基因工程论文
- 格式:docx
- 大小:295.69 KB
- 文档页数:23
基因工程作文篇一《基因工程:一场微观世界的奇妙冒险》基因工程这事儿,听起来就特别高大上,但其实就像一场奇妙的微观世界冒险。
我有一次去参观科学博物馆,在那个基因工程的展区,真的是大开眼界。
那里摆着很多双螺旋结构的模型,一大一小的模型组合起来看起来就像神奇的魔法组合。
解说员给我们讲,这基因啊,就像藏着生命密码的小匣子。
你看那些五颜六色的小球和线条,仿佛是微观世界的建筑蓝图。
我就凑到跟前,眼睛瞪得大大的,想把那结构里的秘密都给看穿。
这基因工程呢,就像是一群超级小的建筑工人,拿着微观世界的工具,在基因这小匣子里修修改改。
比如说,科学家们想让一种植物能抗虫。
他们就跑到那植物的基因里去找密码,找到对应的基因片段,然后像换个零件似的,把抗虫的基因给装进去。
这就好像给植物穿上了一层铠甲,那些虫子咬啊咬,就只能灰溜溜地走了。
在博物馆的展示屏上,还放着转基因农作物的对比图。
没有改造基因的农作物,被虫子啃得千疮百孔,就像破了很多洞的布袋子。
而转基因的农作物呢,光滑饱满,精神得很。
就像一个瘦弱的孩子,通过特别的训练,变成了威猛的小战士。
而且这个基因工程不光在植物身上有这么神奇的效果,在动物身上也能搞出大动静。
我看到介绍说有人想用基因工程来治疗某些疾病。
就像给身体里坏掉的机器打补丁,把好的基因送到身体里,把病给赶跑。
那次博物馆之行就像一把钥匙,打开了我对基因工程好奇的大门。
我就像个懵懂的冒险家,才刚刚踏入这个微观世界的奇妙领地,这基因工程充满着无限的可能和惊喜。
篇二《基因工程:我家的基因工程小故事》基因工程其实离咱们的生活没有那么远,我就实实在在地感受过一回,是跟我家养的花有关。
我这人特别喜欢养些花花草草的,家里阳台上种满了。
可有一盆小兰花,就总是病恹恹的。
叶子发黄,花朵也不精神,总之看起来就是一副半死不活的样子。
我成天在它旁边转来转去,浇水施肥,可啥法子都不管用。
后来我一个学植物学的朋友来我家,他一看这花,就跟我说这小兰花可能是在抗虫方面先天不足,所以总是被虫子或者病菌给欺负。
基因工程篇一基因工程:我的基因里住着个吃货?要说基因工程,其实离咱们老百姓的生活还挺远,至少比隔壁老王家的狗子离咱们远。
不过,一想到这玩意儿能改基因,我就忍不住琢磨,我是不是能改改我的基因,让我少吃点?毕竟,我妈从小就说我基因里住着个吃货,这几年更是验证了这个说法。
就拿上周来说吧,我本来打算一周瘦五斤,结果呢?计划赶不上变化,变化赶不上我的食欲。
那天中午,单位食堂做了糖醋排骨,那香味儿,啧啧,隔着老远都能闻到,直往我鼻子里钻。
我本来想着就吃一小块,意思意思得了,谁知道,一筷子下去,就再也停不下来了。
那排骨,外酥里嫩,酸甜可口,简直是人间美味!我一口气吃了三大块,还偷偷夹了两块鸡腿,最后还喝了两碗米饭汤,那叫一个满足。
别说瘦五斤了,当天晚上体重蹭蹭往上涨,我直接放弃了减肥计划,躺床上默默地反思人生。
后来我越想越难受,这基因到底有多强大啊,居然能控制我的食欲!要是能用基因工程技术改改我的基因,让我对高热量食物没那么大的兴趣,那该多好啊!想想以后能轻松减肥,不用再为吃太多而自责,人生都变得轻松快乐了。
篇二基因工程:超级草莓和我的纠结基因工程这玩意儿,听着挺高大上的,但其实它就在我们身边。
比如,超市里那些又大又红的草莓,大部分都是基因改良的结果。
我前几天去超市买草莓,就特意挑了几个长得特别大的,回家一尝,哇塞,又甜又多汁,简直比小时候吃过的草莓好吃一百倍!但是,我心里又有点纠结。
这些超级草莓,长得这么好,产量这么高,是不是用了什么特殊的技术?会不会对人体有什么不好的影响?虽然超市里卖的草莓都经过了检测,但总觉得心里没底,毕竟基因这玩意儿,太神秘了。
那天晚上,我还在想这个问题,突然想起我一个在农业大学读研究生的表弟,他好像就在研究基因工程方面的课题。
我赶紧给他打电话,问了他好多问题,从超级草莓的培育过程,到基因工程的安全性,他都给我耐心讲解。
听完他的解释,我心里踏实了不少。
