基本思想:首先要将输入物理量转换为电量,然后再进行必要的调节、转换、运算,最后以适当的形式输出。
3、什么是国际单位制?其基本量及其单位是什么?答:国际单位制是国际计量会议为了统一各国的计量单位而建立的统一国际单位制,简称SI,SI制由SI单位和SI单位的倍数单位组成。
基本量为长度、质量、时间、电流强度、热力学温度、发光强度,其单位分别为米、千克、秒、安培、开尔文、坎德拉、摩尔。
4、一般测量系统的组成分几个环节?分别说明其作用?答:一般测量系统的组成分为传感器、信号调理和测量电路、指示仪器、记录仪器、数据处理仪器及打印机等外部设备。
传感器是整个测试系统实现测试与自动控制的首要关键环节,作用是将被测非电量转换成便于放大、记录的电量;中间变换(信号调理)与测量电路依测量任务的不同而有很大的伸缩性,在简单的测量中可完全省略,将传感器的输出直接进行显示或记录;信号的转换(放大、滤波、调制和解调);显示和记录仪器的作用是将中间变换与测量电路出来的电压或电流信号不失真地显示和记录出来;数据处理仪器、打印机、绘图仪是上述测试系统的延伸部分,它们能对测试系统输出的信号作进一步处理,以便使所需的信号更为明确。
5、举例说明直接测量和间接测量的主要区别是什么?答:无需经过函数关系的计算,直接通过测量仪器得到被测量值的测量为直接测量,可分为直接比较和间接比较两种。
直接将被测量和标准量进行比较的测量方法称为直接比较;利用仪器仪表把原始形态的待测物理量的变化变换成与之保持已知函数关系的另一种物理量的变化,并以人的感官所能接收的形式,在测量系统的输出端显示出来,弹簧测力。
间接测量是在直接测量的基础上,根据已知的函数关系,计算出所要测量的物理量的大小。
工程测试技术试题及答案章节测试题第一章信号及其描述(一)填空题1、测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。
这些物理量就是,其中目前应用最广泛的是电信号。
2、信号的时域描述,以 $ 为独立变量;而信号的频域描述,以为独立变量。
3、周期信号的频谱具有三个特点:,,。
4、非周期信号包括信号和РРРРРРРРР 信号。
5、描述随机信号的时域特征参数有、、。
6、对信号的双边谱而言,实频谱(幅频谱)总是对称,虚频谱(相频谱)总是对称。
(二)判断对错题(用√或×表示)1、各态历经随机过程一定是平稳随机过程。
()2、信号的时域描述与频域描述包含相同的信息量。
()3、非周期信号的频谱一定是连续的。
()4、非周期信号幅频谱与周期信号幅值谱的量纲一样。
()5、随机信号的频域描述为功在sdfs 率谱。
()(三)简答和计算题1、求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。
2、求正弦信号)sin()(0?ω+=t x t x 的均值x μ,均方值2x ψ,和概率密度函数p(x)。
3、求指数函数)0,0()(≥>=-t a Aet x at的频谱。
4、求被截断的余弦函数??≥<=Tt T t t t x ||0||cos )(0ω的傅立叶变换。
5、求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e t x atω的频谱。
第二章测试装置的基本特性(一)填空题1、某一阶系统的频率响应函数为121)(+=ωωj j H ,输入信号2sin)(tt x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。
2、试求传递函数分别为5.05.35.1+s 和2224.141nn n s s ωωω++的两个环节串联后组成的系统的总灵敏度。
3、为了获得测试信号的频谱,常用的信号分析方法有、和。
4、当测试系统的输出)(t y 与输入)(t x 之间的关系为)()(00t t x A t y -=时,该系统能实现测试。
机械工程测试技术概述1. 测试技术基本原理测试技术是通过对各种物理量进行测量、转换和显示,以实现对机械系统或设备性能和状态的评估和监控。
测试技术的基本原理包括:(1) 测量原理:通过传感器将待测物理量转换为电信号或光信号,以便进行测量和分析。