他告诉我,现在基因工程技术已经很成熟了,只要科学规范操作,安全性是有保障的。
基因工程的利与弊刘建20101103805内蒙古师范大学生命科学与技术学院生物科学(汉班)呼和浩特010022摘要基因工程对于人类的利弊一直是个争议的问题,主要是这项技术创造出原本自然界不存在的重组基因。
但它为医药界带来新希望,在农业上提高产量改良作物,也可对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。
但它亦引起很大的忧虑与关切。
当此科技由严谨的实验室转移至大规模医药应用或商业生产时,我们如何评估它的安全性?此项技术是否可能因为人为失控,反而危害人类健康并破坏大自然生态平衡?关键词:基因工程转基因道德伦理正文生物学家早在一百多年前就知道,生物的表征遗传自其亲代。
生物细胞的细胞核,含有染色体,其组成分为DNA。
DNA含有四种碱基--腺嘌呤(adenine,),胸腺嘧啶(thymine,),胞嘧啶(cytosine,)和鸟嘌呤(guanine,(它们分别简称A、T、C、G)。
这些碱基在DNA 中看似杂乱无章,但它们的排列顺序,正代表遗传讯息。
每三个碱基代表一种胺基酸的密码。
基因就是这些遗传密码的组合,亦即代表蛋白质的胺基酸序列。
每个基因含有启动控制区,以调控基因的表达。
基因工程技术(基因工程是一项很精密的尖端生物技术。
可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。
当某一基因进入另一种细胞,就会改变这个细胞的某种功能。
)在医药及农业上应用广泛。
这项尖端科技加上最近突破性的生殖科技,却引发人们极大的隐忧及争论。
观点:辨证地看待基因工程的利与弊基因工程对当今社会的发展功不可没。
一、基因工程是在对促进生物学的发展具有重要意义基因工程是在分子生物学、分子遗传学、微生物学、细胞工程等学科发展和研究成果的基础上诞生的,反过来也可促进现代生物学的发展。
生物界是通过长期的进化发展而来的,因而通过基因工程手段,不仅可以阐明生命发生的现象和规律,揭示重要基因功能以及重要性状形成的分子机制,还能模拟自然界生物进化历程,更进一步丰富和完善生物进化的理论,促进生物学研究的全面发展。
基因工程论文基因工程的概述和应用进展摘要:基因工程是一种利用转基因技术对生物体的基因进行改造和编辑的科学领域。
本论文旨在阐述基因工程的原理、方法和工具,并重点探讨其在农业、医学和环境领域的应用。
基因工程为人类提供了改良农作物、研发新药和解决环境问题的新途径,同时也引发了一系列伦理和安全问题。
本文将综述基因工程的优势和挑战,并对其未来发展进行展望。
一、引言基因工程作为一项新兴的科学技术,已经在农业、医学和环境领域取得了显著的进展。
通过改良生物体的基因,基因工程可以实现对生物体性状的控制和调整,为人类社会带来了巨大的潜力和机遇。
二、基因工程的原理和方法基因工程的核心在于对生物体的基因进行编辑和改造。
其中,基因克隆、基因转染和基因编辑是主要的基因工程技术。
基因克隆通过将感兴趣的基因序列插入到载体中,如质粒,然后将其导入宿主细胞中,实现对外源基因的操控。
基因转染则是将外源基因转入目标细胞或生物体中,以达到改变其性状的目的。
基因编辑则通过使用诸如CRISPR-Cas9等技术,直接改变生物体的基因序列,以实现对特定基因的编辑、删除或替换。
三、基因工程在农业领域的应用基因工程在农业领域的应用主要集中在农作物的改良上。
通过转基因技术,科学家们能够改良作物的抗病性、耐逆性和产量等性状,实现对农作物整体性状的优化和提升。
此外,基因工程还可以解决传统农业面临的问题,如除草剂抗性、杂草控制和育种加速等。
四、基因工程在医学领域的应用基因工程在医学领域的应用主要涉及基因治疗和新药开发。
通过改变人体细胞的基因序列,基因治疗可以治疗一些难治性疾病,如癌症和遗传性疾病。
同时,基因工程也为新药的开发提供了新的途径,通过对疾病相关基因的研究和操控,研发出针对特定疾病的靶向药物。