(2) 转换原理:利用各种转换器将电信号或光信号转换为便于处理的信号形式,如电压、电流、频率等。
(3) 显示原理:通过各种显示设备将测量结果以图形、数字或图表的形式展示出来,以便进行观察和分析。
2. 传感器与测试系统传感器是测试技术中的核心部件,用于将待测物理量转换为电信号或光信号。
常见的传感器有压力传感器、温度传感器、位移传感器、速度传感器等。
测试系统是将传感器与其他辅助设备(如放大器、滤波器、模数转换器等)组合在一起,以实现对各种物理量的测量和记录。
3. 信号处理与分析在测试过程中,需要对测量得到的信号进行处理和分析,以提取有用的信息。
信号处理技术包括滤波、放大、采样、数字化等,而信号分析技术则包括时域分析、频域分析、波形分析等。
这些处理和分析技术有助于提高测量的准确性和可靠性。
4. 测试数据处理与显示测量得到的数据需要进行处理和显示,以便进行观察和分析。
数据处理技术包括数据清洗、数据变换、数据拟合等,而数据显示技术则包括图表显示、数字显示、曲线显示等。
这些技术和设备有助于提高测量的直观性和便利性。
5. 典型机械量测试机械工程中需要测量的典型机械量包括压力、温度、位移、速度、加速度等。
对于这些量的测量,需要使用相应的传感器和测试系统,并采用适当的信号处理和分析技术。
例如,对于压力测试,需要使用压力传感器和相应的测试系统,测量液体或气体在单位面积上所受垂直作用力的大小的物理量程力;对于温度测试,需要使用温度传感器和相应的测试系统,测量物体的冷热程度;对于位移测试,需要使用位移传感器和相应的测试系统,测量机械部件的移动距离;对于速度和加速度测试,需要使用相应的传感器和测试系统,测量机械部件的运动速度和加速度。
1.测试系统由传感器、中间变换装置和显示记录装置三部分组成。
2.传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成.3.新号分类:分类方法1是考虑信号沿时间轴演变的特性所作的一种分类。
根据这种时域分类法可定义两大类信号:确定性信号和随机信号。
确定性信号分为周期信号和非周期信号。
周期信号一般又分为正余弦信号、多谐复合信号、和伪随机信号。
非周期信号又可分成准周期信号和瞬态信号两类。
随机信号又可分成两大类:平稳随机和非平稳随机信号。
4.测量误差:误差E是指示值与真值或准确值的差:E=Xm-X Xm-指示值;X-真值或准确值。
静态误差:定义:用来确定时不变测量值的线性测量仪器,其传递特性为一常数。
而相应的非线性测量仪器的输入——输出关系是用代数方程或超越方程来描述的。
因而所产生的误差一般仅取决于测量值大小而其本身不是时间的函数。
这种误差称静态误差。
动态误差:定义:在测量时变物理量时,要用微分方程来描述输入——输出关系。
此时产生的误差不仅取决于测量值的大小,而且还取决于测量值的时间过程。
将这种误差称动态误差。
5.6.测量系统的五种干扰:一、机械干扰二、湿度及化学干扰三、热干扰四、固有噪声干扰五、电、磁噪声干扰7.电阻应变式传感器--应变片电阻应变片工作原理是基于金属导体的应变效应,即金属导体在外力作用下发生机械变形时,其电阻值随着所受机械变形(伸长或缩短)的变化而发生变化象。
8.电容式传感器变换原理:将被测量的变化转化为电容量变化两平行极板组成的电容器,它的电容量为:δ、A或ε发生变化时,都会引起电容的变化。
9.电感式传感器的组成:线圈,铁心和衔铁. 10.压电式传感器:1.变换原理:压电效应某些物质,如石英,受到外力作用时,不仅几何尺寸会发生变化,而且内部会被极化,表面产生电荷;当外力去掉时,又重新回到原来的状态,这种现象称为压电效应。
压电传感器:一种有源传感器,亦即发电型传感器。
它利用某些材料的压电效应,这些材料在受到外力的作用时,在材料的某些表面上产生电荷。
分类:单晶压电晶体,如石英、罗歇尔盐(四水酒石酸钾钠)、硫酸锂、磷酸二氢铵等;多晶压电陶瓷,如极化的铁电陶瓷(钛酸钡)、锆钛酸铅等;某些高分子压电薄膜.11.霍尔效应:12.热电偶区与热皿电阻:13.三种光电效应:光电导效应,光生伏特效应,光电磁效应.14第三节光栅传感器一、光栅的类型和结构计量光栅可分为透射式光栅和反射式光栅两大类,均由光源、光栅副、光敏元件三大部分组成。