五、基因工程在环境领域的应用基因工程在环境领域的应用主要涉及生物修复和生物能源开发。
基因工程可以改造微生物,使其具备降解有害污染物的能力,从而用于生物修复。
此外,基因工程还可以改造植物和微生物,使其能够高效生产生物燃料,为可再生能源的开发做出贡献。
基因工程的探索篇一:基因工程的探索说基因工程,感觉挺高大上的,像科幻电影里才有的事儿。
其实吧,离咱们老百姓的生活,也没那么遥远。
就说我前段时间,我家的那盆绿萝,它居然……不绿了!原本那盆绿萝,是我妈从单位抱回来的,说是别人不要的,叶子蔫儿吧唧的,可怜巴巴的。
我妈是个心软的人,硬是给它修剪枝叶,换了盆,还天天唠叨着浇水施肥。
那绿萝还真争气,没几个月就生龙活虎了,叶子油亮油亮的,爬满了整个花架。
然后有一天,我发现其中几根藤,叶子是黄的,而且黄得不对劲,不是那种自然发黄,而是像……得了黄疸似的,那种病态的黄。
我寻思着是不是哪里不对劲,于是上网查了查,结果越查越懵。
什么缺铁、缺氮、病虫害……各种说法都有,弄得我一头雾水。
最后看到一个帖子,说什么可能是基因突变了,培育出了新品种。
我当时就想,我家的绿萝,它也开始玩基因工程了?是不是我妈浇水浇多了,把它的基因给激活了?这难道是新时代的花草培育方式?想想我妈天天对着它念叨的那些话,感觉它像是被催眠了一样,潜移默化地改变了自己的基因?!当然,这只是我自己的胡思乱想,科学解释肯定没这么离谱。
不过,这件事让我对基因工程有了更直观的感受,不再是那种高不可攀、遥不可及的东西了。
小小的绿萝都能发生基因变化,那更复杂的生物呢?想想都觉得神奇。
篇二:基因工程的探索我那盆绿萝的“基因突变”事件,让我对基因工程有了初步的了解,但还是很肤浅,毕竟只是我自己的瞎琢磨。
后来,我看了几部纪录片,这才算真正开了眼界。
纪录片里讲了很多基因工程的应用,比如改良农作物,提高产量和抗病性;还有治疗遗传疾病,让很多原本绝望的病人看到了希望;甚至还有克隆技术,虽然争议很大,但也展现了基因工程强大的潜力。
其中一个案例,我印象特别深刻。
讲的是一个患有某种罕见遗传病的小女孩,通过基因疗法,病情得到了显著改善,可以像其他孩子一样上学玩耍。
看到小女孩的笑容,我心里说不出的感动。
我想,这就是基因工程的魅力吧,它能改变命运,让人们拥有更美好的生活。
基因工程在观赏植物花色育种中的应用(专家论文)随着科技的发展,基因工程技术在植物育种中发挥着越来越重要的作用。
其中,基因工程技术在观赏植物花色育种中的应用,不仅可以为花卉产业带来新的技术突破,同时也能够满足人们对于观赏植物颜色的需求。
本文将从什么是基因工程、基因工程在植物育种中的应用、基因工程在观赏植物花色育种中的应用等方面进行探讨。
一、基因工程的概念和技术基因工程是通过对生物体基因的重组或改造来达到预期目的的一种技术。
该技术诞生于1970年代,是现代生物技术的重要组成部分。
基因工程技术有许多基本方法,例如在宿主细胞中利用质粒或病毒等载体将目的基因导入宿主细胞中,以达到修改宿主细胞基因或系统。
通过基因工程技术,可以改造生物体的性状,强化耐荫能力,改进品种增加产量等,对于农业、医疗健康等领域带来了重大的贡献。
二、基因工程在植物育种中的应用随着对植物生物学的深入研究,基因工程技术在植物育种中的应用也愈加广泛。
基因工程技术对植物育种所产生的积极影响主要体现在以下几个方面:1. 保护作物免遭病虫害的侵害。
基因工程技术可以通过将病虫害相关的基因改造成抵抗基因,从而改变作物本身的抗病抗虫性能;2. 优化果实品质。
基因工程技术可以促进果实发育和颜色变化,提高果实品质和口感;3. 改进目标植物的适应性。
基因工程技术可以为目标植物增加抵御环境压力的能力,提高适应严酷环境的能力;4. 通过改变花卉的色彩,改变其观赏价值。
基因工程技术可以改变花卉颜色,从而使花卉更加美观,并提高其观赏价值。
三、基因工程在观赏植物花色育种中的应用对于观赏植物来说,花色是一个非常重要的品质指标。
传统的育种方法主要依赖于人工授粉、选择等方式,而基因工程技术可以帮助人们更加精准地改变花卉的颜色,从而满足人们对于花卉色泽的不同需求。
具体来说,基因工程技术在观赏植物花色育种中的应用主要有以下几个方面:1. 改变花青素合成途径。
花青素是指一类能够产生蓝、紫色花朵的化合物。
基因工程论文五篇范文第一篇:基因工程论文基因工程科技又称基因拼接技术和DNA重组技术,以下是小编为大家准备的基因工程论文,希望对大家有帮助!基因工程论文:浅谈基因工程在农业生产中的应用摘要:基因工程在农业生产上已经被十分广泛地应用。
基因技术的突破,使科学家们得以传统育种专家难以想象的方式,改良动植物,大大提高了经济效益。
关键词:基因;应用基因在农业生产上的应用已经非常广泛,但其中的道理未必广为人知。
那么所谓基因到底是什么呢?它是控制生物性状的基本单位,记录着生物生殖繁衍的遗传信息。
并且通过修改基因能改变一个有机体的部分或全部特征。
它的作用主要是以转基因技术和基因克隆技为核心。
通过它们改良动植物的品种,从而大大提高经济效益。
那么下面我们就谈谈它们是怎样为人类服务的呢?一、转基因技术转基因技术就是按照人们预先设计的生物蓝图,把所需要的基因从一种生物的细胞提取出来,在体外进行“外科手术”,然后把所需要的基因导入另一种生物的细胞中,从而有目的地改造生物的遗传特性,创造出符合人类需要的新品种。
转基因技术能培养出多种快速生长的转基因鱼、转基因羊、产奶量高的转基因牛等,还能培育出抗旱、抗涝、抗盐碱、抗枯萎病和抗除草剂的转基因作物,还培育出抗虫作物,科学家将杀虫基因转入植物体内后,植物体内就能合成霉素蛋白,产生这种霉素蛋白基因的作物有烟草、马铃薯、番茄、棉花和水稻等,其中效益最大的是抗虫棉。
二、基因克隆技术“多莉的诞生”意味着人类可以利用动物的一个组织细胞,像翻录磁带或复印文件一样,大量生产出相同的生命体。
利用它可以拯救濒临灭迹的物种,或是复制一些优良品种等等。
然而在进一步细想克隆,却也着实让人深虑。
首先,若是无节制地“复制”某种物种,就会打破自然界的生态平衡,破坏优胜劣汰的自然法则,给自然界带来了混乱。
其次,从理论上说“克隆”哺乳动物的成功,即为“克隆”人类准备了前提条件,再经过技术的不断改善,毫无疑问,不久以后就能“克隆”出人。
试论基因工程论文2300字_试论基因工程毕业论文范文模板试论基因工程论文2300字(一):试论基因工程在林业生产中的应用论文摘要:近现代生物技术研究代表之一就是基因工程,基因工程在过去的近十年里发展迅速,林业上已经有二十多种树种应用进了转基因技术。
林业生产中应用进基因工程的方面包括增強植物的光合作用,提高植物对病害的抵御能力,培育抗除草剂作物,生物固氮等。
本文就以基因工程展开分析,并且对基因工程在林业生产中的应用加以论述,供参考。
关键词:基因工程;林业生产;应用基因工程是一种新的生物技术科学生物技术,基因工程在1970年代诞生,基因工程是以分子生物学和分子遗传学基础理论的研究工程,它涵盖了广泛的内容,可分为两种:传统生物技术和现代生物技术。
在过去的几千年里,酿造、制作酱料和育种技术已经被用于传统的生物技术。
近20年来,随着许多与生物技术相关的理论和技术的发展,特别是实验手段的发展,现代生物技术得到了发展,并被纳入了高科技领域。
基因工程是现代生物技术的代表,树木基因工程是通过适当的基因转移技术,引入有用的外源基因,获得转基因植物,最后进行树木遗传改良或相关的研究。
一、基因工程的发展历程基因工程正在最近十年的发展历程里,已经获得了大量的转基因植物,包括改变植物质量和适应能力的转基因植物和抗病虫害的转基因植物以及抗除草剂的转基因植物等。
大量的成功转基因材料已经进入了试验阶段,主要分布在美国、英国、比利时、荷兰等国家,其中中国也取得了一些重大成就。
一九八六年至一九九七期间,世界上已经有四十五个国家在六十多种植物上进行了二点五万株转基因植物的田间试验,仅仅在一九九六年至一九九七年这一年里就有一万例关于转基因植物的报道,直到一九九七年年底,在世界范围内,已经有12种作物的4 8种转基因作物产品被允许进入商业化生产,转基因植物种植面积已经达到一千两百八十万公顷,其中美国就占了百分之六十的比例。