计量光栅按形状又可分为长光栅和圆光栅。
光栅的外形及结构尺身尺身安装孔防尘保护罩的内部为长磁栅反射式扫描头(与移动部件固定)扫描头安装孔可移动电缆扫描头(与移动部件固定)光栅尺莫尔条纹的光学放大作用在透射式直线光栅中,把主光栅与指示光栅的刻线面相对叠合在一起,中间留有很小的间隙,并使两者的栅线保持很小的夹角θ。
在两光栅的刻线重合处,光从缝隙透过,形成亮带;在两光栅刻线的错开处,由于相互挡光作用而形成暗带。
莫尔条纹光学放大作用举例有一直线光栅,每毫米刻线数为50,主光栅与指示光栅的夹角θ=1.8︒,则:分辨力∆=栅距W =1mm/50=0.02mm=20μm (由于栅距很小,因此无法观察光强的变化)莫尔条纹的宽度是栅距的32倍:L≈W/θ= 0.02mm/(1.8︒*3.14/180 )= 0.02mm/0.0314 = 0.637mm由于较大,因此可以用小面积的光电池“观察”莫尔条纹光强的变化。
15光纤的结构光纤紧套件加强构件塑料护套涂敷层纤芯包层16 CCDCCD全称电荷耦合器件,它具备光电转换、信息存贮和传输等功能,具有集成度高、功耗小、分辨力高、动态范围大等优点。
CCD 图像传感器被广泛应用于生活、天文、医疗、电视、传真、通信以及工业检测和自动控制系统。
一)CCD的基本工作原理一个完整的CCD器件由光敏元、转移栅、移位寄存器及一些辅助输入、输出电路组成。
CCD工作时,在设定的积分时间内,光敏元对光信号进行取样,将光的强弱转换为各光敏元的电荷量。
取样结束后,各光敏元的电荷在转移栅信号驱动下,转移到CCD 内部的移位寄存器相应单元中。
移位寄存器在驱动时钟的作用下,将信号电荷顺次转移到输出端。
输出信号可接到示波器、图象显示器或其他信号存储、处理设备中,可对信号再现或进行存储处理。
(三)CCD的基本特性参数CCD的基本特性参数有:光谱响应、动态范围、信噪比、CCD芯片尺寸等。
在CCD像素数目相同的条件下,像素点大的CCD芯片可以获得更好的拍摄效果。
大的像素点有更好的电荷存储能力,因此可提高动态范围及其他指标。
CCD数码照相机数码相机简称DC,它采用CCD作为光电转换器件,将被摄物体的图像以数字形式记录在存储器中。
数码相机从外观看,也有光学镜头、取景器、对焦系统、光圈、内置电子闪光灯等,但比传统相机多了液晶显示器(LCD),内部更有本质的区别,其快门结构也大不相同。
CMOS图像传感器CMOS图像传感器是采用互补金属-氧化物-半导体工艺制作的另一类图像传感器,简称CMOS。
现在市售的视频摄像头多使用CMOS作为光电转换器件。
虽然目前的CMOS图像传感器成像质量比CCD略低,但CMOS具有体积小、耗电量小、售价便宜的优点。
随着硅晶圆加工技术的进步,CMOS的各项技术指标有望超过CCD,它在图像传感器中的应用也将日趋广泛。
17抗干扰的12种方式(有效手段)简易数字滤波技术概念在工业中经常采用如下软件抗干扰技术:对存在干扰和随机误差的信号进行等精度快速多次采样,然后先舍去第一个采样值,再舍去若干个最大值和最小值,将余下的几个中间值求算术平均值,该算术平均值可以认为是排除了干扰后的较正确的结果,这种方法有时也被称为简易数字滤波。
1.采样开关(1)干簧继电器:干簧继电器主要由驱动线圈和干簧管组成,驱动线圈绕在干簧管外面。
当线圈通以额定电流后,干簧管中的两根常开弹簧片互相吸引而吸合。
它的耐压较高,额定电流较大,导通电阻接近零,驱动功率约几十毫瓦。
耗电较大、速度较慢是干簧继电器的主要缺点2.放大器从传感器来的信号有许多是毫伏级的弱信号,须经放大才能进行A/D转换。
系统对放大器的主要要求是:精度高、温度漂移小、共模抑制比高、频带宽至直流。
目前常用的放大器有以下几种型式:一种是高精度、低漂移的双极型放大器;另一种为隔离放大器,它带有光电隔离或变压器隔离的低漂移信号放大器,以及一个高隔离的DC/DC电源。
3.A/D转换器(ADC)放大器放大后的模拟信号必须进行A/D转换才能由计算机进行运算处理。
目前采用较多的A/D转换器有两大类:一类是并行A/D转换器,另一类是串行A/D转换器。