预计,全球转基因植物产品市场已从一九九六年的不足五亿美元增加到两千年的七十亿至一百亿美元。
2021有关基因工程的论文优秀范文参考范文 基因工程是以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。
本文提供几篇有关基因工程的论文优秀范文,供大家学习。
有关基因工程的论文一: [摘要]目的构建含有人纤维蛋白原基因的毕赤酵母表达系统,实现胞外高效分泌表达。
方法全基因合成人纤维蛋白原3个基因FGA、FGB、FGG,构建表达载体pGAPZαA-FGB-FGG-FGA-AOX1,线性化后电转化导入毕赤酵母菌株SMD1168H,抗性筛选获得阳性克隆。
发酵液经SDS-PAGE确定蛋白表达部位,ELISA检测目的蛋白表达量。
表达产物超滤浓缩后利用AKTA蛋白纯化系统进行分离纯化,Westernblot检测蛋白表达情况并对纯化产物进行生物学活性测定。
结果基因工程菌株摇瓶培养上清液表达量约15mg/L,生物学活性分析重组蛋白具有凝集活性。
结论成功获得了高效分泌表达重组人纤维蛋白原的毕赤酵母菌株,且分离纯化的蛋白具有生物凝集活性。
[关键词]重组人纤维蛋白原;毕赤酵母;分泌表达;分离纯化 目前世界卫生组织确认的凝血因子共13个,大多由肝脏产生,正常情况下,所有凝血因子都处于无活性状态,以无活性酶原形式存在,当某一凝血因子被激活后,可使许多凝血因子按一定的次序先后被激活,逐级放大,直到纤维蛋白形成,血液发生凝固。
纤维蛋白原(fibrinogen,Fg),即凝血因子Ι,是参与血液凝固的重要凝血因子,血浆中含量高达2000~4000mg/L[1],其分子量340kDa,由完全相同的2个亚基组成共价二聚体,每个亚基含有α(63.5kDa)、β(56kDa)、γ(47kDa)3条肽链[2],分别由4号染号体(4q28-30)上的3个独立的基因FGA、FGB、FGG编码形成,在肝脏中由独立的核糖体合成其前体蛋白,再经过内质网和高尔基体完成蛋白的组装,各肽链彼此通过二硫键相互连接形成Fg单体。
基因工程相关研究参考论文首先获得需要生产的蛋白质药物的目的基因,然后选择适宜的运载体(多以病毒)并与运载体结合形成重组DNA分子,再将重组DNA分子转入受体生物(动物或植物)内,从而得到生物反响器。
(3)实例:动物乳腺生物反响器。
操作大致过程为:获取目的基因→ 构建基因表达载体→显微注射导入哺乳动物受精卵中→形成胚胎→将胚胎送入母体动物→发育成转基因动物(只有在产下的雌性个体中,转入的基因才能表达)。
因为动物所有的体细胞都是由受精卵发育成的,故其乳腺细胞中含有重组基因并进行选择性表达,产生出抗凝血酶、血清白蛋白、生长激素等重要的医药产品。
4.蛋白质工程(prtein engineering)(1)概念:利用基因工程的技术,对天然蛋白质进行改造,以便获得具有理想生物学功能的蛋白质。
蛋白质工程可以创造新的、自然界不存在的蛋白质分子。
目前,蛋白质工程主要是改造现有的蛋白质,通过修改蛋白质中的氨基酸序列来改良蛋白质的结构和构象,提高蛋白质的活性、稳定性和产率。
也可以利用基因工程改造蛋白质。
如下方法:预期蛋白质功能→设计预期的蛋白质结构→推测应有氨基酸序列→找到对应的脱氧核苷酸序列(基因)。
(2)与基因工程的关系蛋白质工程是在基因工程的根底上开展起来的,是第二代基因工程。
基因工程的实质:将一种生物的基因转移到另一种生物体内,产生本不能产生的蛋白质,从而产生新性状。
原那么上只能生产自然界已存在的蛋白质。
蛋白质工程的目的:生产符合人们生活需要的并非自然界已存在的蛋白质。
二、基因工程的未来基因工程是一种新鲜的事物,也是一把“双刃剑”,人们对此会有不同的看法。
只要科学地、合理地加以利用,相信基因工程一定会使我们的生活更美好。
纲举目张理清结构基因工程的研究在动植物育种、人类疾病防治及生态保护方面取得了一定的成就,但科学家永不放弃研究,又致力于新的尝试,努力使基因工程为人类提供更大的帮助。
突破难点化解疑点1.分析说明基因工程应用研究的实质。
浅析基因工程技术的应用现状动物医学专业任课教师指导教师姓名摘要:基因工程作为一门理论性与实践性较强的学科,其方法与技术已经渗透到现代生命科学的各个分支领域,成为生命科学的一门核心技术。
基因工程包含许多独特的实验方法和技术,不仅内容丰富,涉及面广,实用性也强。
基因工程是通过DNA 重组技术, 获得具有特殊生物遗传性状和功能的遗传工具生物体, 基因工程技术广泛应用于农业、医学、食品工业等。
本文就基因工程的应用现状综合阐述。
关键词 : 基因工程; 应用现状0.前言基因工程技术是一项极为复杂的高新生物技术, 它利用现代遗传学与分子生物学的理论和方法, 按照人类所需, 用DNA 重组技术对生物基因组的结构和组成进行人为修饰或改造, 从而改变生物的结构和功能, 使之有效表达出人类所需要的蛋白质或人类有益的生物性状[1]。
基因工程从诞生至今, 仅有30 年的历史, 然而, 无论是在基础理论研究领域, 还是在生产实际应用方面, 都已取得了惊人的成绩。
首先,基因工程给生命科学自身的研究带来了深刻的变化。
目前科学家已完成了多种细胞器的基因组全序列测定工作。
其次, 基因工程具有广泛的应用价值, 能为工农业生产、医药卫生、环境保护开辟新途径。
1.基因工程1.1 概念基因工程( 又称DNA 重组技术、基因重组技术) , 是20 世纪70 年代初兴起的技术科学, 是用人工的方法将目的基因与载体进行DNA重组, 将DNA 重组体送入受体细胞, 使它在受体细胞内复制、转录、翻译, 获得目的基因的表达产物。
这种跨越天然物种屏障, 把来自任何生物的基因置于毫无亲缘关系的新的寄主生物细胞之中的能力, 是基因工程技术区别于其他技术的根本特征。
1.2 基因工程研究内容(1) 从复杂的生物有机体基因组中, 经过酶切消化或PCR 扩增等步骤, 分离出带有目的基因的DNA 片段。
(2) 在体外, 将带有目的基因的外源DNA 片段连接到能够自我复制并具有选择记号的载体分子上, 形成重组DNA分子。
(3)重组DNA 分子转移到适当的受体细胞, 并与之一起增殖。
(4) 从大量的细胞繁殖群体中, 筛选出获得了重组DNA 分子的受体细胞克隆。
(5) 从这些筛选出来受体细胞克隆, 提取出已经得到扩增的目的基因, 供进一步分析研究使用。
(6) 将目的基因克隆到表达载体上, 导入寄主细胞, 使之在新的遗传背景下实现功能表达, 产生出人类所需要的物质。
2.基因工程的广泛应用2.1 在农业上的应用2.1.1 抗除草剂的植物基因工程资料表明, 每年杂草造成的经济损失占农作物总产值的10%-20%左右尽管除草剂的使用, 对大规模机械化耕作, 减少劳力开支和提高量有极为重要的作用, 但一般除草剂的选择性较差, 即除了杀草以外, 还会将作物杀死。
现在利用生物技术, 将能抵抗除草剂的基因转移到植物中, 获得抗除草剂的植物, 如美国的孟山都公司将除草剂草甘磷的靶酶( EPSPS) 的cDNA 克隆转入油菜[2] , 目前, 已获得的抗除草剂作物有大豆、棉花、玉米、水稻和甜菜等20 多种。
2.1.2 抗虫的植物基因工程生物防治害虫的工作已经开展多年, 主要是利用苏云金杆菌中的毒蛋白( 结晶蛋白) 对害虫有毒害作用, 使用这些杆菌来控制害虫。
现在, 人们可以通过克隆这些毒蛋白的基因(Bt 基因) 并把这些基因转移到植物细胞中, 从而获得能抗虫的转基因植物。
目前, Bt 基因已被转入烟草、番茄、马铃薯、水稻、玉米及棉花等多种植物中。
1996 年转Bt 基因棉花在美国种植66 万hm2 经中国农科院棉花所引进在华北试种两年, 在多点表现突出, 在完全不喷杀虫剂的情况下, 单产仍然高于喷撒2- 3 次杀虫剂的中国推广棉花[3] , 显示出了控制棉铃虫的极好前景。
2.1.3 动物转基因育种动物基因工程研究主要集中在改良家畜、家禽的经济性状和通过转基因动物进行药物或蛋白质的生产等方面, 目前已取得了显著的成就, 先后培育出转基因猪、羊、牛和鱼等, 另一种转基因猪是带有人体基因的猪, 这种转基因猪客望能解决人体移植动物器官的遗体排斥问题。