在并行A/D转换器中,又有逐位比较型和双积分型之分。
前者转换速度较快,有8位、12位、16位等规格。
位数越高,精度也越高,但价格也相应提高;后者转换速度较慢(每秒10次左右),但价格便宜。
常见的有3位半、4位半等规格。
4. D/A转换器(DAC)与接口电路计算机运算处理后的数字信号有时必须转换为模拟信号,才能用于工业生产的过程控制。
它的输入是计算机送出的数字量,它的输出是与数字量相对应的电压或电流。
如果在计算机与D/A之间插入多路光耦合器就能较好地防止工业控制设备干扰计算机的工作。
如果使用多路采样保持器,只要使用一只D/A即可进行多路D/A转换。
第四章:第三节几种电磁兼容控制技术抗电磁干扰技术有时又称为电磁兼容控制技术。
可采用破坏干扰途径和削弱检测系统电路对干扰的敏感性等方法,常用的抗干扰措施有屏蔽、接地、浮置、滤波、光电隔离等技术。
一、屏蔽技术利用金属材料制成容器,将需要防护的电路包围在其中,可以防止电场或磁场耦合干扰的方法称为屏蔽。
屏蔽可分为静电屏蔽、低频磁屏蔽和电磁屏蔽等几种。
根据不同的对象,使用不同的屏蔽方式。
1.静电屏蔽静电屏蔽是用铜或铝等导电性良好的金属为材料制作成封闭的金属容器,并与地线连接,把需要屏蔽的电路置于其中,使外部干扰电场的电力场不影响其内部的电路,反之,内部电路产生的电力线也无法影响外电路。
静电屏蔽的容器器壁上允许有较小的孔洞(作为引线孔或调试孔)它对屏蔽的影响不大。
2.低频磁屏蔽低频磁屏蔽是用来隔离低频(主要指50Hz)磁场和固定磁场(也称静磁场,其幅度、方向不随时间变化,如永久磁铁产生的磁场)耦合干扰的有效措施。
静电屏蔽线或静电屏蔽盒对低频磁场不起隔离作用。
必须采用高导磁材料作屏蔽层,以便让低频干扰磁力线只从磁阻很小的磁屏蔽层上通过,使低频磁屏蔽层内部的电路免受低频磁场耦合干扰的影响。
有时还将屏蔽线穿在接地的铁质蛇皮管或普通铁管内,同时达到静电屏蔽和低频屏蔽的目的。
2.低频磁屏蔽低频磁屏蔽是用来隔离低频(主要指50Hz)磁场和固定磁场(也称静磁场,其幅度、方向不随时间变化,如永久磁铁产生的磁场)耦合干扰的有效措施。
静电屏蔽线或静电屏蔽盒对低频磁场不起隔离作用。
必须采用高导磁材料作屏蔽层,以便让低频干扰磁力线只从磁阻很小的磁屏蔽层上通过,使低频磁屏蔽层内部的电路免受低频磁场耦合干扰的影响。
有时还将屏蔽线穿在接地的铁质蛇皮管或普通铁管内,同时达到静电屏蔽和低频屏蔽的目的。
3.电磁屏蔽电磁屏蔽是采用导电良好的金属材料做成屏蔽罩、屏蔽盒等不同的外形,将被保护的电路包围在其中。
它屏蔽的干扰对象是高频(40kHz以上)磁场。
干扰源产生的高频磁场遇到导电良好的电磁屏蔽层时,就在其外表面感应出同频率的电涡流,从而消耗了高频干扰源磁场的能量。
其次,电涡流也将产生一个新的磁场,抵消了一部分干扰磁场的能量,从而使电磁屏蔽层内部的电路免受高频干扰磁场的影响。
二、接地技术(一)地线的种类接地起源于强电技术,它的本意是接大地,主要着眼于安全。
这种地线也称为“保安地线”。
它的接地电阻值必须小于规定的数值。
对于仪器、通讯、计算机等电子技术来说,“地线”多是指电信号的基准电位,也称为“公共参考端”,它除了作为各级电路的电流通道之外,还是保证电路工作稳定、抑制干扰的重要环节。
它可以接大地,也可以与大地隔绝。
接大地与防静电的关系人在工频电场中工作时,身体可能感应出几十伏以上的电压;当人在地板上行走时,也可能因摩擦而带上几百伏以上的静电。
因此在焊接集成电路时,人体必须良好地接大地,以保证集成电路的CMOS输入端不致被静电击穿。
人体接地的方法之一是带上接地的防静电手腕带。
信号地线分类1.模拟信号地线模拟信号地线是模拟信号的零信号电位公共线。
因为模拟信号电压多数情况下均较弱、易受干扰,易形成级间不希望的反馈,所以模拟信号地线的横截面积应尽量大些。
2.数字模拟地线数字信号地线是数字信号的零电平公共线。
由于数字信号处于脉冲工作状态,动态脉冲电流在接地阻抗上产生的压降往往成为微弱模拟信号的干扰源,为了避免数字信号对模拟信号的干扰,两者的地线应分别设置为宜,否则会严重干扰模拟信号的测量结果。