随着动物基因工程技术的逐渐成熟和转人体血红蛋白的基因猪、转人体血清蛋白的基因山羊等的问世, 不仅能生产出大量人类所需的血红蛋白、白蛋白等药物而且为动物育种开辟了一条全新的途径。
2.2 在医学上的应用2.2.1 基因工程药物利用基因工程技术开发新型治疗药物是当前最活跃和发展最快的领域。
自1982 年世界第一个基因工程药物- - - 重组胰岛素投放市场以来, 基因工程药物就成为制药行业的一支奇兵, 每年平均有3- 4 个新药或疫苗问世, 开发成功的约50 个药品, 诸如人胰岛素、忍尿激酶、人生长激素、干扰素、激活剂、乙肝疫苗等广泛应用于治疗癌症、肝炎、发育不良、糖尿病和一些遗传病上, 在很多领域特别是疑难病症上, 起到了传统化学药物难以达到的作用[4, 5, 6]。
为治愈癌症正在研制的用单克隆抗体制成的“生物导弹”, 就是按照人类的设计, 把“生物导弹”发射出去, 精确的命中癌细胞, 并炸死癌细胞, 而不伤害健康的细胞, 比如专门用于肿瘤的“肿瘤基因导弹”等。
可见, 生物工程药物将成为21世纪药业的支柱。
而脱氧核糖核酸或者基因疫苗的问世, 变革了机体的免疫方式。
如今, 人们翘首关注困扰人类的艾滋病病毒疫苗的早日问世。
尽管目前诱变育种技术仍是改良微生物工业生产菌种的主要手段,但是基因工程技术在改良工业生产菌种方面已有成功的报道。
最常见的是将控制药物合成关键步骤的酶基因克隆,通过适当的载体转移到原生产菌中,以使控制限速步骤的酶水平,从而提高产量。
Malmberg等[7]构建了一种带有编码赖氨酸ε-氨基转移酶基因( lysine-ε-aminotranster-ase,LAT)这种控制Streptomyces clavuligerus生物合成头霉素C的限速步骤的关键酶的基因(lat)的高拷贝质粒,并转入这种头霉素产生菌,使LAT提高活力提高了4倍,在2 L发酵罐中产生头霉素的能力是原来的2倍,重组菌胞外LAT产物α-氨基己二酸的积累量也比原受体菌高。
伊维菌素( ivermectins)是一个市场很大的抗虫抗生素,其前体阿弗米丁(avermectins)的产生菌种的发酵液中有8个以上的组分,其中只有B1a组分才是制备伊维菌素的原料。
Ikeda等[8]经过近十年的努力,已将阿弗米丁的生物合成基因簇全部搞清,并经过诱变与DNA重组,获得了仅产阿弗米丁B2a单一组分和B1a、B2a组份的重组工程菌,这不仅大大提高了阿弗米丁有效组分的发酵效价,且给提取、精制、半合成等后处理工序带来了很大的便利。
可以预见,随着对各种工业生产的微生物药物生物合成途径的深入了解以及基因重组技术的不断进展,应用基因工程方法定向构建高产菌株的成功实例将越来越多。
在抗生素发酵过程中供氧往往是一个限制因素,充足的氧气供给是药物工业发酵稳定和提高产量,降低成本的关键。
传统的解决方法如增加通气量等对设备要求高,能量消耗大。
20世70年代末在专性好氧菌透明颤(Vitreoscilla)中发现了血红蛋白(VHb),它能促进氧气扩散到细胞末端氧化酶上。
于是人们想到了将其基因Vgb克隆到其它微生物中,以促进微生物在低氧条件下生长。
1988年Khosla等[9]从Vitreoscilla中分离出Vgb基因并将之转入大肠杆菌(E·coli),提高了大肠杆菌在溶氧量低于5%时对氧的利用率。
目前已用克隆表达VHb的方法提高了放线紫红素、头孢霉素C、红霉素等产生菌及青霉素酰化酶基因工程菌的产量[10]。
血红蛋白基因工程的研究和应用,必将对抗生素工业和其它重组药物发酵工业的节能等带来美好的前景。
作为半合成头孢菌素类抗生素重要原料的7-氨基头孢烷酸(7-ACA),目前国内外仍以化学裂解头孢菌素C的工艺路线为主。
国内外已报道可用经由GL-7-ACA的二步法(化学/酶法或二步酶法)来生产7-ACA,与化学裂解法相比不仅收率提高,且能大大减少环境污染,简化生产工艺。
但二步法中关键的GL-7-ACA酰化酶在假单胞菌中表达量低而且分离纯化困难,限制了这种方法的应用。
通过将GL-7-ACA酰化酶基因转入大肠杆菌中表达恰好可以解决这一问题[11]。
最近又报道可将编码2个酶的基因直接转入头孢菌素C的生产菌种中,使其在发酵时直接产生7-ACA。
调节基因在药物的生物合成中也起着重要作用,增加调节基因的基因量能够大幅提高药物产量。
Hopwood等将放线紫红素生物合成的一个调节基因actⅡ导入原产生菌,尽管基因的拷贝数仅增加了2倍,放线紫红素的产量却增加了30~40倍。
某些抗生素生产菌的产量不高,是由于其自身对该抗生素的抗性不高。
因此,利用高拷贝质粒的基因量效应,增加菌种对自身产生的抗生素的抗性,可能增加抗生素的产量。
例如,将氨基糖苷-6-乙酰转移酶基因导入卡那霉素和新霉素产生菌,由于提高了对氨糖类抗生素的抗性,产量提高了2~6倍2.2.2 基因治疗基因治疗是指由于某种基因缺陷引起的遗传病通过转基因技术而得到纠正。
临床实践已经表明: 基因治病已经变革了整个医学的预防和治疗领域。
比如白痴病, 用健康的基因更换或者矫正患者的有缺损的基因, 就有可能根治这种疾病。
现在已知的人类遗传病约有4000种, 包括单基因缺陷和多基因的综合症。
运用基因工程技术或基因打靶的手段, 将病毒的基因杀灭, 插入矫正基因, 得以治疗、校正和预防遗传疾病的目的。
目前, 基因治疗已扩大到肿瘤、心血管系统疾病、神经系统疾病等的治疗[12]。
人类也已成功实现了肾、心、肝、胰、肺等器官的移植, 也有双器官和多器官的联合移植。
基因治疗有两种途径: 一是体细胞的基因治疗, 一是生殖细胞的基因治疗。
由于生殖细胞的基因治疗操作技术异常复杂, 又涉及伦理缓行之理充足, 故尚无人涉足[13]。
基因工程是20 世纪生命科学中最伟大的成绩, 开辟了生命科学的新纪元。
经过几十年的发展, 基因工程技术已成为一个巨大的朝阳产业, 它可以超越动物、植物、微生物之间的界限, 创造出新的生物类型。
基因工程不仅在医学上应用广泛, 而且也广泛应用在工业、农业、冶金、环保、资源、能源、畜牧渔业等领域, 为人类的丰衣足食和健康长寿提供了持续的实用价值很高的产品, 发展前景极为广阔。
参考文献:[1] 陈渝军, 林晶. 基因工程技术在医药卫生领域的应用及发展. 药品评价,2005, 2( 2) : 144- 145.[2] 童克中.基因及其表达.北京: 科学出版社, 2001.[3] 李尉民, 乐宁, 夏红民.转基因生物及其产品的风险与管理.生物技术通报.2000(4)41- 44.[4] 朱宝泉. 基因工程技术在医学工业中的应用及进展[ J] . 中国医药工业志.1997.28(2): 56- 58.[5] 方鹏.基因工程应用简述[ J] .辽宁师专学报.2004.6(2): 29- 30.[6] 周黎, 柯传奎.基因工程药物研究现状与对策[ J] .生命科学仪器2004.1: 22.[7]Malmberg LH, Hu WS, Sherman DH·Journal of Bacteriology,1993, 175(11): 6916~6924·[8]Haruo Ikeda, SatoshiOmura·Journal ofAntibiotics, 1995, 48(7):549~562·[9]Chaitan Khosla, JamesEB·Nature, 1988, 331: 633~635·[10] 郭宏秋,杨胜利·微生物学通报, 1996, 23(4): 227~230·[11] 周煜,刘涤,胡之璧·药物生物技术, 2000, 7(4): 251~253·[12] 路正兵, 夏颖.基因工程在疾病防治及药物研制上的应用[ J] .安徽预防医学杂志.2000.6(5): 398- 400.[13] 王俊杰21 世纪基因工程在肿瘤防治中的应用[ J] 2000.6(6):62- 67.分子生物学—谈基因工程技术如何应用于植物摘要:通过基因工程改良品种在未来的农业生产中日益显示出巨大潜力。